Document number: | WG21 N4458 |
Date: | 2015-04-13 |
Project: | Programming Language C++ |
Reference: | ISO/IEC IS 14882:2014 |
Reply to: | William M. Miller |
Edison Design Group, Inc. | |
wmm@edg.com |
This document contains the C++ core language issues that have been categorized as Defect Reports by the Committee (PL22.16 + WG21) and other accepted issues, that is, issues with status "DR," "accepted," "DRWP," "WP," "CD1," "CD2," "CD3," "TC1," "C++11," and "C++14," along with their proposed resolutions. Issues with DR, accepted, DRWP, and WP status are NOT part of the International Standard for C++. They are provided for informational purposes only, as an indication of the intent of the Committee. They should not be considered definitive until or unless they appear in an approved Technical Corrigendum or revised International Standard for C++.
This document is part of a group of related documents that together describe the issues that have been raised regarding the C++ Standard. The other documents in the group are:
For more information, including a description of the meaning of the issue status codes and instructions on reporting new issues, please see the Active Issues List.
Section references in this document reflect the section numbering of document WG21 N4296.
[Moved to DR at the November, 2014 meeting.]
The section of the Standard reserving names that begin with two underscores or an underscore and a capital letter, _N4140_.17.6.4.3.2 [global.names], applies only to “programs that use the facilities of the C++ standard library” (17.6.4.1 [constraints.overview]). However, implementations rely on this restriction for mangling, even when no standard library facilities are used. Should this requirement be moved to the core language section?
(There is a related issue with user-defined literal suffixes, 17.6.4.3.4 [usrlit.suffix]. However, these are already mentioned normatively in the core language section, so it could be argued that the question of library usage does not apply.)
Proposed resolution (October, 2014):
Change 2.10 [lex.name] paragraph 3 as follows:
In addition, some identifiers are reserved for use by C++ implementations and standard libraries (_N4140_.17.6.4.3.2 [global.names]) and shall not be used otherwise; no diagnostic is required.
Each identifier that contains a double understore __ or begins with an underscore followed by an uppercase letter is reserved to the implementation for any use.
Each identifier that begins with an underscore is reserved to the implementation for use as a name in the global namespace.
Change the footnote in 8.4.1 [dcl.fct.def.general] paragraph 8 as follows:
[Footnote: Implementations are permitted to provide additional predefined variables with names that are reserved to the implementation (_N4140_.17.6.4.3.2 [global.names] 2.10 [lex.name]). If a predefined variable is not odr-used (3.2 [basic.def.odr]), its string value need not be present in the program image. —end footnote]
Change the example in 13.5.8 [over.literal] paragraph 8 as follows:
double operator""_Bq(double); // OK: does not use the reserved name identifier _Bq (_N4140_.17.6.4.3.2 [global.names] 2.10 [lex.name]) double operator"" _Bq(double); // uses the reserved name identifier _Bq (_N4140_.17.6.4.3.2 [global.names] 2.10 [lex.name])
Delete _N4140_.17.6.4.3.2 [global.names]:
Certain sets of names and function signatures are always reserved to the implementation:
Each name that contains a double underscore __ or begins with an underscore followed by an uppercase letter (2.11 [lex.key]) is reserved to the implementation for any use.
Each name that begins with an underscore is reserved to the implementation for use as a name in the global namespace.
[Moved to DR at the November, 2014 meeting.]
According to 2.3 [lex.charset] paragraph 3,
The basic execution character set and the basic execution wide-character set shall each contain all the members of the basic source character set, plus control characters representing alert, backspace, and carriage return, plus a null character (respectively, null wide character), whose representation has all zero bits.
It is not clear that a portable program can examine the bits of the representation; instead, it would appear to be limited to examining the bits of the numbers corresponding to the value representation (3.9.1 [basic.fundamental] paragraph 1). It might be more appropriate to require that the null character value compare equal to 0 or '\0' rather than specifying the bit pattern of the representation.
There is a similar issue for the definition of shift, bitwise and, and bitwise or operators: are those specifications constraints on the bit pattern of the representation or on the values resulting from the interpretation of those patterns as numbers?
Proposed resolution (February, 2014):
Change 2.3 [lex.charset] paragraph 3 as follows:
The basic execution character set and the basic execution wide-character set shall each contain all the members of the basic source character set, plus control characters representing alert, backspace, and carriage return, plus a null character (respectively, null wide character), whose representation has all zero bits value is 0. For each basic execution character set...
[Moved to DR at the November, 2014 meeting.]
The intent of char16_t string literals, as evident from 2.13.5 [lex.string] paragraph 9, is that they be encoded in UTF-16, that is, including surrogate pairs to represent code points outside the basic multi-lingual plane:
A single c-char may produce more than one char16_t character in the form of surrogate pairs.
Paragraph 15, however, is inconsistent with this approach, saying,
Escape sequences and universal-character-names in non-raw string literals have the same meaning as in character literals (2.13.3 [lex.ccon]), except that the single quote ' is representable either by itself or by the escape sequence \', and the double quote " shall be preceded by a \.
The reason is that code points outside the basic multi-lingual plane are ill-formed in char16_t character literals:
A character literal that begins with the letter u, such as u'y', is a character literal of type char16_t. The value of a char16_t literal containing a single c-char is equal to its ISO 10646 code point value, provided that the code point is representable with a single 16-bit code unit. (That is, provided it is a basic multi-lingual plane code point.) If the value is not representable within 16 bits, the program is ill-formed.
It should be clarified that this restriction does not apply to char16_t string literals.
Proposed resolution (February, 2014):
Change 2.13.5 [lex.string] paragraph 16 as follows:
Escape sequences and universal-character-names in non-raw string literals have the same meaning as in character literals (2.13.3 [lex.ccon]), except that the single quote ' is representable either by itself or by the escape sequence \', and the double quote " shall be preceded by a \, and except that a universal-character-name in a char16_t string literal may yield a surrogate pair. In a narrow string literal...
[Moved to DR at the November, 2014 meeting.]
In explaining the relationship between preprocessing tokens and tokens, 2.4 [lex.pptoken] paragraph 4 contains the following example:
[Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for example, if Ex were a macro defined as +1).
This analysis does not take into account the addition of user-defined literals. In fact, 1Ex matches the rule for a user-defined-integer-literal, which is then ill-formed because it uses a reserved ud-suffix (2.13.8 [lex.ext] paragraph 10), as well as (presumably) because of a lookup failure for a matching literal operator, raw literal operator, or literal operator template.
More generally, it might be preferable to eliminate the restriction on the use of a reserved ud-suffix and rely simply on the fact that it is ill-formed to declare a literal operator, raw literal operator, or literal operator template with a reserved literal suffix identifier (17.6.4.3.4 [usrlit.suffix], cf 13.5.8 [over.literal] paragraph 1).
Proposed resolution (June, 2014):
Change 2.4 [lex.pptoken] paragraph 4 as follows:
[Example: The program fragment 1Ex 0xe+foo is parsed as a preprocessing number token (one that is not a valid floating or integer literal token), even though a parse as the pair of three preprocessing tokens 1 0xe, +, and Ex foo might produce a valid expression (for example, if Ex foo were a macro defined as +1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a macro name. —end example]
Delete 2.13.8 [lex.ext] paragraph 10:
Some identifiers appearing as ud-suffixes are reserved for future standardization (17.6.4.3.4 [usrlit.suffix]). A program containing such a ud-suffix is ill-formed, no diagnostic required.
Change 13.5.8 [over.literal] paragraph 1 as follows:
The string-literal or user-defined-string-literal in a literal-operator-id shall have no encoding-prefix and shall contain no characters other than the implicit terminating '\0'. The ud-suffix of the user-defined-string-literal or the identifier in a literal-operator-id is called a literal suffix identifier. [Note: some Some literal suffix identifiers are reserved for future standardization; see 17.6.4.3.4 [usrlit.suffix]. —end note] A declaration whose literal-operator-id uses such a literal suffix identifier is ill-formed; no diagnostic required.
Change 17.6.4.3.4 [usrlit.suffix] paragraph 1 as follows:
Literal suffix identifiers (13.5.8 [over.literal]) that do not start with an underscore are reserved for future standardization.
Additional note, May, 2014:
It has been suggested that the change to 2.4 [lex.pptoken] paragraph 4 in the proposed resolution would be simpler and better if it did not venture into questions about user-defined literals but simply relied on a string that is a valid pp-number but not a valid floating-point number, as was the case before the introduction of user-defined literals, e.g., 1.2.3.4. The issue has been returned to "review" status for discussion of this suggestion.
[Moved to DR at the November, 2014 meeting.]
Sections 14.7.2 [temp.explicit] and 14.7.3 [temp.expl.spec] describe cases of explicit instantiation directives and explicit specializations, respectively, that are not definitions. However, the description in 3.1 [basic.def] does not include these distinctions, classifying all declarations other than those listed as definitions. These should be harmonized.
Proposed Resolution (July, 2014):
Change 3.1 [basic.def] paragraph 2 as follows:
A declaration is a definition unless it... an empty-declaration (Clause 7 [dcl.dcl]), or a using-directive (7.3.4 [namespace.udir]), an explicit instantiation declaration (14.7.2 [temp.explicit]), or an explicit specialization (14.7.3 [temp.expl.spec]) whose declaration is not a definition.
[Moved to DR at the November, 2014 meeting.]
According to 3.2 [basic.def.odr] paragraph 3,
A function whose name appears as a potentially-evaluated expression is odr-used if it is the unique lookup result or the selected member of a set of overloaded functions (3.4 [basic.lookup], 13.3 [over.match], 13.4 [over.over]), unless it is a pure virtual function and its name is not explicitly qualified.
In the following example, consequently, S::f is odr-used but not defined, and (because it is an undefined odr-used inline function) a diagnostic is required:
namespace { struct S { inline virtual void f() = 0; }; void (S::*p) = &S::f; }
However, S::f cannot be called through such a pointer-to-member, so forming a pointer-to-member should not cause a pure virtual function to be odr-used. There is implementation divergence on this point.
Proposed resolution (April, 2013):
Change 3.2 [basic.def.odr] paragraph 3 as follows:
...A virtual member function is odr-used if it is not pure. A function whose name appears as a potentially-evaluated expression is odr-used if it is the unique lookup result or the selected member of a set of overloaded functions (3.4 [basic.lookup], 13.3 [over.match], 13.4 [over.over]), unless it is a pure virtual function and either its name is not explicitly qualified or the expression forms a pointer to member (5.3.1). [Note:...
[Moved to DR at the November, 2014 meeting.]
One of the forms of pseudo-destructor-name is
Presumably the intent of this form is to allow the nested-name-specifier to designate a namespace; otherwise the
production would be used.
Since one of the forms of nested-name-specifier is
one can write something like p->decltype(x)::~Y(). However, the lookup rules in 3.4.3 [basic.lookup.qual] paragraph 6 are inappropriate for the decltype-specifier case:
If a pseudo-destructor-name (5.2.4 [expr.pseudo]) contains a nested-name-specifier, the type-names are looked up as types in the scope designated by the nested-name-specifier.
Since this form appears to be useless (use of a decltype-specifier is permitted after a ~, but only with no nested-name-specifer — but see issue 1586), perhaps it should be made ill-formed.
Proposed resolution (February, 2014):
Change the grammar in 5.2 [expr.post] paragraph 1 as follows:
[Moved to DR at the November, 2014 meeting.]
In C++03, all namespace-scope names had external linkage unless explicitly declared otherwise (via static, const, or as a member of an anonymous union). C++11 now specifies that members of an unnamed namespace have internal linkage (see issue 1113). This change invalidated a number of assumptions scattered throughout the Standard that need to be adjusted:
3.5 [basic.link] paragraph 5 says,
a member function, static data member, a named class or enumeration of class scope, or an unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for linkage purposes (7.1.3 [dcl.typedef]), has external linkage if the name of the class has external linkage.
There is no specification for the linkage of such members of a class with internal linkage. Formally, at least, that leads to the statement in paragraph 8 that such members have no linkage. This omission also contradicts the note in 9.3 [class.mfct] paragraph 3:
[Note: Member functions of a class in namespace scope have external linkage. Member functions of a local class (9.8 [class.local]) have no linkage. See 3.5 [basic.link]. —end note]
as well as the statement in 9.4.2 [class.static.data] paragraph 5,
Static data members of a class in namespace scope have external linkage (3.5 [basic.link]).
The footnote in 3.5 [basic.link] paragraph 8 says,
A class template always has external linkage, and the requirements of 14.3.1 [temp.arg.type] and 14.3.2 [temp.arg.nontype] ensure that the template arguments will also have appropriate linkage.
This is incorrect, since templates in unnamed namespaces now have internal linkage and template arguments are no longer required to have external linkage.
The statement in 7.1.1 [dcl.stc] paragraph 7 is now false:
A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has internal linkage because of a previous declaration and provided it is not declared const.
The entire treatment of unique in 7.3.1.1 [namespace.unnamed] is no longer necessary, and the footnote is incorrect:
Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their translation unit and therefore can never be seen from any other translation unit.
Names in unnamed namespaces never have external linkage.
According to 11.3 [class.friend] paragraph 4,
A function first declared in a friend declaration has external linkage (3.5 [basic.link]).
This presumably is incorrect for a class that is a member of an unnamed namespace.
According to 14 [temp] paragraph 4,
A non-member function template can have internal linkage; any other template name shall have external linkage.
Taken literally, this would mean that a template could not be a member of an unnamed namespace.
Proposed resolution (April, 2013):
Change 3.5 [basic.link] paragraph 5 as follows:
In addition, a member function, static data member, a named class or enumeration of class scope, or an unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for linkage purposes (7.1.3 [dcl.typedef]), has external linkage if the name of the class has external linkage the same linkage, if any, as the name of the class of which it is a member.
Change the footnote in 3.5 [basic.link] paragraph 8 as follows:
33) A class template always has external linkage, and the requirements of 14.3.1 [temp.arg.type] and 14.3.2 [temp.arg.nontype] ensure that the template arguments will also have appropriate linkage has the linkage of the innermost enclosing class or namespace in which it is declared.
Change 7.3.1.1 [namespace.unnamed] paragraph 1 as follows:
An unnamed-namespace-definition behaves as if it were replaced by
inlineopt namespace unique { /* empty body */ } using namespace unique ; namespace unique { namespace-body }where inline appears if and only if it appears in the unnamed-namespace-definition, and all occurrences of unique in a translation unit are replaced by the same identifier, and this identifier differs from all other identifiers in the entire program. [Footnote: Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their translation unit and therefore can never be seen from any other translation unit. —end footnote] translation unit. [Example:...
Change the note in 9.3 [class.mfct] paragraph 3 as follows:
[Note: Member functions of a class in namespace scope have external linkage the linkage of that class. Member functions of a local class (9.8 [class.local]) have no linkage. See 3.5 [basic.link]. —end note]
Change 9.4.2 [class.static.data] paragraph 5 as follows:
Static data members of a class in namespace scope have external linkage the linkage of that class (3.5 [basic.link]).
Change 11.3 [class.friend] paragraph 4 as follows:
A function first declared in a friend declaration has external linkage the linkage of the namespace of which it is a member (3.5 [basic.link]). Otherwise, the function retains its previous linkage (7.1.1 [dcl.stc]).
Change 14 [temp] paragraph 4 as follows:
A template name has linkage (3.5 [basic.link]). A non-member function template can have internal linkage; any other template name shall have external linkage. Specializations (explicit or implicit) of a template that has internal linkage are distinct from all specializations in other translation units...
[Moved to DR at the November, 2014 meeting.]
According to 3.5 [basic.link] paragraph 3,
A name having namespace scope (3.3.6 [basic.scope.namespace]) has internal linkage if it is the name of
...
a non-volatile variable that is explicitly declared const or constexpr and neither explicitly declared extern nor previously declared to have external linkage; or
...
It would be more precise and less confusing if the phrase “explicitly declared const” were replaced by saying that its type is const-qualified. This change would also allow removal of the reference to constexpr, which was added by issue 1112 because constexpr variables are implicitly const-qualified but not covered by the “explicitly declared” phrasing.
Proposed resolution (September, 2013):
Change the second bullet of 3.5 [basic.link] paragraph 3 as follows:
a non-volatile variable that is explicitly declared const or constexpr and of non-volatile const-qualified type that is neither explicitly declared extern nor previously declared to have external linkage; or
[Moved to DR at the November, 2014 meeting.]
According to 3.6.2 [basic.start.init] paragraph 2,
Definitions of explicitly specialized class template static data members have ordered initialization. Other class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization.
This is not clear whether it is referring to static data members of explicit specializations of class templates or to explicit specializations of static data members of class template specializations. It also does not apply to static data member templates and non-member variable templates.
Proposed resolution (February, 2014):
Change 3.6.2 [basic.start.init] paragraph 2 as follows:
...Dynamic initialization of a non-local variable with static storage duration is either ordered or unordered. Definitions of explicitly specialized class template static data members have ordered initializa-tion. Other class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization. Other non-local variables with static storage duration have ordered initialization unordered if the variable is an implicitly or explicitly instantiated specialization, and otherwise is ordered [Note: an explicitly specialized static data member or variable template specialization has ordered initialization. —end note]. Variables with ordered initialization...
[Moved to DR at the November, 2014 meeting.]
According to 3.6.2 [basic.start.init] paragraph 2,
Constant initialization is performed:
if each full-expression (including implicit conversions) that appears in the initializer of a reference with static or thread storage duration is a constant expression (5.20 [expr.const]) and the reference is bound to an lvalue designating an object with static storage duration or to a temporary (see 12.2 [class.temporary]);
...
This wording should also permit the reference to be bound to an xvalue, e.g., a subobject of a temporary, and not just to a complete temporary.
Proposed resolution (February, 2014):
Change 3.6.2 [basic.start.init] paragraph 2 as follows (note that this resolution incorporates the overlapping change from the resolution of issue 1299)::
...Constant initialization is performed:
if each full-expression (including implicit conversions) that appears in the initializer of a reference with static or thread storage duration is a constant expression (5.20 [expr.const]) and the reference is bound to an lvalue a glvalue designating an object with static storage duration, to a temporary object (see 12.2 [class.temporary]) or subobject thereof, or to a function;
...
[Moved to DR at the November, 2014 meeting.]
In 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 2, allocation functions are constrained to return a pointer that is different from any previously returned pointer that has not been passed to a deallocation function. This does not, for instance, prohibit returning a pointer to storage that is part of another object, for example, a pool of storage. The potential implications of this for aliasing should be spelled out.
(See also issues 1027 and 1116.)
Additional note (March, 2013):
One possibility to allow reasonable optimizations would be to require that allocation packages hide their storage in file-static variables, perhaps by adding wording such as:
Furthermore, p0 shall point to an object distinct from any other object that is accessible outside the implementation of the allocation and deallocation functions.
Additional note, April, 2013:
Concern was expressed that a pool class might provide an interface for iterating over all the pointers that were given out from the pool, and this usage should be supported.
Notes from the September, 2013 meeting:
CWG agreed that changes for this issue should apply only to non-placement forms.
Proposed resolution (February, 2014):
Change 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 2 as follows:
...If the request succeeds, the value returned shall be a non-null pointer value (4.10 [conv.ptr]) p0 different from any previously returned value p1, unless that value p1 was subsequently passed to an operator delete. Furthermore, for the library allocation functions in 18.6.1.1 [new.delete.single] and 18.6.1.2 [new.delete.array], p0 shall point to a block of storage disjoint from the storage for any other object accessible to the caller. The effect of indirecting through a pointer returned as a request for zero size is undefined.36
[Moved to DR at the November, 2014 meeting.]
The description of is_trivially_constructible in 20.10.4.3 [meta.unary.prop] paragraph 3 says,
is_constructible<T, Args...>::value is true and the variable definition for is_constructible, as defined below, is known to call no operation that is not trivial ( 3.9 [basic.types], 12 [special]).
This risks confusion when compared with the wording in 3.8 [basic.life] paragraph 1,
An object is said to have non-trivial initialization if it is of a class or aggregate type and it or one of its members is initialized by a constructor other than a trivial default constructor. [Note: initialization by a trivial copy/move constructor is non-trivial initialization. —end note]
The latter was written long before “trivial” became an important concept in its own right and uses the term differently from how it is used elsewhere in the Standard (as evidenced by the note referring to copy/move construction). The intent is to capture the idea that there is some actual initialization occurring; it should be rephrased to avoid the potential of confusion with the usage of “trivial” elsewhere.
Proposed resolution (February, 2014):
Change 3.8 [basic.life] paragraph 1 as follows:
The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization non-vacuous initialization if it is of a class or aggregate type and it or one of its members is initialized by a constructor other than a trivial default constructor. [Note: initialization by a trivial copy/move constructor is non-trivial non-vacuous initialization. —end note] The lifetime of an object of type T begins when:
storage with the proper alignment and size for type T is obtained, and
if the object has non-trivial non-vacuous initialization, its initialization is complete.
The lifetime of an object...
[Moved to DR at the November, 2014 meeting.]
According to 3.9.1 [basic.fundamental] paragraph 1,
For unsigned narrow character types, all possible bit patterns of the value representation represent numbers.
Presumably the intent is that each distinct bit pattern represents a different number, but this should be made explicit.
Proposed resolution (February, 2014):
Change 3.9.1 [basic.fundamental] paragraph 1 as follows:
...For unsigned narrow character types, all each possible bit patterns pattern of the value representation represent numbers represents a distinct number. These requirements...
[Moved to DR as N4261 at the November, 2014 meeting.]
Section 4.4 [conv.qual] covers the case of multi-level pointers, but does not appear to cover the case of pointers to arrays of pointers. The effect is that arrays are treated differently from simple scalar values.
Consider for example the following code: (from the thread "Pointer to array conversion question" begun in comp.lang.c++.moderated)
int main() { double *array2D[2][3]; double * (*array2DPtr1)[3] = array2D; // Legal double * const (*array2DPtr2)[3] = array2DPtr1; // Legal double const * const (*array2DPtr3)[3] = array2DPtr2; // Illegal }and compare this code with:-
int main() { double *array[2]; double * *ppd1 = array; // legal double * const *ppd2 = ppd1; // legal double const * const *ppd3 = ppd2; // certainly legal (4.4/4) }
The problem appears to be that the pointed to types in example 1 are unrelated since nothing in the relevant section of the standard covers it - 4.4 [conv.qual] does not mention conversions of the form "cv array of N pointer to T" into "cv array of N pointer to cv T"
It appears that reinterpret_cast is the only way to perform the conversion.
Suggested resolution:
Artem Livshits proposed a resolution :-
"I suppose if the definition of "similar" pointer types in 4.4 [conv.qual] paragraph 4 was rewritten like this:
it would address the problem.T1 is cv1,0 P0 cv1,1 P1 ... cv1,n-1 Pn-1 cv1,n T
and
T2 is cv1,0 P0 cv1,1 P1 ... cv1,n-1 Pn-1 cv1,n T
where Pi is either a "pointer to" or a "pointer to an array of Ni"; besides P0 may be also a "reference to" or a "reference to an array of N0" (in the case of P0 of T2 being a reference, P0 of T1 may be nothing).
In fact I guess Pi in this notation may be also a "pointer to member", so 4.4 [conv.qual]/{4,5,6,7} would be nicely wrapped in one paragraph."
Additional note, February, 2014:
Geoffrey Romer: LWG plans to resolve US 16/LWG 2118, which concerns qualification-conversion of unique_ptr for array types, by effectively punting the issue to core: unique_ptr<T[]> will be specified to be convertible to unique_ptr<U[]> only if T(*)[] is convertible to U(*)[]. LWG and LEWG have jointly decided to adopt the same approach for shared_ptr<T[]> and shared_ptr<T[N]> in the Fundamentals TS. This will probably substantially raise the visibility of core issue 330, which concerns the fact that array types support only top-level qualification conversion of the element type, so it'd be nice if CWG could bump up the priority of that issue.
See also issue 1865.
Proposed resolution (October, 2014):
The resolution is contained in paper N4261.
[Moved to DR at the November, 2014 meeting.]
4.7 [conv.integral] paragraph 3 says, regarding integral conversions,
If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field width); otherwise, the value is implementation-defined.
The values that can be represented in a bit-field are not well specified, except for the correspondence with the values of an enumeration in 7.2 [dcl.enum]. In particular, it is not clear whether a bit-field has a sign bit and whether bit-fields may have padding bits.
Another point to note in this wording: paragraph 1 describes the context as
A prvalue of an integer type can be converted to a prvalue of another integer type.
However, prvalues cannot be bit-fields, so the applicability of the mention of “bit-field width” in paragraph 3 is unclear.
Proposed resolution (February, 2014):
Change 4.7 [conv.integral] paragraph 3 as follows:
If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field width); otherwise, the value is implementation-defined.
Change 5.2.6 [expr.post.incr] paragraph 1 as follows:
...The result is a prvalue. The type of the result is the cv-unqualified version of the type of the operand. If the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is implementation-defined. See also 5.7 [expr.add] and 5.18 [expr.ass].
Change 5.18 [expr.ass] paragraph 6 as follows:
When the left operand of an assignment operator denotes a reference to T, the operation assigns to the object of type T denoted by the reference is a bit-field that cannot represent the value of the expression, the resulting value of the bit-field is implementation-defined..
Change the final bullet of 8.5 [dcl.init] paragraph 17 as follows:
The semantics of initializers are as follows...
...
...no user-defined conversions are considered. If the conversion cannot be done, the initialization is ill-formed. When initializing a bit-field with a value that it cannot represent, the resulting value of the bit-field is implementation-defined. [Note: An expression of type...
[Moved to DR at the November, 2014 meeting.]
Similarly to issue 1738, it is not clear whether it is permitted to explicitly instantiate or specialize the call operator of a polymorphic lambda (via decltype).
Proposed resolution (February, 2014):
Add the following as a new paragraph following 5.1.2 [expr.prim.lambda] paragraph 21:
The closure type associated with a lambda-expression has an implicitly-declared destructor (12.4 [class.dtor]).
A member of a closure type shall not be explicitly instantiated (14.7.1 [temp.inst]), explicitly specialized (14.7.2 [temp.explicit]), or named in a friend declaration (11.3 [class.friend]).
[Moved to DR at the November, 2014 meeting.]
According to 5.1.2 [expr.prim.lambda] paragraph 20,
The closure type associated with a lambda-expression has a deleted (8.4.3 [dcl.fct.def.delete]) default constructor and a deleted copy assignment operator. It has an implicitly-declared copy constructor (12.8 [class.copy]) and may have an implicitly-declared move constructor (12.8 [class.copy]).
However, according to 12.8 [class.copy] paragraph 9,
If the definition of a class X does not explicitly declare a move constructor, one will be implicitly declared as defaulted if and only if
X does not have a user-declared copy constructor,
X does not have a user-declared copy assignment operator,
X does not have a user-declared move assignment operator, and
X does not have a user-declared destructor.
It is not clear how this applies to the closure class. Would it be better to state that the closure class has a defaulted move constructor and a defaulted move assignment operator? There is already wording that handles the case if they are ultimately defined as deleted.
Proposed resolution (October, 2014):
Change 5.1.2 [expr.prim.lambda] paragraph 20 as follows:
The closure type associated with a lambda-expression has a deleted (8.4.3 [dcl.fct.def.delete]) no default constructor and a deleted copy assignment operator. It has an implicitly-declared a defaulted copy constructor (12.8 [class.copy]) and may have an implicitly-declared and a defaulted move constructor (12.8 [class.copy]). [Note: The copy/move constructor is implicitly defined in the same way as any other implicitly declared copy/move constructor would be implicitly defined These special member functions are implicitly defined as usual, and might therefore be defined as deleted. —end note]
[Moved to DR at the November, 2014 meeting.]
The intent is that a function call is a temporary expression whose result is a temporary, but that appears not to be said anywhere. It should also be clarified that a return statement in a function with a class return type copy-initializes the temporary that is the result. The sequencing of the initialization of the returned temporary, destruction of temporaries in the return expression, and destruction of automatic variables should be make explicit.
Proposed resolution (October, 2014):
Change 6.6.3 [stmt.return] paragraphs 2-3 as follows:
A return statement with neither an expression nor a braced-init-list can be used only in functions that do not return a value, that is, The expression or braced-init-list of a return statement is called its operand. A return statement with no operand shall be used only in a function with the whose return type is cv void, a constructor (12.1 [class.ctor]), or a destructor (12.4 [class.dtor]). A return statement with an operand of type void shall be used only in a function whose return type is cv void. A return statement with an expression of non-void type can be used only any other operand shall be used only in functions returning a value; the value of the expression is returned to the caller of the function. The value of the expression is implicitly converted to the return type of the function in which it appears a function whose return type is not cv void; the return statement initializes the object or reference to be returned by copy-initialization (8.5 [dcl.init]) from the operand. [Note: A return statement can involve the construction and copy or move of a temporary object (12.2 [class.temporary]). [Note: A copy or move operation associated with a return statement may be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8 [class.copy]). —end note] A return statement with a braced-init-list initializes the object or reference to be returned from the function by copy-list-initialization (8.5.4 [dcl.init.list]) from the specified initializer list. [Example:
std::pair<std::string,int> f(const char* p, int x) { return {p,x}; }—end example] Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior in a value-returning function.
A return statement with an expression of type void can be used only in functions with a return type of cv void; the expression is evaluated just before the function returns to its caller. The copy-initialization of the returned entity is sequenced before the destruction of temporaries at the end of the full-expression established by the operand of the return statement, which, in turn, is sequenced before the destruction of local variables (6.6 [stmt.jump]) of the block enclosing the return statement.
(See also the related changes in the resolution of issue 1299.)
[Moved to DR at the November, 2014 meeting.]
The specification of casting to an enumeration type in 5.2.9 [expr.static.cast] paragraph 10 does not require that the enumeration type be complete. Should it? (There is variation among implementations.)
Proposed resolution (February, 2014):
Change 5.2.9 [expr.static.cast] paragraph 10 as follows:
A value of integral or enumeration type can be explicitly converted to an a complete enumeration type. The value is...
[Moved to DR at the November, 2014 meeting.]
According to 5.3.1 [expr.unary.op] paragraph 3,
The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. If the operand is a qualified-id naming a non-static member m of some class C with type T, the result has type “pointer to member of class C of type T” and is a prvalue designating C::m.
It is not clear whether this wording applies to variant members of C (i.e., members of nested anonymous unions) or only to its non-variant members. For example, given
struct A { union { int n; }; }; auto x = &A::n;
should the type of x be int A::* or int A::anon::*? Current implementations choose the former.
Proposed resolution (February, 2014):
Change 5.3.1 [expr.unary.op] paragraph 3 as follows:
The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. If the operand is a qualified-id naming a non-static or variant member m of some class C with type T, the result has type “pointer to member of class C of type T” and is a prvalue designating C::m. Otherwise...
[Moved to DR at the November, 2014 meeting.]
According to 5.3.4 [expr.new] paragraph 15,
[Note: unless an allocation function is declared with a non-throwing exception-specification (15.4 [except.spec]), it indicates failure to allocate storage by throwing a std::bad_alloc exception (Clause 15 [except], 18.6.2.1 [bad.alloc]); it returns a non-null pointer otherwise. If the allocation function is declared with a non-throwing exception-specification, it returns null to indicate failure to allocate storage and a non-null pointer otherwise. —end note] If the allocation function returns null, initialization shall not be done, the deallocation function shall not be called, and the value of the new-expression shall be null.
This wording applies even to the non-replaceable placement forms defined in 18.6.1.3 [new.delete.placement] that simply return the supplied pointer as the result of the allocation function. Compilers are thus required to check for a null pointer and avoid the initialization if one is used. This test is unnecessary overhead; it should be the user's responsibility to ensure that a null pointer is not used in these forms of placement new, just as for other cases when a pointer is dereferenced.
Proposed resolution (February, 2014):
Change 5.3.4 [expr.new] paragraph 15 as follows:
[Note: unless an allocation function is declared with a non-throwing exception-specification (15.4 [except.spec]), it indicates failure to allocate storage by throwing a std::bad_alloc exception (Clause 15 [except], 18.6.2.1 [bad.alloc]); it returns a non-null pointer otherwise. If the allocation function is declared with a non-throwing exception-specification, it returns null to indicate failure to allocate storage and a non-null pointer otherwise. —end note] If the allocation function is a reserved placement allocation function (18.6.1.3 [new.delete.placement]) that returns null, the behavior is undefined. Otherwise, if the allocation function returns null, initialization shall not be done, the deallocation function shall not be called, and the value of the new-expression shall be null.
[Moved to DR at the November, 2014 meeting.]
7.1.6.4 [dcl.spec.auto] paragraph 5 says that a placeholder type (presumably including decltype(auto)) can appear in a new-expression. However, 5.3.4 [expr.new] mentions only auto, not decltype(auto).
Proposed resolution (February, 2014):
Change 5.3.4 [expr.new] paragraph 2 as follows:
If the auto type-specifier a placeholder type (7.1.6.4 [dcl.spec.auto]) appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the new-expression shall contain...
[Moved to DR at the November, 2014 meeting.]
The changes from N3778 require use of a sized deallocator for a case like
char *p = new char[32]; void f() { delete [] p; }
That is unimplementable under current ABIs, which do not store the array size for such allocations. It should instead be unspecified or implementation-defined whether the sized form of operator[] is used for a pointer to a type other than a class with a non-trivial destructor or array thereof.
Proposed resolution (February, 2014) [SUPERSEDED]:
Change 5.3.5 [expr.delete] paragraph 10 as follows:
If the type is complete and if deallocation function lookup finds both a usual deallocation function with only a pointer parameter and a usual deallocation function with both a pointer parameter and a size parameter, then
- for the first alternative (delete object), if the type of the object to be deleted is complete, and for the second alternative (delete array), if the type of the object to be deleted is a complete class type with a non-trivial destructor, then the selected deallocation function shall be the one with two parameters;
otherwise, it is implementation-defined which deallocation function is selected.
Otherwise, the selected deallocation function shall be the function with one parameter.
Additional note, February, 2014:
It is not clear that this resolution accurately reflects the intent of the issue. In particular, it changes deletion of a pointer to incomplete type from requiring use of the single-parameter version to being implementation-defined. Also, the “type of the object to be deleted” in the array case is always an array type and thus cannot be “a complete class type with a non-trivial destructor.” The issue has consequently been returned to "review" status.
Proposed resolution (June, 2014):
Change 5.3.5 [expr.delete] paragraph 10 as follows:
If the type is complete and if deallocation function lookup finds both a usual deallocation function with only a pointer parameter and a usual deallocation function with both a pointer parameter and a size parameter, then the selected deallocation function shall be the one with two parameters. Otherwise, the selected deallocation function shall be the function with one parameter. the function to be called is selected as follows:
If the type is complete and if, for the second alternative (delete array) only, the operand is a pointer to a class type with a non-trivial destructor or a (possibly multi-dimensional) array thereof, the function with two parameters is selected.
Otherwise, it is unspecified which of the two deallocation functions is selected.
[Moved to DR at the November, 2014 meeting.]
The list of causes for a false result of the noexcept operator does not include a new-expression with a non-constant array bound, which could result in an exception even if the allocation function that would be called is declared not to throw (see 5.3.4 [expr.new] paragraph 7).
Proposed resolution (June, 2012):
This issue is resolved by the resolution of issue 1351.
[Moved to DR at the November, 2014 meeting.]
The resolution of issue 1504 added 5.7 [expr.add] paragraph 7:
For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T is different from the cv-unqualified array element type, the behavior is undefined.
This wording was intended to address derived-base conversion in pointer arithmetic, but it inadvertently categorized as undefined behavior previously well-defined pointer arithmetic on pointers that are the result of multi-level qualification conversions. For example:
void f() { int i = 0; int* arr[3] = {&i, &i, &i}; int const * const * aptr = arr; assert(aptr[2] == &i); }
This now has undefined behavior because the type of *aptr is “pointer to const int,” which is different from the cv-unqualified array element type, “pointer to int.”
See also issue 330.
Proposed Resolution (July, 2014):
Change 5.7 [expr.add] paragraph 7 as follows:
For addition or subtraction, if the expressions P or Q have type “pointer to cv T”, where T is different from the cv-unqualified and the array element type are not similar (4.4 [conv.qual]), the behavior is undefined. [Note: In particular, a pointer to a base class cannot be used for pointer arithmetic when the array contains objects of a derived class type. —end note]
[Moved to DR at the November, 2014 meeting.]
The provision to treat non-array objects as if they were array objects with a bound of 1 is given only for pointer arithmetic in C++ (5.7 [expr.add] paragraph 4). C99 supplies similar wording for the relational and equality operators, explicitly allowing pointers resulting from such implicit-array treatment to be compared. C++ should follow suit.
Proposed resolution (August, 2013):
Change 5.3.1 [expr.unary.op] paragraph 3 as follows:
...Otherwise, if the type of the expression is T, the result has type “pointer to T” and is a prvalue that is the address of the designated object (1.7 [intro.memory]) or a pointer to the designated function. [Note: In particular, the address of an object of type “cv T” is “pointer to cv T”, with the same cv-qualification. —end note] For purposes of pointer arithmetic (5.7 [expr.add]) and comparison (5.9 [expr.rel], 5.10 [expr.eq]), an object that is not an array element whose address is taken in this way is considered to belong to an array with one element of type T. [Example:
struct A { int i; }; struct B : A { }; ... &B::i ... // has type int A::* int a; int* p1 = &a; int* p2 = p1 + 1; // Defined behavior bool b = p2 > p1; // Defined behavior, with value true—end example] [Note: a pointer to member...
Delete 5.7 [expr.add] paragraph 4:
For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first element of an array of length one with the type of the object as its element type.
Change 5.7 [expr.add] paragraph 5 as follows:
When an expression that has integral type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an element of an array object [Footnote: An object that is not an array element is considered to belong to a single-element array for this purpose; see 5.3.1 [expr.unary.op] —end footnote], and the array is large enough, the result points to an element...
Change 5.9 [expr.rel] paragraph 3 as follows:
Comparing pointers to objects [Footnote: An object that is not an array element is considered to belong to a single-element array for this purpose; see 5.3.1 [expr.unary.op] —end footnote] is defined as follows:...
[Drafting note: No change is proposed for 5.10 [expr.eq], since the comparison is phrased in terms of “same address”, not in terms of array elements, so the handling of one-past-the-end addresses falls out of the specification of pointer arithmetic.]
[Moved to DR at the November, 2014 meeting.]
Comparison of pointers to members is currently specified in 5.10 [expr.eq] paragraph 3 as,
two pointers to members compare equal if they would refer to the same member of the same most derived object (1.8 [intro.object]) or the same subobject if indirection with a hypothetical object of the associated class type were performed, otherwise they compare unequal.
The “same member” requirement could be interpreted as incorrect for union members. The wording should be clarified in this regard.
Proposed Resolution (July, 2014):
Insert the following before bullet 5 of 5.10 [expr.eq] paragraph 3:
...
If both refer to (possibly different) members of the same union (9.5 [class.union]), they compare equal.
Otherwise, two pointers to members compare equal if...
[Moved to DR at the November, 2014 meeting.]
The final bullet of 5.16 [expr.cond] paragraph 3, describing the attempt to convert the operands of the conditional operator to the other operand's type as part of determining the type of the result, says,
Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying classes are not either the same or one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted to a prvalue (or the type it has, if E2 is a prvalue).
The phrase “if E2 were converted to a prvalue” is problematic if E2 has an array type. For example,
struct S {
S(const char *s);
operator const char *();
};
S s;
const char *f(bool b) {
return b ? s : ""; // #1
}
One might expect that the expression in #1 would be ambiguous, since S can be converted both to and from const char*. However, the target type for the conversion of s is const char[1], not const char*, so that conversion fails and the result of the conditional-expression has type S.
It might be better to specify the target type for this trial conversion to be the type after the usual lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions instead of simply the result of converting “to a prvalue.”
Proposed resolution (February, 2014):
Change the final subbullet of 5.16 [expr.cond] paragraph 3 as follows:
[Editorial note: this wording was approved by CWG, but I'd suggest an editorial change to “...or if both have class types but the underlying classes are not the same and neither is a base class of the other.” —wmm]...The process for determining whether an operand expression E1 of type T1 can be converted to match an operand expression E2 of type T2 is defined as follows:
...
If E2 is a prvalue or if neither of the conversions above can be done and at least one of the operands has (possibly cv-qualified) class type:
if E1 and E2 have class type...
Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but neither are the underlying classes are not either the same or nor is one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted to a prvalue (or the type it has, if E2 is a prvalue) after applying the lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), and function-to-pointer (4.3 [conv.func]) standard conversions.
[Moved to DR at the November, 2014 meeting.]
Presumably the result of something like
b ? x : throw y
is a bit-field if x is, but the current wording does not say that.
Proposed resolution (February, 2014):
Change 5.16 [expr.cond] paragraph 2 as follows (this assumes the revised wording of the resolution of issue 1299 as the base text):
If either the second or the third operand has type void, one of the following shall hold:
The second or the third operand (but not both) is a (possibly parenthesized) throw-expression (15.1 [except.throw]); the result is of the type and value category of the other operand. The conditional-expression is a temporary expression if that operand is a temporary expression and is a bit-field if that operand is a bit-field.
...
[Moved to DR at the November, 2014 meeting.]
We're missing a restriction on the value of a temporary which is bound to a static storage duration reference:
void f(int n) { static constexpr int *&&r = &n; }
This is currently valid, because &n is a core constant expression, and it is a constant expression because the reference binds to a temporary (of type int*) that has static storage duration (because it's lifetime-extended by the reference binding).
The value of r is constant here (it's a constant reference to a temporary with a non-constant initializer), but I don't think we should accept this. Generally, I think a temporary which is lifetime-extended by a constexpr variable should also be treated as if it were declared to be a constexpr object.
Proposed resolution (September, 2013) [SUPERSEDED]:
Change 5.20 [expr.const] paragraph 4 as follows:
A constant expression is either a glvalue core constant expression whose value refers to an object with static storage duration or to a function entity that is a permitted result of a constant expression, or a prvalue core constant expression whose value is an object where, for that object and its subobjects:
each non-static data member of reference type refers to an object with static storage duration or to a function entity that is a permitted result of a constant expression, and
if the object or subobject is of pointer type, it contains the address of an object with static storage duration, the address past the end of such an object (5.7 [expr.add]), the address of a function, or a null pointer value.
An entity is a permitted result of a constant expression if it is an object with static storage duration that is either not a temporary or is a temporary whose value satisfies the above constraints, or it is a function.
Proposed resolution (February, 2014):
Change 5.20 [expr.const] paragraph 4 as follows:
A constant expression is either a glvalue core constant expression whose value refers to an object with static storage duration or to a function entity that is a permitted result of a constant expression (as defined below), or a prvalue core constant expression whose value is an object where, for that object and its subobjects:
each non-static data member of reference type refers to an object with static storage duration or to a function entity that is a permitted result of a constant expression, and
if the object or subobject is of pointer type, it contains the address of an object with static storage duration, the address past the end of such an object (5.7), the address of a function, or a null pointer value.
An entity is a permitted result of a constant expression if it is an object with static storage duration that is either not a temporary object or is a temporary object whose value satisfies the above constraints, or it is a function.
[Moved to DR at the November, 2014 meeting.]
The requirements for a constant expression in 5.20 [expr.const] permit an lvalue-to-rvalue conversion on
a non-volatile glvalue of integral or enumeration type that refers to a non-volatile const object with a preceding initialization, initialized with a constant expression
This does not exclude subobjects of objects that are not compile-time constants, for example:
int f(); struct S { S() : a(f()), b(5) {} int a, b; }; const S s; constexpr int k = s.b;
This rule is intended to provide backward compatibility with pre-constexpr C++, but it should be restricted to complete objects. Care should be taken in resolving this issue not to break the handling of string literals, since use of their elements in constant expressions depends on the current form of this rule.
Proposed resolution (February, 2014):
Change 5.20 [expr.const] paragraph 2 bullet 7 as follows:
A conditional-expression e is a core constant expression unless the evaluation of e, following the rules of the abstract machine (1.9 [intro.execution]), would evaluate one of the following expressions:
...
an lvalue-to-rvalue conversion (4.1 [conv.lval]) unless it is applied to
a non-volatile glvalue of integral or enumeration type that refers to a complete non-volatile const object with a preceding initialization, initialized with a constant expression [Note: a string literal (2.13.5 [lex.string]) corresponds to an array of such objects. —end note], or
a non-volatile glvalue that refers to a subobject of a string literal (2.13.5 [lex.string]), or
a non-volatile glvalue that refers to a non-volatile object defined with constexpr...
[Moved to DR at the November, 2014 meeting.]
Although repeated type-specifiers such as const are forbidden, there is no such prohibition against repeated non-type specifiers like constexpr and virtual. Should there be?
On the “con” side, it's not clear that such a prohibition actually helps anyone; it could happen via macros, and a warning about non-macro use could be a QoI issue. Also, C99 moved in the opposite direction, removing the prohibition against repeated cv-qualifiers.
Proposed resolution (February, 2014):
Add the following as a new paragraph before 7.1 [dcl.spec] paragraph 2:
Each decl-specifier shall appear at most once in the complete decl-specifier-seq of a declaration, except that long may appear twice.
If a type-name is encountered...
[Moved to DR at the November, 2014 meeting.]
According to 7.1.1 [dcl.stc] paragraph 1,
...If thread_local appears in any declaration of a variable it shall be present in all declarations of that entity... A storage-class-specifier shall not be specified in an explicit specialization (14.7.3 [temp.expl.spec]) or an explicit instantiation (14.7.2 [temp.explicit]) directive.
These two requirements appear to be in conflict when an explicit instantiation or explicit specialization names a thread_local variable. For example,
template <class T> struct S { thread_local static int tlm; }; template <> int S<int>::tlm = 0; template <> thread_local int S<float>::tlm = 0;
which of the two explicit specializations is correct?
Proposed resolution (February, 2014):
Change 7.1.1 [dcl.stc] paragraph 1 as follows:
...A storage-class-specifier other than thread_local shall not be specified in an explicit specialization (14.7.3 [temp.expl.spec]) or an explicit instantiation (14.7.2 [temp.explicit]) directive.
[Moved to DR at the November, 2014 meeting.]
According to 7.1.1 [dcl.stc] paragraph 9,
The mutable specifier can be applied only to names of class data members (9.2 [class.mem]) and cannot be applied to names declared const or static, and cannot be applied to reference members.
This is similar to issue 1686 in that the restriction appears to apply only to declarations in which the const keyword appears directly. It should instead apply to members with const-qualified types, regardless of how the qualification was achieved.
Proposed resolution (January, 2014) [SUPERSEDED]:
Change 7.1.1 [dcl.stc] paragraph 9 as follows:
The mutable specifier can be applied only to names of non-static class data members (9.2 [class.mem]) and cannot be applied to names declared const or static, and cannot be applied to reference members whose type is neither const-qualified nor a reference type. [Example:...
Proposed resolution (February, 2014):
Change 7.1.1 [dcl.stc] paragraph 9 as follows:
The mutable specifier can be applied shall appear only to names in the declaration of class a non-static data members member (9.2 [class.mem]) and cannot be applied to names declared const or static, and cannot be applied to reference members whose type is neither const-qualified nor a reference type. [Example:...
[Moved to DR at the November, 2014 meeting.]
According to 7.1.2 [dcl.fct.spec] paragraph 4,
A string literal in the body of an extern inline function is the same object in different translation units.
The Standard does not otherwise specify when string literals are required to be the same object, and this requirement is not widely implemented. Should it be removed?
Proposed resolution (February, 2014):
Change 2.13.5 [lex.string] paragraph 1 as follows:
A string literal string-literal is a sequence of characters...
Change 2.13.5 [lex.string] paragraph 2 as follows:
A string literal string-literal that has an R in the prefix...
Change 2.13.5 [lex.string] paragraph 6 as follows:
After translation phase 6, a string literal string-literal that does not begin...
Change 2.13.5 [lex.string] paragraph 7 as follows:
A string literal string-literal that begins with u8...
Change 2.13.5 [lex.string] paragraph 10 as follows:
A string literal string-literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal has type “array of n const char16_t”, where n is the size of the string as defined below; it has static storage duration and is initialized with the given characters. A single c-char may produce more than one char16_t character in the form of surrogate pairs.
Change 2.13.5 [lex.string] paragraph 11 as follows:
A string literal string-literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal has type “array of n const char32_t”, where n is the size of the string as defined below; it has static storage duration and is initialized with the given characters.
Change 2.13.5 [lex.string] paragraph 12 as follows:
A string literal string-literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type “array of n const wchar_t”, where n is the size of the string as defined below; it has static storage duration and is initialized with the given characters.
Delete 2.13.5 [lex.string] paragraph 13:
Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-defined. The effect of attempting to modify a string literal is undefined.
Change 2.13.5 [lex.string] paragraph 14 as follows:
In translation phase 6 (2.2 [lex.phases]), adjacent string literals string-literals are concatenated. If both string literals string-literals have the same encoding-prefix, the resulting concatenated string literal has that encoding-prefix. If one string literal string-literal has no encoding-prefix, it is treated as a string literal string-literal of the same encoding-prefix as the other operand. If a UTF-8 string literal token is adjacent to a wide string literal token, the program is ill-formed. Any other concatenations are conditionally-supported with implementation-defined behavior. [Note: This concatenation is an interpretation, not a conversion. Because the interpretation happens in translation phase 6 (after each character from a literal has been translated into a value from the appropriate character set), a string literal string-literal's initial rawness has no effect on the interpretation or well-formedness of the concatenation. —end note] Table 8...
Add the following as a new paragraph at the end of 2.13.5 [lex.string]:
Evaluating a string-literal results in a string literal object with static storage duration, initialized from the given characters as specified above. Whether all string literals are distinct (that is, are stored in nonoverlapping objects) and whether successive evaluations of a string-literal yield the same or a different object is unspecified. [Note: The effect of attempting to modify a string literal is undefined. —end note]
Change 7.1.2 [dcl.fct.spec] paragraph 4 as follows:
...A static local variable in an extern inline function always refers to the same object. A string literal in the body of an extern inline function is the same object in different translation units. [Note: A string literal appearing in a default argument is not in the body of an inline function merely because the expression is used in a function call from that inline function. —end note] A type defined within the body of an extern inline function is the same type in every translation unit.
Additional note, February, 2014:
Two editorial changes have been made since CWG approved the proposed resolution:
The deletion of the requirement in 7.1.2 [dcl.fct.spec] paragraph 4 that string literals in inline functions be the same made the note following that requirement irrelevant, so the deletion has been extended to include the note as well.
The issue has been returned to "review" status to allow possible reconsideration of these editorial changes.
[Moved to DR at the November, 2014 meeting.]
According to 7.1.5 [dcl.constexpr] paragraph 1,
If any declaration of a function, function template, or variable template has a constexpr specifier, then all its declarations shall contain the constexpr specifier.
This requirement does not make sense applied to variable templates. The constexpr specifier requires that there be an initializer, and a variable template declaration with an initializer is a definition, so there cannot be more than one declaration of a variable template with the constexpr specifier.
Proposed resolution (February, 2014):
Change 7.1.5 [dcl.constexpr] paragraph 1 as follows:
...If any declaration of a function, or function template, or variable template has a constexpr specifier, then all its declarations shall contain the constexpr specifier. [Note:...
[Moved to DR at the November, 2014 meeting.]
An example like
struct X { std::unique_ptr<int> p; constexpr X() { } };
is ill-formed because the X constructor cannot be used in a constant expression, because a constant expression cannot construct an object of a non-literal type like unique_ptr. This prevents use of something like
X x;
to guarantee constant-initialization.
Proposed resolution (June, 2014):
Change 7.1.5 [dcl.constexpr] paragraph 5 as follows:
For a non-template, non-defaulted constexpr function or a non-template, non-defaulted, non-inheriting constexpr constructor, if no argument values exist such that an invocation of the function or constructor could be an evaluated subexpression of a core constant expression (5.20 [expr.const]), or, for a constructor, a constant initializer for some object (3.6.2 [basic.start.init]), the program is ill-formed; no diagnostic required.
[Moved to DR at the November, 2014 meeting.]
The phrase “top-level cv-qualifier” is used numerous times in the Standard, but it is not defined. The phrase could be misunderstood to indicate that the const in something like const T& is at the “top level,” because where it appears is the highest level at which it is permitted: T& const is ill-formed.
Proposed resolution (February, 2014):
Change 3.9.3 [basic.type.qualifier] paragraph 5 as follows, splitting it into two paragraphs:
In this International Standard, the notation cv (or cv1, cv2, etc.), used in the description of types, represents an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the empty set. For a type cv T, the top-level cv-qualifiers of that type are those denoted by cv. [Example: The type corresponding to the type-id “const int&” has no top-level cv-qualifiers. The type corresponding to the type-id “volatile int * const” has the top-level cv-qualifier const. For a class type C, the type corresponding to the type-id “void (C::* volatile)(int) const” has the top-level cv-qualifier volatile. —end example]
Cv-qualifiers applied to an array type attach...
[Moved to DR at the November, 2014 meeting.]
The example in 7.1.6.2 [dcl.type.simple] paragraph 4 reads, in part,
const int&& foo();
int i;
decltype(foo()) x1 = i; // type is const int&&
The initialization is an ill-formed attempt to bind an rvalue reference to an lvalue.
Proposed resolution (April, 2013):
Change the example in 7.1.6.2 [dcl.type.simple] paragraph 4 as follows:
const int&& foo(); int i; struct A { double x; }; const A* a = new A(); decltype(foo()) x1 = i 17; // type is const int&& decltype(i) x2; // type is int decltype(a->x) x3; // type is double decltype((a->x)) x4 = x3; // type is const double&
[Moved to DR at the November, 2014 meeting.]
According to 7.1.6.2 [dcl.type.simple] paragraph 2,
The auto specifier is a placeholder for a type to be deduced (7.1.6.4 [dcl.spec.auto]).
This is not true when auto appears in the decltype(auto) construct.
On a slightly related wording issue, 7.1.6.4 [dcl.spec.auto] paragraph 2 says,
The auto and decltype(auto) type-specifiers designate a placeholder type that will be replaced later, either by deduction from an initializer or by explicit specification with a trailing-return-type.
This could be read as implying that decltype(auto) can be used to introduce a function with a trailing-return-type, contradicting 8.3.5 [dcl.fct] paragraph 2, which requires that a function declarator with a trailing-return-type must have auto as the sole type specifier.
Proposed resolution (February, 2014):
Change 7.1.6.2 [dcl.type.simple] paragraph 2 as follows:
The simple-type-specifier auto specifier is a placeholder for a type to be deduced (7.1.6.4 [dcl.spec.auto]). The other simple-type-specifiers...
Change 7.1.6.4 [dcl.spec.auto] paragraph 1 as follows:
The auto and decltype(auto) type-specifiers are used to designate a placeholder type that will be replaced later, either by deduction from an initializer or by explicit specification with a trailing-return-type. The auto type-specifier is also used to introduce a function type having a trailing-return-type or to signify that a lambda is a generic lambda.
[Moved to DR at the November, 2014 meeting.]
Return type deduction from a return statement with no expression is described in 7.1.6.4 [dcl.spec.auto] paragraph 7 as follows:
When a variable declared using a placeholder type is initialized, or a return statement occurs in a function declared with a return type that contains a placeholder type, the deduced return type or variable type is determined from the type of its initializer. In the case of a return with no operand, the initializer is considered to be void(). Let T be the declared type of the variable or return type of the function. If the placeholder is the auto type-specifier, the deduced type is determined using the rules for template argument deduction. If the deduction is for a return statement and the initializer is a braced-init-list (8.5.4 [dcl.init.list]), the program is ill-formed. Otherwise, obtain P from T by replacing the occurrences of auto with either a new invented type template parameter U or, if the initializer is a braced-init-list, with std::initializer_list<U>. Deduce a value for U using the rules of template argument deduction from a function call (14.8.2.1 [temp.deduct.call]), where P is a function template parameter type and the initializer is the corresponding argument.
However, this does not work: the deduction for an argument of void() would give a parameter type of void and be ill-formed. It would be better simply to say that the deduced type in this case is void.
In a related example, consider
decltype(auto) f(void *p) { return *p; }
This is presumably an error because decltype(*p) would be void&, which is ill-formed. Perhaps this case should be mentioned explicitly.
Notes from the June, 2014 meeting:
The last part of the issue is not a defect, because the unary * operator requires its operand to be a pointer to an object or function type, and void is neither, so the expression is ill-formed and deduction does not occur for that case.
It was also observed during the discussion that the same deduction problem occurs when returning an expression of type void as when the expression is omitted, so the resolution should cover both cases.
Proposed resolution (June, 2014):
Change 7.1.6.4 [dcl.spec.auto] paragraph 7 as follows:
When a variable declared using a placeholder type is initialized, or a return statement occurs in a function declared with a return type that contains a placeholder type, the deduced return type or variable type is determined from the type of its initializer. In the case of a return with no operand or with an operand of type void, the initializer declared return type shall be auto and the deduced return type is void considered to be void(). Let Otherwise, let T be the declared type...
[Moved to DR at the November, 2014 meeting.]
The Standard currently appears to allow something like
struct S { template<class T> operator auto() { return 42; } };
This is of very limited utility and presents difficulties for some implementations. It might be good to prohibit such constructs.
Proposed resolution (October, 2014):
Add the following as the last paragraph of 12.3.2 [class.conv.fct]:
A conversion function template shall not have a deduced return type (7.1.6.4 [dcl.spec.auto]).
[Moved to DR at the November, 2014 meeting.]
There appear to be no restrictions against using the auto specifier in examples like the following:
template<typename T> using X = T; X<auto()> f_with_deduced_return_type; // ok std::vector<auto(*)()> v; // ok?! void f(auto (*)()); // ok?!
Proposed resolution (June, 2014):
Change 7.1.6.4 [dcl.spec.auto] paragraph 2 as follows:
The placeholder type can appear with a function declarator in the decl-specifier-seq, type-specifier-seq, conversion-function-id, or trailing-return-type, in any context where such a declarator is valid. If the function declarator includes a trailing-return-type (8.3.5 [dcl.fct]), that specifies the declared return type of the function. Otherwise, the function declarator shall declare a function. If the declared return type of the function contains a placeholder type, the return type of the function is deduced from return statements in the body of the function, if any.
[Moved to DR at the November, 2014 meeting.]
Although issue 1094 clarified that the value of an expression of enumeration type might not be within the range of the values of the enumeration after a conversion to the enumeration type (see 5.2.9 [expr.static.cast] paragraph 10), the result is simply an unspecified value. This should probably be strengthened to produce undefined behavior, in light of the fact that undefined behavior makes an expression non-constant. See also 9.6 [class.bit] paragraph 4.
Proposed resolution (February, 2014):
Change 5.2.9 [expr.static.cast] paragraph 10 as follows:
A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is unchanged if the original value is within the range of the enumeration values (7.2 [dcl.enum]). Otherwise, the resulting value is unspecified (and might not be in that range) behavior is undefined. A value of floating-point type...
[Moved to DR at the November, 2014 meeting.]
According to 7.3 [basic.namespace] paragraph 1,
The name of a namespace can be used to access entities declared in that namespace; that is, the members of the namespace.
implying that all declarations in a namespace, including definitions of members of nested namespaces, explicit instantiations, and explicit specializations, introduce members of the containing namespace. 7.3.1.2 [namespace.memdef] paragraph 3 clarifies the intent somewhat:
Every name first declared in a namespace is a member of that namespace.
However, current changes to clarify the behavior of deleted functions (which must be deleted on their “first declaration”) state that an explicit specialization of a function template is its first declaration.
Proposed resolution (November, 2014):
This issue is resolved by the resolution of issue 1838.
[Moved to DR at the November, 2014 meeting.]
According to 7.3.1 [namespace.def] paragraph 2,
The identifier in an original-namespace-definition shall not have been previously defined in the declarative region in which the original-namespace-definition appears.
Apparently the intent of this requirement is to say that, given the declarations
namespace N { } namespace N { }
the second declaration is to be taken as an extension-namespace-definition and not an original-namespace-definition, since the general rules in 3.3.1 [basic.scope.declarative] cover the case in which the identifier has been previously declared as something other than a namespace.
This use of “shall” for disambiguation is novel, however, and it would be better to replace it with a specific statement addressing disambiguation in paragraphs 2 and 3.
Proposed Resolution (July, 2014):
Change 3.3.6 [basic.scope.namespace] paragraph 1 as follows:
The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an original-namespace-name is the concatenation of the declarative regions established by each of the namespace-definitions in the same declarative region with that original-namespace-name. Entities declared in a namespace-body...
Change 7.3.1 [namespace.def] paragraphs 1-4 as follows:
The grammar for a namespace-definition is
namespace-name:
original-namespace-name identifier
namespace-aliasoriginal-namespace-name:
identifier
namespace-definition:
named-namespace-definition
unnamed-namespace-definitionnamed-namespace-definition:
original-namespace-definition
extension-namespace-definitionoriginal-namespace-definition:
inlineopt namespace identifier { namespace-body }
extension-namespace-definition:
inlineopt namespace original-namespace-name { namespace-body }
unnamed-namespace-definition:
inlineopt namespace { namespace-body }
namespace-body:
declaration-seqopt
The identifier in an original-namespace-definition shall not have been previously defined in the declarative region in which the original-namespace-definition appears. The identifier in an original-namespace-definition is the name of the namespace. Subsequently in that declarative region, it is treated as an original-namespace-name.
The original-namespace-name in an extension-namespace-definition shall have previously been defined in an original-namespace-definition in the same declarative region.
Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.6 [basic.scope.namespace]).
In a named-namespace-definition, the identifier is the name of the namespace. If the identifier, when looked up (3.4.1 [basic.lookup.unqual]), refers to a namespace-name (but not a namespace-alias) introduced in the declarative region in which the named-namespace-definition appears, the namespace-definition extends the previously-declared namespace. Otherwise, the identifier is introduced as a namespace-name into the declarative region in which the named-namespace-definition appears.
Change 7.3.1 [namespace.def] paragraph 7 as follows:
If the optional initial inline keyword appears in a namespace-definition for a particular namespace, that namespace is declared to be an inline namespace. The inline keyword may be used on an extension-namespace-definition a namespace-definition that extends a namespace only if it was previously used on the original-namespace-definition namespace-definition that initially declared the namespace-name for that namespace.
Delete 7.3.2 [namespace.alias] paragraph 4:
A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same declarative region. A namespace-name defined at global scope shall not be declared as the name of any other entity in any global scope of the program. No diagnostic is required for a violation of this rule by declarations in different translation units.
Change 7.3.4 [namespace.udir] paragraph 5 as follows:
If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace is given, the additional members of the extended namespace and the members of namespaces nominated by using-directives in the extension-namespace-definition extending namespace-definition can be used after the extension-namespace-definition extending namespace-definition.
[Moved to DR at the November, 2014 meeting.]
According to 7.3.1.2 [namespace.memdef] paragraphs 1 and 2 read,
Members (including explicit specializations of templates (14.7.3 [temp.expl.spec])) of a namespace can be defined within that namespace.
Members of a named namespace can also be defined outside that namespace by explicit qualification (3.4.3.2 [namespace.qual]) of the name being defined, provided that the entity being defined was already declared in the namespace and the definition appears after the point of declaration in a namespace that encloses the declaration's namespace.
It is not clear what these specifications mean for the following pair of examples:
namespace N { struct A; } using N::A; struct A { };
Although this does not satisfy the “by explicit qualification” requirement, it is accepted by major implementations.
struct S; namespace A { using ::S; struct S { }; }
Is this a definition “within that namespace,” or should that wording be interpreted as “directly within” the namespace?
See also issue 1838.
Proposed Resolution (July, 2014):
This issue is resolved by the resolution of issue 1838.
[Moved to DR at the November, 2014 meeting.]
The Standard is not clear about what happens when an entity is declared but not defined in an inner namespace and declared via a using-declaration in an outer namespace, and a definition of an entity with that name as an unqualified-id appears in the outer namespace. Is this a legitimate definition of the inner-namespace entity, as it would be if the definition used a qualified-id, or is the definition a member of the outer namespace and thus in conflict with the using-declaration? There is implementation divergence on the treatment of such definitions.
See also issues 1708 and 1021.
Notes from the February, 2014 meeting:
CWG agreed that the definition in such cases is a member of the outer namespace, not a redeclaration of the name introduced in that namespace by the using-declaration.
Proposed Resolution (July, 2014):
Change 7.3.1.2 [namespace.memdef] paragraph 1 as follows:
Members (including explicit specializations of templates (14.7.3 [temp.expl.spec])) of a namespace can be defined within that namespace. A declaration in a namespace N (excluding declarations in nested scopes) whose declarator-id is an unqualified-id declares (or redeclares) a member of N, and may be a definition. [Note: An explicit instantiation (14.7.2 [temp.explicit]) or explicit specialization (14.7.3 [temp.expl.spec]) of a template does not introduce a name and thus may be declared using an unqualified-id in a member of the enclosing namespace set, if the primary template is declared in an inline namespace. —end note] [Example:
namespace X { void f() { /* ... */ } // OK: introduces X::f() namespace M { void g(); // OK: introduces X::M::g() } using M::g; void g(); // error: conflicts with X::M::g() }
—end example]
Change 7.3.1.2 [namespace.memdef] paragraph 3 as follows:
Every name first declared in a namespace is a member of that namespace. If a friend declaration...
This resolution also resolves issues 1021 and 987.
[Moved to DR at the November, 2014 meeting.]
Issue 1411 added :: as a production for nested-name-specifier. However, the grammar for using-declarations should have been updated but was overlooked:
In addition, there is some verbiage in 3.4.3.2 [namespace.qual] paragraph 1 and 7.3.3 [namespace.udecl] paragraph 9 that should probably be revised.
Proposed resolution (October, 2014):
Change the grammar in 7.3.3 [namespace.udecl] paragraph 1 as follows:
Change 3.4.3.2 [namespace.qual] paragraph 1 as follows:
If the nested-name-specifier of a qualified-id nominates a namespace (including the case where the nested-name-specifier is ::, i.e., nominating the global namespace), the name specified after the nested-name-specifier is looked up in the scope of the namespace. If a qualified-id starts with ::, the name after the :: is looked up in the global namespace. In either case, the The names in a template-argument of a template-id are looked up in the context in which the entire postfix-expression occurs.
Change 5.1.1 [expr.prim.general] paragraph 10 as follows:
A ::, or a The nested-name-specifier :: names the global namespace. A nested-name-specifier that names a namespace (7.3 [basic.namespace]), in either case followed by the name of a member of that namespace (or the name of a member of a namespace made visible by a using-directive), is a qualified-id; 3.4.3.2 [namespace.qual] describes name lookup for namespace members that appear in qualified-ids. The result is...
Change 7.3.3 [namespace.udecl] paragraph 9 as follows:
Members declared by a using-declaration can be referred to by explicit qualification just like other member names (3.4.3.2 [namespace.qual]). In a using-declaration, a prefix :: refers to the global namespace. [Example:
[Moved to DR at the November, 2014 meeting.]
According to 7.5 [dcl.link] paragraph 6,
An entity with C language linkage shall not be declared with the same name as an entity in global scope, unless both declarations denote the same entity; no diagnostic is required if the declarations appear in different translation units.
This restriction is too broad; it does not allow for the so-called stat hack, where a C-linkage function and a class are both declared in global scope, and it does not allow for function overloading, either. It should be revised to apply only to variables.
Additional note (February, 2014):
See also issue 1838 for an interaction with using-declarations.
Proposed resolution (February, 2014):
Change 7.5 [dcl.link] paragraph 6 as follows:
...An entity with C language linkage shall not be declared with the same name as an entity a variable in global scope, unless both declarations denote the same entity; no diagnostic is required if the declarations appear in different translation units...
Additional note, May, 2014:
It was observed that this resolution would allow a definition of main as a C-linkage variable in a namespace. The issue is being returned to "review" status for further discussion.
[Moved to DR at the November, 2014 meeting.]
According to 7.6.2 [dcl.align] paragraph 5,
The combined effect of all alignment-specifiers in a declaration shall not specify an alignment that is less strict than the alignment that would be required for the entity being declared if all alignment-specifiers were omitted (including those in other declarations).
Presumably the intent was “other declarations of the same entity,” but the wording as written could be read to make the following example well-formed (assuming alignof(int) is 4):
struct alignas(4) A { alignas(8) int n; }; struct alignas(8) B { char c; }; alignas(1) B b; struct alignas(1) C : B {}; enum alignas(8) E : int { k }; alignas(4) E e = k;
Proposed resolution (February, 2014):
Change 7.6.2 [dcl.align] paragraph 5 as follows:
...if all alignment-specifiers appertaining to that entity were omitted (including those in other declarations). [Example:
struct alignas(8) S {}; struct alignas(1) U { S s; }; // Error: U specifies an alignment that is less strict than // if the alignas(1) were omitted.
—end example]
[Moved to DR at the November, 2014 meeting.]
EDG rejects this code:
template <typename T> struct S {}; void f (S<int (*)[]>);G++ accepts it.
This is another case where the standard isn't very clear:
The language from 8.3.5 [dcl.fct] is:
If the type of a parameter includes a type of the form "pointer to array of unknown bound of T" or "reference to array of unknown bound of T," the program is ill-formed.Since "includes a type" is not a term defined in the standard, we're left to guess what this means. (It would be better if this were a recursive definition, the way a type theoretician would do it:
Notes from April 2003 meeting:
We agreed that the example should be allowed.
Additional note (January, 2013):
Additional discussion of this issue has arisen . For example, the following is permissible:
T (*p) [] = (U(*)[])0;
but the following is not:
template<class T> void sp_assert_convertible( T* ) {} sp_assert_convertible<T[]>( (U(*)[])0 );
Proposed resolution (February, 2014):
Change 8.3.5 [dcl.fct] paragraph 8 as follows, including deleting the footnote:
If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “reference to array of unknown bound of T,” the program is ill-formed.101 Functions shall not have a return type of type array or function, although...
[Moved to DR at the November, 2014 meeting.]
Consider the following example:
template<typename T> struct A { T t; }; struct S { A<S> f() { return A<S>(); } };
According to 8.3.5 [dcl.fct] paragraph 9,
The type of a parameter or the return type for a function definition shall not be an incomplete class type (possibly cv-qualified) unless the function is deleted (8.4.3 [dcl.fct.def.delete]) or the definition is nested within the member-specification for that class (including definitions in nested classes defined within the class).
Thus type A<S> must be a complete type. The requirement for a complete type triggers the instantiation of the template, which requires that its template argument be complete in order to use it as the type of a non-static data member.
According to 14.6.4.1 [temp.point] paragraph 4, the point of instantiation of A<S> is “immediately preced[ing] the namespace scope declaration or definition that refers to the specialization.” Thus the point of instantiation precedes the definition of S, making this example ill-formed. Most or all current implementations accept the example, however.
Perhaps the specification in 8.3.5 [dcl.fct] ought to say that the completeness of the type is checked from the context of the function body (at which S is a complete type)?
Proposed resolution (February, 2014):
Change 8.3.5 [dcl.fct] paragraph 9 as follows:
Types shall not be defined in return or parameter types. The type of a parameter or the return type for a function definition shall not be an incomplete class type (possibly cv-qualified) in the context of the function definition unless the function is deleted (8.4.3 [dcl.fct.def.delete]) or the definition is nested within the member-specification for that class (including definitions in nested classes defined within the class).
[Moved to DR at the November, 2014 meeting.]
The resolution for issue 974 permitting default arguments in lambda-expressions overlooked 8.3.6 [dcl.fct.default] paragraph 3:
A default argument shall be specified only in the parameter-declaration-clause of a function declaration or in a template-parameter (14.1 [temp.param])...
Proposed resolution (February, 2014):
Change 8.3.6 [dcl.fct.default] paragraph 3 as follows:
A default argument shall be specified only in the parameter-declaration-clause of a function declaration or lambda-declarator or in a template-parameter (14.1 [temp.param]); in the latter case, the initializer-clause shall be an assignment-expression. A default argument shall not be specified for a parameter pack. If it is specified in a parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a parameter-declaration.103
[Moved to DR at the November, 2014 meeting.]
Paragraph 5 of 8.4.1 [dcl.fct.def.general] says,
A cv-qualifier-seq or a ref-qualifier (or both) can be part of a non-static member function declaration, non-static member function definition, or pointer to member function only (8.3.5 [dcl.fct]); see 9.3.2 [class.this].
This is redundant with the specification in 8.3.5 [dcl.fct] paragraph 6 and is factually incorrect, since the list there contains other permissible constructs. It should be at most a note or possibly removed altogether.
Proposed resolution (February, 2014):
Change 8.4.1 [dcl.fct.def.general] paragraph 5 as follows:
A cv-qualifier-seq or a ref-qualifier (or both) can be part of a non-static member function declaration, non-static member function definition, or pointer to member function only (8.3.5 [dcl.fct]); see 9.3.2 [class.this]. [Note: a cv-qualifier-seq affects the type of this in the body of a member function; see 8.3.2 [dcl.ref]. —end note]
[Moved to DR at the November, 2014 meeting.]
The current wording of 8.4.2 [dcl.fct.def.default] paragraph 2 has some surprising implications:
An explicitly-defaulted function may be declared constexpr only if it would have been implicitly declared as constexpr, and may have an explicit exception-specification only if it is compatible (15.4 [except.spec]) with the exception-specification on the implicit declaration.
In an example like
struct A { A& operator=(A&); }; A& A::operator=(A&) = default;
presumably the exception-specification of A::operator=(A&) is noexcept(false). However, attempting to make that exception-specification explicit,
A& A::operator=(A&) noexcept(false) = default;
is an error. Is this intentional?
Proposed resolution (February, 2014):
Change 15.4 [except.spec] paragraph 4 as follows:
...If any declaration of a pointer to function, reference to function, or pointer to member function has an exception-specification, all occurrences of that declaration shall have a compatible exception-specification. If a declaration of a function has an implicit exception-specification, other declarations of the function shall not specify an exception-specification. In an explicit instantiation...
(This resolution also resolves issue 1492.)
Additional note (January, 2013):
The resolution conflicts with the current specification of operator delete: in 3.7.4 [basic.stc.dynamic] paragraph 2, the two operator delete overloads are declared with an implicit exception specification, while in 18.6 [support.dynamic] paragraph 1, they are declared as noexcept.
Additional note (February, 2014):
The overloads cited in the preceding note have been independently changed in N3936 to include a noexcept specification, making the proposed resolution correct as it stands.
[Moved to DR at the November, 2014 meeting.]
According to 8.4.2 [dcl.fct.def.default] paragraph 2,
An explicitly-defaulted function may be declared constexpr only if it would have been implicitly declared as constexpr.
However, the rules for determining whether a function is constexpr and its exception-specification depend on the definition of function and do not apply to deleted functions. Can an explicitly-defaulted implicitly-deleted function be declared constexpr or have an exception-specification, and if so, how is its correctness to be determined?
Proposed resolution (February, 2014):
Change 8.4.2 [dcl.fct.def.default] paragraph 2 as follows:
An explicitly-defaulted function that is not defined as deleted may be declared constexpr only if it would have been implicitly declared as constexpr.
[Moved to DR at the November, 2014 meeting.]
It is unclear whether code like the following is supposed to be supported or not:
#include <iostream> #include <type_traits> #define ENABLE_IF(...) \ typename std::enable_if<__VA_ARGS__, int>::type = 0 #define PRINT_VALUE(...) \ std::cout << #__VA_ARGS__ " = " << __VA_ARGS__ << std::endl struct undefined {}; template <class T> undefined special_default_value(T *); template <class T> struct has_special_default_value : std::integral_constant < bool, !std::is_same < decltype(special_default_value((T *)0)), undefined >{} > {}; template <class T> struct X { template <class U = T, ENABLE_IF(!has_special_default_value<U>{})> X() : value() {} template <class U = T, ENABLE_IF(has_special_default_value<U>{})> X() : value(special_default_value((T *)0)) {} T value; }; enum E { e1 = 1, e2 = 2 }; E special_default_value(E *) { return e1; } int main() { X<int> x_int; X<E> x_E; PRINT_VALUE(x_int.value); PRINT_VALUE(x_E.value); PRINT_VALUE(X<int>().value); PRINT_VALUE(X<E>().value); }
The intent is that X<int> should call the first default constructor and X<E> should call the second.
If this is intended to work, the rules for making it do so are not clear; current wording reads as if a class can have only a single default constructor, and there appears to be no mechanism for using overload resolution to choose between variants.
Proposed resolution (June, 2014):
Change 3.2 [basic.def.odr] paragraph 3 as follows:
...An assignment operator function in a class is odr-used by an implicitly-defined copy-assignment or move-assignment function for another class as specified in 12.8 [class.copy]. A default constructor for a class is odr-used by default initialization or value initialization as specified in 8.5 [dcl.init]. A constructor for a class is odr-used as specified in 8.5 [dcl.init]. A destructor for a class is odr-used if it is potentially invoked (12.4 [class.dtor]).
Change 8.5 [dcl.init] paragraph 7 as follows:
To default-initialize an object of type T means:
if If T is a (possibly cv-qualified) class type (Clause 9 [class]), the default constructor (12.1 [class.ctor]) for T is called (and the initialization is ill-formed if T has no default constructor or overload resolution (13.3 [over.match]) results in an ambiguity or in a function that is deleted or inaccessible from the context of the initialization); constructors are considered. The applicable constructors are enumerated (13.3.1.3 [over.match.ctor]), and the best one for the initializer () is chosen through overload resolution (13.3 [over.match]). The constructor thus selected is called, with an empty argument list, to initialize the object.
if If T is an array type, each element is default-initialized;.
otherwise Otherwise, no initialization is performed.
Change 12.1 [class.ctor] paragraph 4 as follows:
A default constructor for a class X is a constructor of class X that can be called without an argument either has no parameters or else each parameter that is not a function parameter pack has a default argument. If there is no user-declared constructor...
Change 13.3 [over.match] paragraph 2 bullet 4 as follows:
Overload resolution selects the function to call in seven distinct contexts within the language:
...
invocation of a constructor for default- or direct-initialization (8.5 [dcl.init]) of a class object (13.3.1.3 [over.match.ctor]);
...
Change 13.3.1.3 [over.match.ctor] paragraph 1 as follows:
When objects of class type are direct-initialized (8.5 [dcl.init]), or copy-initialized from an expression of the same or a derived class type (8.5 [dcl.init]), or default-initialized, overload resolution selects the constructor. For direct-initialization or default-initialization, the candidate functions are all the constructors of the class of the object being initialized. For copy-initialization, the candidate functions are all the converting constructors (12.3.1 [class.conv.ctor]) of that class. The argument list is the expression-list or assignment-expression of the initializer.
[Moved to DR at the November, 2014 meeting.]
According to 8.5 [dcl.init] paragraph 16,
The initialization that occurs in the forms
T x(a); T x{a};as well as in new expressions (5.3.4 [expr.new]), static_cast expressions (5.2.9 [expr.static.cast]), functional notation type conversions (5.2.3 [expr.type.conv]), and base and member initializers (12.6.2 [class.base.init]) is called direct-initialization.
This wording was overlooked when brace-or-equal-initializers were added to the language, permitting copy-initialization of members by use of the = form.
Proposed resolution (April, 2013):
Change 8.5 [dcl.init] paragraphs 15-16 as follows, removing the example in paragraph 15 and making it a single running sentence:
The initialization that occurs in the = form of a brace-or-equal-initializer or condition (6.4 [stmt.select]),
T x = a;
as well as in argument passing, function return, throwing an exception (15.1 [except.throw]), handling an exception (15.3 [except.handle]), and aggregate member initialization (8.5.1 [dcl.init.aggr]), is called copy-initialization. [Note: Copy-initialization may invoke a move (12.8). —end note]
The initialization that occurs in the forms
T x(a); T x{a};as well as in new expressions (5.3.4 [expr.new]), static_cast expressions (5.2.9), functional notation type conversions (5.2.3 [expr.type.conv]), and base and member initializers mem-initializers (12.6.2 [class.base.init]), and the braced-init-list form of a condition is called direct-initialization.
[Moved to DR at the November, 2014 meeting.]
According to 8.5 [dcl.init] paragraph 14,
The form of initialization (using parentheses or =) is generally insignificant, but does matter when the initializer or the entity being initialized has a class type; see below.
This does not consider conversions from std::nullptr_t to bool, which are permitted only for direct-initialization (4.12 [conv.bool]).
Proposed resolution (February, 2014):
Change 8.5 [dcl.init] paragraph 14 as follows:
The form of initialization (using parentheses or =) is generally insignificant, but does matter when the initializer or the entity being initialized has a class type; see below. If the entity being initialized...
[Moved to DR at the November, 2014 meeting.]
With the recent addition of brace-or-equal-initializers to aggregates and the presumed resolution for issue 1696, it is not clear how lifetime extension of temporaries should work in aggregate initialization. For example:
struct A { }; struct B { A&& a { A{} } }; B b; // #1 B b{ A{} }; // #2 B b{}; // #3
#1 is default initialization, so (presumably) the lifetime of the temporary persists only until B's default constructor exits. #2 is aggregate initialization, which binds B::a to the temporary in the initializer for b and thus extends its lifetime to that of b. #3 is aggregate initialization, but it is not clear whether the lifetime of the temporary in the non-static data member initializer for B::a should be lifetime-extended like #2 or not, like #1.
One possibility might be to extend the lifetime in #3 but to give B a deleted default constructor since it would extend the lifetime of a temporary.
See also issue 1696.
Notes from the February, 2014 meeting:
CWG agreed with the suggested direction, which would treat #3 in the example like #2 and make the default constructor deleted, resulting in #1 being ill-formed.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1696.
[Moved to DR at the November, 2014 meeting.]
In the case of indirect reference binding, 8.5.3 [dcl.init.ref] paragraph 5 only requires that the cv-qualification of the referred-to type be the same or greater than that of the initializer expression when the types are reference-related. This leads to the following anomaly:
class A { public: operator volatile int &(); }; A a; const int & ir1a = a.operator volatile int&(); // error! const int & ir2a = a; // allowed! ir = a.operator volatile int&();
Is this intended?
Notes from the April, 2013 meeting:
CWG felt that the declaration of ir2a should also be an error.
Proposed resolution (February, 2014):
Change 8.5.3 [dcl.init.ref] paragraph 5 as follows:
A reference to type “cv1 T1” is initialized by an expression of type “cv2 T2” as follows:
If the reference is an lvalue reference...
Otherwise, the reference shall be an lvalue reference to a non-volatile const type...
If the initializer expression
is an xvalue (but not a bit-field), class prvalue, array prvalue or function lvalue and “cv1 T1” is reference-compatible with “cv2 T2”, or
has a class type (i.e., T2 is a class type), where T1 is not reference-related to T2, and can be converted to an xvalue, class prvalue, or function lvalue of type “cv3 T3”, where “cv1 T1” is reference-compatible with “cv3 T3” (see 13.3.1.6 [over.match.ref]),
then the reference is bound to the value of the initializer expression in the first case and to the result of the conversion in the second case (or, in either case, to an appropriate base class subobject). In the second case, if the reference is an rvalue reference and the second standard conversion sequence of the user-defined conversion sequence includes an lvalue-to-rvalue conversion, the program is ill-formed. [Example:
struct A { }; struct B : A { } b; extern B f(); const A& rca2 = f(); // bound to the A subobject of the B rvalue. A&& rra = f(); // same as above struct X { operator B(); operator int&(); } x; const A& r = x; // bound to the A subobject of the result of the conversion int i2 = 42; int&& rri = static_cast<int&&>(i2); // bound directly to i2 B&& rrb = x; // bound directly to the result of operator B int&& rri2 = X(); // error: lvalue-to-rvalue conversion applied to the // result of operator int&—end example]
Otherwise:
If T1 or T2 is a class type and T1 is not reference-related to T2, user-defined conversions are considered using the rules for copy-initialization of an object of type “cv1 T1” by user-defined conversion (8.5 [dcl.init], 13.3.1.4 [over.match.copy], 13.3.1.5 [over.match.conv]); the program is ill-formed if the corresponding non-reference copy-initialization would be ill-formed. The result of the call to the conversion function, as described for the non-reference copy-initialization, is then used to direct-initialize the reference. The program is ill-formed if the direct-initialization does not result in a direct binding or if it involves a user-defined conversion. For this direct-initialization, user-defined conversions are not considered.
If T1 is a non-class type Otherwise, a temporary of type “cv1 T1” is created and copy-initialized (8.5 [dcl.init]) from the initializer expression. The reference is then bound to the temporary.
If T1 is reference-related to T2:
cv1 shall be the same cv-qualification as, or greater cv-qualification than, cv2; and
if the reference is an rvalue reference, the initializer expression shall not be an lvalue.
[Example:
struct Banana { }; struct Enigma { operator const Banana(); }; struct Alaska { operator Banana&(); }; void enigmatic() { typedef const Banana ConstBanana; Banana &&banana1 = ConstBanana(); // ill-formed Banana &&banana2 = Enigma(); // ill-formed Banana &&banana2 = Alaska(); // ill-formed } const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0 double&& rrd = 2; // rrd refers to temporary with value 2.0 const volatile int cvi = 1; const int& r2 = cvi; // error: type qualifiers dropped struct A { operator volatile int&(); } a; const int& r3 = a; // error: type qualifiers dropped from result of conversion function double d2 = 1.0; double&& rrd2 = d2; // error: copying initializer is lvalue of related type struct X { operator int&(); }; int && rri2 = X(); // error: result of conversion function is lvalue of related type int i3 = 2; double&& rrd3 = i3; // rrd3 refers to temporary with value 2.0—end example]
This resolution also resolves issue 1572.
[Moved to DR at the November, 2014 meeting.]
The example just before the final bullet of 8.5.4 [dcl.init.list] paragraph 5 is incorrect. It reads, in part,
struct X { operator int&(); } x; int&& rri2 = X(); // error: lvalue-to-rvalue conversion applied to the // result of operator int&
In fact, according to 13.3.1.6 [over.match.ref] (as clarified by the proposed resolution of issue 1328, although the intent was arguably the same for the previous wording), X::operator int&() is not a candidate for the initialization of rri2, so the case falls into the last bullet, creating an int temporary.
It is not clear whether the lvalue-to-rvalue conversion whose prohibition is intended to be illustrated by that example could actually occur, given the specification of candidate functions in 13.3.1.6 [over.match.ref].
Proposed resolution (February, 2014):
This issue is resolved by the resolution of issue 1571.
[Moved to DR at the November, 2014 meeting.]
The current list-initialization rules do not provide for list-initialization of an aggregate from an object of the same type:
struct X { X() = default; X(const X&) = default; #ifdef OK X(int) { } #endif }; X x; X x2{x}; // error, {x} is not a valid aggregate initializer for X
Suggested resolution:
Change 8.5.4 [dcl.init.list] paragraph 3 as follows:
List-initialization of an object or reference of type T is defined as follows:
If T is a class type and the initializer list has a single element of type cv T or a class type derived from T, the object is initialized from that element.
If Otherwise, if T is an aggregate...
Additional notes (September, 2012):
(See messages 22368, 22371 through 22373, 22388, and 22494.)
It appears that 13.3.3.1.5 [over.ics.list] will also need to be updated in parallel with this change. Alternatively, it may be better to change 8.5.1 [dcl.init.aggr] instead of 8.5.4 [dcl.init.list] and 13.3.3.1.5 [over.ics.list].
In a related note, given
struct NonAggregate {
NonAggregate() {}
};
struct WantsIt {
WantsIt(NonAggregate);
};
void f(NonAggregate n);
void f(WantsIt);
int main() {
NonAggregate n;
// ambiguous!
f({n});
}
13.3.3.1.5 [over.ics.list] paragraph 3 says that the call to f(NonAggregate) is a user-defined conversion, the same as the call to f(WantsIt) and thus ambiguous. Also,
NonAggregate n; // #1 (n -> NonAggregate = Identity conversion) NonAggregate m{n}; // #2 ({n} -> NonAggregate = User-defined conversion} // (copy-ctor not considered according to 13.3.3.1 [over.best.ics] paragraph 4) NonAggregate m{{n}};
Finally, the suggested resolution simply says “initialized from,” without specifying whether that means direct initialization or copy initialization. It should be explicit about which is intended, e.g., if it reflects the kind of list-initialization being done.
Proposed resolution (February, 2014) [SUPERSEDED]:
Change 8.5.4 [dcl.init.list] paragraph 3 as follows:
List-initialization of an object or reference of type T is defined as follows:
If T is a class type and the initializer list has a single element of type cv U, where U is T or a class derived from T, the object is initialized from that element (by copy-initialization for copy-list-initialization, or by direct-initialization for direct-list-initialization).
Otherwise, if T is a character array and the initializer list has a single element that is an appropriately typed string literal (8.5.2 [dcl.init.string]), initialization is done as described in that section.
If Otherwise, if T is an aggregate...
Delete the final bullet of 13.3.3.1 [over.best.ics] paragraph 4, as follows:
However, if the target is
the first parameter of a constructor or
the implicit object parameter of a user-defined conversion function
and the constructor or user-defined conversion function is a candidate by
13.3.1.3 [over.match.ctor], when the argument is the temporary in the second step of a class copy-initialization, or
13.3.1.4 [over.match.copy], 13.3.1.5 [over.match.conv], or 13.3.1.6 [over.match.ref] (in all cases), or
the second phase of 13.3.1.7 [over.match.list] when the initializer list has exactly one element, and the target is the first parameter of a constructor of class X, and the conversion is to X or reference to (possibly cv-qualified) X,
user-defined conversion sequences are not considered. [Note:...
Insert the following two paragraphs between 13.3.3.1.5 [over.ics.list] paragraphs 1 and 2, moving the footnote from the current paragraph 3 to the second inserted paragraph:
When an argument is an initializer list (8.5.4 [dcl.init.list]), it is not an expression and special rules apply for converting it to a parameter type.
If the parameter type is a class C and the initializer list has a single element of type cv U, where U is C or a class derived from C, the implicit conversion sequence is the one required to convert the element to the parameter type.
Otherwise, if the parameter type is a character array [Footnote: Since there are no parameters of array type, this will only occur as the underlying type of a reference parameter. —end footnote] and the initializer list has a single element that is an appropriately typed string literal (8.5.2 [dcl.init.string]), the implicit conversion is the identity conversion.
If Otherwise, if the parameter type is std::initializer_list<X> and...
Otherwise, if the parameter type is “array of N X” [Footnote: ... —end footnote], if the initializer list has...
Change 13.3.3.1.5 [over.ics.list] paragraph 7 as follows:
Otherwise, if the parameter type is not a class:
if the initializer list has one element that is not itself an initializer list, the implicit conversion sequence is the one required to convert the element to the parameter type; [Example:...
...
Change 13.3.3.2 [over.ics.rank] paragraph 3 as follows:
Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of the following rules applies:
...
List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if
L1 converts to std::initializer_list<X> for some X and L2 does not, or, if not that,
L1 converts to type “array of N1 T”, L2 converts to type “array of N2 T”, and N1 is smaller than N2.,
even if one of the above rules would otherwise apply. [Example:
void f1(int); // #1 void f1(std::initializer_list<long>); // #2 void g1() { f1({42}); } // chooses #2 void f2(std::pair<const char*, const char*>); // #3 void f2(std::initializer_list<std::string>); // #4 void g2() { f2({"foo","bar"}); } // chooses #4
—end example]
This resolution also resolves issues 1490, 1589, and 1631.
Notes from the February, 2014 meeting:
The resolution above does not adequately address the related issue 1758. It appears that conversion functions and constructors must be handled separately.
Proposed resolution (June, 2014):
Change 8.5.4 [dcl.init.list] paragraph 3 as follows:
List-initialization of an object or reference of type T is defined as follows:
If T is a class type and the initializer list has a single element of type cv U, where U is T or a class derived from T, the object is initialized from that element (by copy-initialization for copy-list-initialization, or by direct-initialization for direct-list-initialization).
Otherwise, if T is a character array and the initializer list has a single element that is an appropriately-typed string literal (8.5.2 [dcl.init.string]), initialization is performed as described in that section.
If Otherwise, if T is an aggregate,
Otherwise, if the initializer list has no elements...
Otherwise, if T is a specialization of std::initializer_list<E>...
Otherwise, if T is a class type...
Otherwise, if the initializer list has a single element of type E and either T is not a reference type or its referenced type is reference-related to E, the object or reference is initialized from that element (by copy-initialization for copy-list-initialization, or by direct-initialization for direct-list-initialization); if a narrowing conversion (see below) is required to convert the element to T, the program is ill-formed. [Example:...
Otherwise...
Change 13.3.1.7 [over.match.list] paragraph 1 as follows:
When objects of non-aggregate class type T are list-initialized (8.5.4 [dcl.init.list]) such that 8.5.4 [dcl.init.list] specifies that overload resolution is performed according to the rules in this section, overload resolution selects the constructor...
Change 13.3.3.1 [over.best.ics] paragraph 4 as follows:
...and the constructor or user-defined conversion function is a candidate by
13.3.1.3 [over.match.ctor], when the argument is the temporary in the second step of a class copy-initialization, or
13.3.1.4 [over.match.copy], 13.3.1.5 [over.match.conv], or 13.3.1.6 [over.match.ref] (in all cases), or
the second phase of 13.3.1.7 [over.match.list] when the initializer list has exactly one element, and the target is the first parameter of a constructor of class X, and the conversion is to X or reference to (possibly cv-qualified) X,
user-defined conversion sequences are not considered.
Change 13.3.3.1.5 [over.ics.list] paragraphs 1-2 as follows, moving the footnote from paragraph 3:
When an argument is an initializer list (8.5.4 [dcl.init.list]), it is not an expression and special rules apply for converting it to a parameter type.
If the parameter type is a class X and the initializer list has a single element of type cv U, where U is X or a class derived from X, the implicit conversion sequence is the one required to convert the element to the parameter type.
Otherwise, if the parameter type is a character array [Footnote: Since there are no parameters of array type, this will only occur as the underlying type of a reference parameter. —end footnote] and the initializer list has a single element that is an appropriately-typed string literal (8.5.2 [dcl.init.string]), the implicit conversion sequence is the identity conversion.
If Otherwise, if the parameter type is std::initializer_list<X> and...
Change 13.3.3.1.5 [over.ics.list] paragraph 7 as follows:
Otherwise, if the parameter type is not a class:
if the initializer list has one element that is not itself an initializer list, the implicit conversion sequence is the one required to convert the element to the parameter type; [Example:...
Move the final bullet of 13.3.3.2 [over.ics.rank] paragraph 3 to the beginning of the list and change it as follows:
List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if
L1 converts to std::initializer_list<X> for some X and L2 does not, or, if not that,
L1 converts to type “array of N1 T”, L2 converts to type “array of N2 T”, and N1 is smaller than N2.,
even if one of the other rules in this paragraph would otherwise apply. [Example:
void f1(int); // #1
void f1(std::initializer_list<long>); // #2
void g1() { f1({42}); } // chooses #2
void f2(std::pair<const char*, const char*>); // #3
void f2(std::initializer_list<std::string>); // #4
void g2() { f2({"foo","bar"}); } // chooses #4
—end example]
This resolution also resolves issues 1490, 1589, 1631, 1756, and 1758.
[Moved to DR at the November, 2014 meeting.]
Initialization of an array of characters from a string literal is handled by the third bullet of 8.5 [dcl.init] paragraph 16, branching off to 8.5.2 [dcl.init.string]. However, list initialization is handled by the first bullet, branching off to 8.5.4 [dcl.init.list], and there is no corresponding special case in 8.5.4 [dcl.init.list] paragraph 3 for an array of characters initialized by a brace-enclosed string literal. That is, an initialization like
char s[4]{"abc"};
is ill-formed, which could be surprising. Similarly,
std::initializer_list<char>{"abc"};
is plausible but also not permitted.
Notes from the October, 2012 meeting:
CWG agreed that the first example should be permitted, but not the second.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1467.
[Moved to DR at the November, 2014 meeting.]
The wording of 8.5.4 [dcl.init.list] paragraph 3,
if the initializer list has a single element of type E and either T is not a reference type or its referenced type is reference-related to E, the object or reference is initialized from that element
does not specify whether the initialization is direct-initialization, copy-initialization, or the same kind of initialization that applied to the list-initialization. This matters when E is a class type with an explicit conversion function. (Note that aggregate initialization performs copy-initialization on its subobjects, but it's not clear whether that should be the pattern followed for this case.)
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1467.
[Moved to DR at the November, 2014 meeting.]
One of the criteria for a standard-layout class in 9 [class] paragraph 7 is:
either has no non-static data members in the most derived class and at most one base class with non-static data members, or has no base classes with non-static data members,
In an example like
struct B { int i; }; struct C : B { }; struct D : C { };
this could be read as indicating that D is not a standard-layout class, since it has two base classes, one direct and one indirect, that each have a non-static data member. The intent should be clarified.
See also issue 1881 for a related question about standard-layout classes.
Proposed resolution (June, 2014):
Change 9 [class] paragraph 7 as follows:
A standard-layout class is a class that:
has no non-static data members of type non-standard-layout class (or array of such types) or reference,
has no virtual functions (10.3 [class.virtual]) and no virtual base classes (10.1 [class.mi]),
has the same access control (Clause 11 [class.access]) for all non-static data members,
has no non-standard-layout base classes,
has at most one base class subobject of any given type,
either has no non-static data members in the most derived class and at most one base class with non-static data members, or has no base classes with non-static data members has all non-static data members and bit-fields in the class and its base classes first declared in the same class, and
has no base classes of the same type as the first non-static data member.109
[Example:
struct B { int i; }; // standard-layout class struct C : B { }; // standard-layout class struct D : C { }; // standard-layout class struct E : D { char : 4; }; // not a standard-layout class struct Q {}; struct S : Q { }; struct T : Q { }; struct U : S, T { }; // not a standard-layout class
—end example]
This resolution also resolves issue 1881.
(See also the related changes in the resolution of issue 1672.)
[Moved to DR at the November, 2014 meeting.]
According to 9.6 [class.bit] paragraph 2,
Unnamed bit-fields are not members and cannot be initialized.
However, the rules defining standard-layout classes in 9 [class] paragraph 7 do not account for the fact that a class containing an unnamed bit-field has associated storage.
See also issue 1813 for a related question about standard-layout classes.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1813.
[Moved to DR at the November, 2014 meeting.]
In Bloomington there was general agreement that given a class that uses non-static data member initializers, the exception-specification for the default constructor depends on whether those initializers are noexcept. However, according to 9.2 [class.mem] paragraph 2, the class is regarded as complete within the brace-or-equal-initializers for non-static data members.
This suggests that we need to finish processing the class before parsing the NSDMI, but our direction on issue 1351 suggests that we need to parse the NSDMI in order to finish processing the class. Can't have both...
Additional note (March, 2013):
A specific example:
struct A { void *p = A{}; operator void*() const { return nullptr; } };
Perhaps the best way of addressing this would be to make it ill-formed for a non-static data member initializer to use a defaulted constructor of its class.
See also issue 1360.
Notes from the September, 2013 meeting:
One approach that might be considered would be to parse deferred portions lazily, on demand, and then issue an error if this results in a cycle.
Proposed resolution (February, 2014):
Change 9.2 [class.mem] paragraph 4 as follows:
A brace-or-equal-initializer shall appear only in the declaration of a data member. (For static data members, see 9.4.2 [class.static.data]; for non-static data members, see 12.6.2 [class.base.init]). A brace-or-equal-initializer for a non-static data member shall not directly or indirectly cause the implicit definition of a defaulted default constructor for the enclosing class or the exception-specification of that constructor.
[Moved to DR at the November, 2014 meeting.]
The layout compatibility rules of 9.2 [class.mem] paragraph 16 are phrased only in terms of non-static data members, ignoring the existence of base classes:
Two standard-layout struct (Clause 9 [class]) types are layout-compatible if they have the same number of non-static data members and corresponding non-static data members (in declaration order) have layout-compatible types (3.9 [basic.types]).
However, this means that in an example like
struct empty {}; struct A { char a; }; struct also_empty : empty {}; struct C : empty, also_empty { char c; }; union U { struct X { A a1, a2; } x; struct Y { C c1, c2; } y; } u;
u.x.a2.a and u.y.c2.c must have the same address, even though sizeof(A) would typically be 1 and sizeof(B) would need to be at least 2 to give the empty subobjects different addresses.
Proposed resolution (October, 2014):
Change 9 [class] paragraph 7 as indicated and add the following as a new paragraph:
A class S is a standard-layout class is a class that if it:
...
has no base classes of the same type as the first non-static data member element of the set M(S) of types (defined below) as a base class.109
M(X) is defined as follows:
If X is a non-union class type, the set M(X) is empty if X has no (possibly inherited (Clause 10 [class.derived])) non-static data members; otherwise, it consists of the type of the first non-static data member of X (where said member may be an anonymous union), X0, and the elements of M(X0).
If X is a union type, the set M(X), where each Ui is the type of the ith non-static data member of X, is the union of all M(Ui) and the set containing all Ui.
If X is a non-class type, the set M(X) is empty.
[Note: M(X) is the set of the types of all non-base-class subobjects that are guaranteed in a standard-layout class to be at a zero offset in X. —end note]
(See also the related changes in the resolution for issue 1813.)
[Moved to DR at the November, 2014 meeting.]
When the effect of cv-qualification on layout compatibility was previously discussed (see issue 1334), the question was resolved by reference to the historical origin of layout compatibility: it was a weakening of type correctness that was added for C compatibility, mimicking exactly the corresponding C specification of compatible types in this context and going no further. Because cv-qualified and cv-unqualified types are not compatible in C, they were not made layout-compatible in C++.
Because of specific use-cases involving std::pair and the like, however, and in consideration of the fact that cv-qualified and cv-unqualified versions of types are aliasable by the rules of 3.10 [basic.lval], the outcome of that question is worthy of reconsideration.
Proposed resolution (June, 2014):
Change 3 [basic] paragraph 3 as follows:
An entity is a value, object, reference, function, enumerator, type, class member, bit-field, template, template specialization, namespace, parameter pack, or this.
Change 3.9 [basic.types] paragraph 11 as follows:
If two types T1 and T2 are the same type, then T1 and T2 Two types cv1 T1 and cv2 T2 are layout-compatible types if T1 and T2 are the same type, layout-compatible enumerations (7.2 [dcl.enum]), or layout-compatible standard-layout class types (9.2 [class.mem]). [Note: Layout-compatible enumerations are described in 7.2 [dcl.enum]. Layout-compatible standard-layout structs and standard-layout unions are described in 9.2 [class.mem]. —end note]
Change 3.9.2 [basic.compound] paragraph 3 as follows:
...The value representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3 [basic.type.qualifier]) of layout-compatible types shall have the same value representation and alignment requirements (3.11 [basic.align]). [Note:...
Insert the following as a new paragraph before 9.2 [class.mem] paragraph 16 and change paragraphs 16 through 18 as follows:
The common initial sequence of two standard-layout struct (Clause 9 [class]) types is the longest sequence of non-static data members and bit-fields in declaration order, starting with the first such entity in each of the structs, such that corresponding entities have layout-compatible types and either neither entity is a bit-field or both are bit-fields with the same width. [Example:
struct A { int a; char b; }; struct B { const int b1; volatile char b2; }; struct C { int c; unsigned : 0; char b; }; struct D { int d; char b : 4; }; struct E { unsigned int e; char b; };
The common initial sequence of A and B comprises all members of either class. The common initial sequence of A and C and of A and D comprises the first member in each case. The common initial sequence of A and E is empty. —end example]
Two standard-layout struct (Clause 9 [class]) types are layout-compatible if they have the same number of non-static data members and corresponding non-static data members (in declaration order) have layout-compatible types their common initial sequence comprises all members and bit-fields of both classes (3.9 [basic.types]).
Two standard-layout union (Clause 9 [class]) types unions are layout-compatible if they have the same number of non-static data members and corresponding non-static data members (in any order) have layout-compatible types (3.9 [basic.types]).
If a standard-layout union contains two or more standard-layout structs that share a common initial sequence, and if the standard-layout union object currently contains one of these standard-layout structs, it is permitted to inspect the common initial part of any of them. Two standard-layout structs share a common initial sequence if corresponding members have layout-compatible types and either neither member is a bit-field or both are bit-fields with the same width for a sequence of one or more initial members. In a standard-layout union with an active member (9.5 [class.union]) of struct type T1, it is permitted to read a non-static data member m of another union member of struct type T2 provided m is part of the common initial sequence of T1 and T2. [Note: Reading a volatile object through a non-volatile glvalue has undefined behavior (7.1.6.1 [dcl.type.cv]). —end note]
[Moved to DR at the November, 2014 meeting.]
The list in 9.2 [class.mem] paragraph 14 of the kinds of class members whose names must differ from that of the class does not include an entry for a member class template. Presumably it should.
Proposed resolution (October, 2014):
Change 9.2 [class.mem] paragraph 14 as follows:
If T is the name of a class, then each of the following shall have a name different from T:
...
every member of class T that is itself a type;
every member template of class T; ...
[Moved to DR at the November, 2014 meeting.]
C++ allows only non-static data member declarations in an anonymous union, but C and several C++ implementations permit static_assert declarations. Should the C++ Standard be changed accordingly?
Proposed resolution (June, 2014):
Change 9.5 [class.union] paragraph 5 as follows:
A union of the form
union { member-specification } ;
is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of an anonymous union shall only define non-static data members Each member-declaration in the member-specification of an anonymous union shall either define a non-static data member or be a static_assert-declaration. [Note:...
[Moved to DR at the November, 2014 meeting.]
Presumably a temporary bound to a reference in a non-static data member initializer should be treated analogously with what happens in a ctor-initializer, but the current wording of 12.2 [class.temporary] paragraph 5 is not clear on this point.
See also issue 1815 for similar questions regarding aggregate initialization.
Proposed resolution (June, 2014):
Add the following after 8.5.1 [dcl.init.aggr] paragraph 7:
If a reference member is initialized from its brace-or-equal-initializer and a potentially-evaluated subexpression thereof is an aggregate initialization that would use that brace-or-equal-initializer, the program is ill-formed. [Example:
struct A; extern A a; struct A { const A& a1 { A{a,a} }; // OK const A& a2 { A{} }; // error }; A a{a,a}; // OK
If an aggregate class C contains a subaggregate...
Delete the first bullet of 12.2 [class.temporary] paragraph 5:
The second context is when a reference is bound to a temporary.117 The temporary to which the reference is bound or the temporary that is the complete object of a subobject to which the reference is bound persists for the lifetime of the reference except:
A temporary bound to a reference member in a constructor's ctor-initializer (12.6.2 [class.base.init]) persists until the constructor exits.
...
Insert the following as a new paragraph after 12.6.2 [class.base.init] paragraph 7:
A temporary expression bound to a reference member in a mem-initializer is ill-formed. [Example:
struct A { A() : v(42) { } // error const int& v; };
—end example]
In a non-delegating constructor, if a given potentially constructed subobject...
Insert the following as a new paragraph after 12.6.2 [class.base.init] paragraph 9:
A temporary expression bound to a reference member from a brace-or-equal-initializer is ill-formed. [Example:
struct A { A() = default; // OK A(int v) : v(v) { } // OK const int& v = 42; // OK }; A a1; // error: ill-formed binding of temporary to reference A a2(1); // OK, unfortunately
—end example]
In a non-delegating constructor, the destructor for each potentially constructed subobject...
This resolution also resolves issue 1815.
[Moved to DR at the November, 2014 meeting.]
According to 12.4 [class.dtor] paragraph 3,
A declaration of a destructor that does not have an exception-specification is implicitly considered to have the same exception-specification as an implicit declaration (15.4 [except.spec]).
The implications of this are not clear for the destructor of a class template. For example,
template <class T> struct B: T { ~B(); }; template <class T> B<T>::~B() noexcept {}
The implicit exception-specification of the in-class declaration of the destructor depends on the characteristics of the template argument. Does this mean that the out-of-class definition of the destructor is ill-formed, or will it be ill-formed only in specializations where the template argument causes the implicit exception-specification to be other than noexcept?
Proposed resolution (February, 2014):
This issue is resolved by the resolution of issue 1552.
Notes from the April, 2013 meeting:
This issue was approved as a DR at the April, 2013 (Bristol) meeting, but it was not noticed that issue 1552 was not being moved at that time. It is being returned to "drafting" status pending the resolution of that issue.
[Moved to DR at the November, 2014 meeting.]
According to 12.4 [class.dtor] paragraph 12,
At the point of definition of a virtual destructor (including an implicit definition (12.8 [class.copy])), the non-array deallocation function is looked up in the scope of the destructor's class (10.2 [class.member.lookup]), and, if no declaration is found, the function is looked up in the global scope. If the result of this lookup is ambiguous or inaccessible, or if the lookup selects a placement deallocation function or a function with a deleted definition (8.4 [dcl.fct.def]), the program is ill-formed. [Note: This assures that a deallocation function corresponding to the dynamic type of an object is available for the delete-expression (12.5 [class.free]). —end note]
This specification is not sufficiently clear regarding the nature of the lookup. Presumably the intent is that the processing be parallel to that described in 5.3.5 [expr.delete], but that should be made explicit.
Proposed resolution (February, 2014):
Change 12.4 [class.dtor] paragraph 12 as follows:
At the point of definition of a virtual destructor (including an implicit definition (12.8 [class.copy])), the non-array deallocation function is looked up in the scope of the destructor's class (10.2 [class.member.lookup]), and, if no declaration is found, the function is looked up in the global scope determined as if for the expression delete this appearing in a non-virtual destructor of the destructor's class (see 5.3.5 [expr.delete]). If the result of this lookup is ambiguous or inaccessible, lookup fails or if the lookup selects a placement deallocation function or a function with deallocation function has a deleted definition (8.4 [dcl.fct.def]), the program is ill-formed. [Note: This assures that a deallocation function corresponding to the dynamic type of an object is available for the delete-expression (12.5 [class.free]). —end note]
[Moved to DR at the November, 2014 meeting.]
The description of the required syntax for declaring a destructor in 12.4 [class.dtor] paragraph 1 says,
A declaration of a destructor uses a function declarator (8.3.5 [dcl.fct]) of the form
ptr-declarator ( parameter-declaration-clause ) exception-specificationopt attribute-specifier-seqopt
where the ptr-declarator...
A declaration such as
(~S())
arguably “uses” a declarator of the required form, since the cited wording does not forbid placing a declarator of that form inside parentheses. (Similar considerations apply to the syntax of constructors in 12.1 [class.ctor] paragraph 1.) There is implementation divergence on this point. The wording should be clarified as to whether parentheses surrounding a declarator of the required form are permitted or not.
Proposed Resolution (July, 2014):
Change 12.1 [class.ctor] paragraph 1 as follows:
Constructors do not have names. A In a declaration of a constructor, uses the declarator is a function declarator (8.3.5 [dcl.fct]) of the form...
Change 12.4 [class.dtor] paragraph 1 as follows:
A In a declaration of a destructor, uses the declarator is a function declarator (8.3.5 [dcl.fct]) of the form...
[Moved to DR at the November, 2014 meeting.]
The grammar for mem-initializer-list in 12.6.2 [class.base.init] paragraph 1 (after the resolution of issue 1649) is right-recursive:
In general, however, such lists elsewhere in the Standard are described using a left-recursive grammar, e.g., for initializer-list in 8.5 [dcl.init] paragraph 1:
It would be better to be consistent in the definition of mem-initializer-list.
Proposed resolution (February, 2014):
Change the grammar in 12.6.2 [class.base.init] paragraph 1 as follows:
[Moved to DR at the November, 2014 meeting.]
The proposed resolution for issue 1402 overlooked some needed changes in 12.8 [class.copy] paragraph 28.
Proposed resolution (February, 2014):
Change 12.8 [class.copy] paragraph 28 as follows:
...It is unspecified whether subobjects representing virtual base classes are assigned more than once by the implicitly-defined copy/move assignment operator. [Example:
struct V { }; struct A : virtual V { }; struct B : virtual V { }; struct C : B, A { };It is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy/move assignment operator for C. —end example] [Note: This does not apply to move assignment, as a defaulted move assignment operator is deleted if the class has virtual bases. —end note]
[Moved to DR at the November, 2014 meeting.]
Issue 1350 clarified that the exception-specification for an inheriting constructor is determined like defaulted functions, but we should also say something similar for deleted, and perhaps constexpr.
Also, the description of the semantics of inheriting constructors don't seem to allow for C-style variadic functions, so the text should be clearer that such constructors are only inherited without their ellipsis.
Proposed resolution (February, 2014):
Change 12.9 [class.inhctor] paragraph 1 as follows:
A using-declaration (7.3.3 [namespace.udecl]) that names a constructor implicitly declares a set of inheriting constructors. The candidate set of inherited constructors from the class X named in the using-declaration consists of actual constructors and notional constructors that result from the transformation of defaulted parameters and ellipsis parameter specifications as follows:
all non-template constructors for each non-template constructor of X, the constructor that results from omitting any ellipsis parameter specification, and
for each non-template constructor of X that has at least one parameter with a default argument, the set of constructors that results from omitting any ellipsis parameter specification and successively omitting parameters with a default argument from the end of the parameter-type-list, and
all constructor templates for each constructor template of X, the constructor template that results from omitting any ellipsis parameter specification, and
for each constructor template of X that has at least one parameter with a default argument, the set of constructor templates that results from omitting any ellipsis parameter specification and successively omitting parameters with a default argument from the end of the parameter-type-list.
Change 12.9 [class.inhctor] paragraph 2 as follows:
The constructor characteristics of a constructor or constructor template are
the template parameter list (14.1 [temp.param]), if any,
the parameter-type-list parameter-type-list (8.3.5 [dcl.fct]), and
absence or presence of explicit (12.3.1 [class.conv.ctor]), and.
absence or presence of constexpr (7.1.5 [dcl.constexpr]).
Change 12.9 [class.inhctor] paragraph 4 as follows:
A constructor so declared has the same access as the corresponding constructor in X. It is constexpr if the user-written constructor (see below) would satisfy the requirements of a constexpr constructor (7.1.5 [dcl.constexpr]). It is deleted if the corresponding constructor in X is deleted (8.4 [dcl.fct.def] 8.4.3 [dcl.fct.def.delete]) or if a defaulted default constructor (12.1 [class.ctor]) would be deleted, except that the construction of the direct base class X is not considered in the determination. An inheriting constructor shall not be explicitly instantiated (14.7.2 [temp.explicit]) or explicitly specialized (14.7.3 [temp.expl.spec]).
[Moved to DR at the November, 2014 meeting.]
The current wording of the second bullet of paragraph 1 of 13.3.1.4 [over.match.copy] contains the phrase,
When initializing a temporary to be bound to the first parameter of a constructor that takes a reference to possibly cv-qualified T as its first argument...
Presumably “argument” should be “parameter.”
Proposed resolution (February, 2014):
Change 13.3.1.4 [over.match.copy] paragraph 1 as follows:
...the candidate functions are selected as follows:
The converting constructors (12.3.1 [class.conv.ctor]) of T are candidate functions.
When the type of the initializer expression is a class type “cv S”, the non-explicit conversion functions of S and its base classes are considered. When initializing a temporary to be bound to the first parameter of a constructor that takes a where the parameter is of type “reference to possibly cv-qualified T” as its first argument, and the constructor is called with a single argument in the context of direct-initialization of an object of type “cv2 T”, explicit conversion functions are also considered. Those that are not hidden...
[Moved to DR at the November, 2014 meeting.]
Consider the following example:
struct X { X(); }; struct Y { explicit operator X(); } y; X x{y};
This appears to be ill-formed, although the corresponding case with parentheses is well-formed. There seem to be two factors that prevent this from being accepted:
First, the special provision allowing an explicit conversion function to be used when initializing the parameter of a copy/move constructor is in 13.3.1.4 [over.match.copy], and this case takes us to 13.3.1.7 [over.match.list] instead.
Second, 13.3.3.1 [over.best.ics] paragraph 4 says that in this case, because we are in 13.3.1.7 [over.match.list], and we have a single argument, and we are calling a copy/move constructor, we are not allowed to consider a user-defined conversion sequence for the argument.
Similarly, in an example like
struct A { A() {} A(const A &) {} }; struct B { operator A() { return A(); } } b; A a{b};
the wording in 13.3.3.1 [over.best.ics] paragraph 4 with regard to 13.3.1.7 [over.match.list] prevents considering B's conversion function when initializing the first parameter of A's copy constructor, thereby making this code ill-formed.
Notes from the February, 2014 meeting:
This issue should be addressed by the eventual resolution of issue 1467.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1467.
[Moved to DR at the November, 2014 meeting.]
According to 13.3.3.1 [over.best.ics] paragraph 9,
If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is otherwise ill-formed, an implicit conversion sequence cannot be formed.
However, compare this with 13.3.3.1 [over.best.ics] paragraph 2:
Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the argument and how these are converted to match the corresponding properties of the parameter. Other properties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the final analysis.
It is not clear what cases are in view in paragraph 9.
Proposed resolution (October, 2014):
Change 13.3.3.1 [over.best.ics] paragraph 2 as follows:
Implicit conversion sequences are concerned only with the type, cv-qualification, and value category of the argument and how these are converted to match the corresponding properties of the parameter. Other properties, such as the lifetime, storage class, alignment, or accessibility of the argument, and whether or not the argument is a bit-field, and whether a function is deleted (8.4.3 [dcl.fct.def.delete]), are ignored. So, although an implicit conversion sequence can be defined for a given argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the final analysis.
Change 13.3.3.1 [over.best.ics] paragraph 9 as follows:
If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is otherwise ill-formed, an implicit conversion sequence cannot be formed.
[Moved to DR at the November, 2014 meeting.]
According to bullet 1 of 13.3.3.1.5 [over.ics.list] paragraph 6,
Otherwise, if the parameter type is not a class:
if the initializer list has one element, the implicit conversion sequence is the one required to convert the element to the parameter type;
...
This wording ignores the possibility that the element might be an initializer list (as opposed to an expression with a type, as illustrated in the example). This oversight affects an example like:
struct A { int a[1]; }; struct B { B(int); }; void f(B, int); void f(int, A); int main() { f({0}, {{1}}); }
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1467.
[Moved to DR at the November, 2014 meeting.]
The interpretation of the following example is unclear in the current wording:
void f(long); void f(initializer_list<int>); int main() { f({1L});
The problem is that a list-initialization sequence can also be a standard conversion sequence, depending on the types of the elements and the type of the parameter, so more than one bullet in the list in 13.3.3.2 [over.ics.rank] paragraph 3 applies:
Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of the following rules applies:
Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence S2 if
...
the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguishable by the rules in the paragraph below, or, if not that,
...
...
List-initialization sequence L1 is a better conversion sequence than list-initialization sequence L2 if L1 converts to std::initializer_list<X> for some X and L2 does not.
These bullets give opposite results for the example above, and there is implementation variance in which is selected.
Notes from the April, 2013 meeting:
CWG determined that the latter bullet should apply only if the first one does not.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1467.
[Moved to DR at the November, 2014 meeting.]
The Standard is not clear enough that a template parameter like class T is to be interpreted as a type parameter and not an ill-formed non-type parameter of class type T.
Proposed resolution (October, 2014):
Change 14.1 [temp.param] paragraph 2 as follows, moving the example from paragraph 3 to paragraph 2:
There is no semantic difference between class and typename in a template-parameter. typename followed by an unqualified-id names a template type parameter. typename followed by a qualified-id denotes the type in a non-type137 parameter-declaration. A template-parameter of the form class identifier is a type-parameter. [Example:
class T { /* ... */ }; int i; template<class T, T i> void f(T t) { T t1 = i; // template-parameters T and i ::T t2 = ::i; // global namespace members T and i }
Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter of class T. —end example]. A storage class shall not be specified in a template-parameter declaration. Types shall not be defined in a template-parameter declaration. [Note: A template parameter may be a class template. For example... —end note]
Change 14.1 [temp.param] paragraph 3 as follows, moving the example from paragraph 2 to paragraph 3:
A type-parameter whose identifier does not follow an ellipsis defines its identifier to be a typedef-name (if declared with class or typename) or template-name (if declared with template) in the scope of the template declaration. [Note: Because of the name lookup rules, a template-parameter that could be interpreted as either a non-type template-parameter or a type-parameter (because its identifier is the name of an already existing class) is taken as a type-parameter. For example... —end note] [Note: A template parameter may be a class template. For example,
template<class T> class myarray { /* ... */ }; template<class K, class V, template<class T> class C = myarray> class Map { C<K> key; C<V> value; };
—end note]
[Moved to DR at the November, 2014 meeting.]
According to 14.5.4 [temp.friend] paragraph 5,
A member of a class template may be declared to be a friend of a non-template class. In this case, the corresponding member of every specialization of the class template is a friend of the class granting friendship. For explicit specializations the corresponding member is the member (if any) that has the same name, kind (type, function, class template, or function template), template parameters, and signature as the member of the class template instantiation that would otherwise have been generated.
Should this treatment of members of explicit specializations also apply to members of partial specializations?
Proposed resolution (February, 2014):
Change 14.5.4 [temp.friend] paragraph 5 as follows:
A member of a class template may be declared to be a friend of a non-template class. In this case, the corresponding member of every specialization of the primary class template and class template partial specializations thereof is a friend of the class granting friendship. For explicit specializations and specializations of partial specializations, the corresponding member is the member (if any) that has the same name, kind (type, function, class template, or function template), template parameters, and signature as the member of the class template instantiation that would otherwise have been generated. [Example:...
[Moved to DR at the November, 2014 meeting.]
According to 14.5.5 [temp.class.spec] paragraph 5,
A class template partial specialization may be declared or redeclared in any namespace scope in which its definition may be defined (14.5.1 [temp.class] and 14.5.2 [temp.mem]).
However, there is nothing in those referenced sections specifying where the definition may appear. Should this have referred to the definition of the primary template?
Also, the cross-reference to 14.5.1 [temp.class] is suspect; the actual rules for where non-member class templates may be defined are found in 7.3.1.2 [namespace.memdef] paragraphs 1-2, 8.3 [dcl.meaning] paragraph 1, and 7.3.1 [namespace.def] paragraph 8.
(Apropos of 7.3.1 [namespace.def], the description in paragraph 8 mentions explicit instantiation and explicit specialization, but presumably inadvertently omits partial specializations.)
Proposed resolution (February, 2014) [SUPERSEDED]:
Change 14.5.5 [temp.class.spec] paragraph 5 as follows:
A class template partial specialization may be declared or redeclared in any namespace scope in which its definition the corresponding primary template may be defined (14.5.1 [temp.class] and 14.5.2 [temp.mem]). [Example:...
Additional note, February, 2014:
The proposed resolution approved by CWG at the February, 2014 meeting does not address the additional points raised in the issue, specifically the cross-reference to 14.5.1 [temp.class] and the omission of partial specializations from 7.3.1 [namespace.def]. The issue has been returned to "review" status to consider amending the resolution to include these items.
Proposed Resolution (July, 2014):
Change 7.3.1 [namespace.def] paragraph 8 as follows:
...Furthermore, each member of the inline namespace can subsequently be partially specialized (14.5.5 [temp.class.spec]), explicitly instantiated (14.7.2 [temp.explicit]), or explicitly specialized (14.7.3 [temp.expl.spec]) as though it were a member of the enclosing namespace. Finally, looking up a name...
Change 14.5.5 [temp.class.spec] paragraph 5 as follows:
A class template partial specialization may be declared or redeclared in any namespace scope in which its definition the corresponding primary template may be defined (14.5.1 [temp.class] 7.3.1.2 [namespace.memdef] and 14.5.2 [temp.mem]). [Example:...
[Moved to DR at the November, 2014 meeting.]
A member function with no ref-qualifier can be called for a class prvalue, as can a non-member function whose first parameter is an rvalue reference to that class type. However, 14.5.6.2 [temp.func.order] does not handle this case.
Proposed resolution (February, 2014):
Change 14.5.6.2 [temp.func.order] paragraph 3 as follows:
...If only one of the function templates M is a non-static member of some class A, that function template M is considered to have a new first parameter inserted in its function parameter list. Given cv as the cv-qualifiers of the function template M (if any), the new parameter is of type “rvalue reference to cv A” if the optional ref-qualifier of the function template M is &&, or if M has no ref-qualifier and the first parameter of the other template has rvalue reference type. Otherwise, the new parameter is of type “lvalue reference to cv A” otherwise. [Note: This allows a non-static member to be ordered with respect to a nonmember function and for the results to be equivalent to the ordering of two equivalent nonmembers. —end note] [Example:...
[Moved to DR at the November, 2014 meeting.]
The treatment of unused arguments in an alias template specialization is not specified by the current wording of 14.5.7 [temp.alias]. For example:
#include <iostream> template <class T, class...> using first_of = T; template <class T> first_of<void, typename T::type> f(int) { std::cout << "1\n"; } template <class T> void f(...) { std::cout << "2\n"; } struct X { typedef void type; }; int main() { f<X>(0); f<int>(0); }
Is the reference to first_of<void, T::type> with T being int equivalent to simply void, or is it a substitution failure?
(See also issues 1430, 1520, and 1554.)
Notes from the October, 2012 meeting:
The consensus of CWG was to treat this case as substitution failure.
Proposed resolution (February, 2014):
Add the following as a new paragraph before 14.5.7 [temp.alias] paragraph 3:
When a template-id refers to the specialization of an alias template, it is equivalent...
However, if the template-id is dependent, subsequent template argument substitution still applies to the template-id. [Example:
template<typename...> using void_t = void; template<typename T> void_t<typename T::foo> f(); f<int>(); // error, int does not have a nested type foo
—end example]
The type-id in an alias template declaration shall not refer...
[Moved to DR at the November, 2014 meeting.]
Various characteristics of entities referred to by a non-dependent reference in a template can change between the definition context and the point of instantiation of a specialization of that template. These include initialization (which affects whether an object can be used in a constant expression), function and template default arguments, and the completeness of types. There is implementation divergence as to whether these are checked in the definition context or at the point of instantiation. Presumably a rule is needed to make it ill-formed, no diagnostic required, if the validity of such a reference changes between the two contexts.
Proposed resolution (February, 2014):
Change 14.6 [temp.res] paragraph 8 as follows:
...If a type used in a non-dependent name is incomplete at the point at which a template is defined but is complete at the point at which an instantiation is done, and if the completeness of that type affects whether or not the program is well-formed or affects the semantics of the program, hypothetical instantiation of a template immediately following its definition would be ill-formed due to a construct that does not depend on a template parameter, the program is ill-formed; no diagnostic is required. If the interpretation of such a construct in the hypothetical instantiation is different from the interpretation of the corresponding construct in any actual instantiation of the template, the program is ill-formed; no diagnostic is required. [Note: This can happen in situations including the following:
a type used in a non-dependent name is incomplete at the point at which a template is defined but is complete at the point at which an instantiation is performed, or
an instantiation uses a default argument or default template argument that had not been defined at the point at which the template was defined, or
constant expression evaluation (5.20 [expr.const]) within the template instantiation uses
- the value of a const object of integral or unscoped enumeration type or
the value of a constexpr object or
the value of a reference or
the definition of a constexpr function,
and that entity was not defined when the template was defined, or
a class template specialization or variable template specialization that is specified by a non-dependent simple-template-id is used by the template, and either it is instantiated from a partial specialization that was not defined when the template was defined or it names an explicit specialization that was not declared when the template was defined.
—end note] [Note: If a template is instantiated...
[Moved to DR at the November, 2014 meeting.]
Is the following example well-formed?
template<class T> struct A { typedef int M; struct B { typedef void M; struct C; }; }; template<class T> struct A<T>::B::C : A<T> { M // A<T>::M or A<T>::B::M? p[2]; };
14.6.2 [temp.dep] paragraph 3 says the use of M should refer to A<T>::B::M because the base class A<T> is not searched because it's dependent. But in this case A<T> is also the current instantiation (14.6.2.1 [temp.dep.type]) so it seems like it should be searched.
Notes from the August, 2011 meeting:
The recent changes to the handling of the current instantiation may have sufficiently addressed this issue.
Additional note (September, 2012):
See also issue 1526 for additional analysis demonstrating that this issue is still current despite the changes to the description of the current instantiation. The status has consequently been changed back to "open" for further consideration.
Proposed resolution (February, 2014):
Add the following as a new paragraph before 14.6.2.1 [temp.dep.type] paragraph 4:
A dependent base class is a base class that is a dependent type and is not the current instantiation. [Note: a base class can be the current instantiation in the case of a nested class naming an enclosing class as a base. —end note] [Example:
template<class T> struct A { typedef int M; struct B { typedef void M; struct C; }; }; template<class T> struct A<T>::B::C : A<T> { M m; // OK, A<T>::M };
—end example]
A name is a member of the current instantiation if...
Change 14.6.1 [temp.local] paragraph 9 as follows:
In the definition of a class template or in the definition of a member of such a template that appears outside of the template definition, for each non-dependent base class (14.6.2.1 [temp.dep.type]) which does not depend on a template-parameter (14.6.2 [temp.dep]), if the name of the base class or the name of a member of the base class is the same as the name of a template-parameter, the base class name or member name hides the template-parameter name (3.3.10 [basic.scope.hiding]). [Example:...
Change 14.6.2 [temp.dep] paragraph 3 as follows:
In the definition of a class or class template, if a base class depends on a template-parameter, the base class scope the scope of a dependent base class (14.6.2.1 [temp.dep.type]) is not examined during unqualified name lookup either at the point of definition of the class template or member or during an instantiation of the class template or member. [Example:...
[Moved to DR at the November, 2014 meeting.]
The discussion of issue 1233 revealed that the dependency of function calls involving a braced-init-list containing a pack expansion is not adequately addressed by the existing wording.
Proposed resolution (February, 2014):
Change 14.6.2 [temp.dep] paragraph 1 as follows:
...In an expression of the form:
postfix-expression ( expression-listopt )
where the postfix-expression is an unqualified-id, the unqualified-id denotes a dependent name if
any of the expressions in the expression-list is a pack expansion (14.5.3 [temp.variadic]),
any of the expressions or braced-init-lists in the expression-list is a type-dependent expression (14.6.2.2 [temp.dep.expr]), or
if the unqualified-id is...
Add the following as a new paragraph at the end of 14.6.2.2 [temp.dep.expr]:
A class member access expression (5.2.5 [expr.ref]) is type-dependent if...
A braced-init-list is type-dependent if any element is type-dependent or is a pack expansion.
[Moved to DR at the November, 2014 meeting.]
The length of the __func__ array is implementation-defined but potentially depends on the signature of the function in which it occurs. However, __func__ is not listed among the type-dependent id-expressions in 14.6.2.2 [temp.dep.expr] paragraph 3.
Proposed resolution (February, 2014):
Change 14.6.2.2 [temp.dep.expr] paragraph 3 as follows:
An id-expression is type-dependent if it contains
an identifier associated by name lookup with one or more declarations declared with a dependent type,
an identifier associated by name lookup with one or more declarations of member functions of the current instantiation declared with a return type that contains a placeholder type (7.1.6.4 [dcl.spec.auto]),
The identifier __func__ (8.4.1 [dcl.fct.def.general]) where any enclosing function is a template, a member of a class template, or a generic lambda,
a template-id that is dependent,
...
[Moved to DR at the November, 2014 meeting.]
Do local classes of function templates get the same treatment as member classes of class templates? In particular, is their definition only instantiated when they are required? For example,
template<typename T> void f() { struct B { T t; }; } int main() { f<void>(); }
Implementations vary on this question.
(This question is superficially similar to the one in issue 1253. However, the entities in view in that issue can be named and defined outside the containing template and thus can be explicitly specialized, none of which is true for local classes of function templates.)
It should also be noted that the resolution of this issue should apply as well to local enumeration types.
Proposed resolution (October, 2012):
Change 14.7.1 [temp.inst] paragraph 1 as follows:
Unless a class template specialization has been explicitly instantiated (14.7.2 [temp.explicit]) or explicitly specialized (14.7.3 [temp.expl.spec]), the class template specialization is implicitly instantiated when the specialization is referenced in a context that requires a completely-defined object type or when the completeness of the class type affects the semantics of the program. [Note: Within a template declaration, a local class or enumeration and the members of a local class are never considered to be entities that can be separately instantiated (this includes their default arguments, exception-specifications, and non-static data member initializers, if any). As a result, the dependent names are looked up, the semantic constraints are checked, and any templates used are instantiated as part of the instantiation of the entity within which the local class or enumeration is declared. —end note] The implicit instantiation of a class template specialization...
Notes from the April, 2013 meeting:
The proposed resolution interacts with N3649 (generic lambdas), adopted at this meeting, and this issue has returned to "review" status to allow any necessary changes to be made.
[Moved to DR at the November, 2014 meeting.]
14.8.2 [temp.deduct] paragraph 9 reads,
Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example: In the following example 1000 is converted to signed char and results in an implementation-defined value as specified in (4.7 [conv.integral]). In other words, both templates are considered even though 1000, when converted to signed char, results in an implementation-defined value.
template <int> int f(int); template <signed char> int f(int); int i1 = f<1>(0); // ambiguous int i2 = f<1000>(0); // ambiguous—end example]
This is no longer correct, even ignoring the fact that some implementations may be able to represent the value 1000 as a signed char: integral and enumeration non-type template arguments are now converted constant expressions (14.3.2 [temp.arg.nontype] paragraph 1), and converted constant expressions disallow narrowing conversions (5.20 [expr.const] paragraph 3).
Proposed resolution (February, 2014):
Change 14.8.2 [temp.deduct] paragraph 9 as follows:
Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example: In the following example, 1000 is converted to signed char and results in an implementation-defined value as specified in (4.7 [conv.integral]). In other words, both templates are considered even though 1000, when converted to signed char, results in an implementation-defined value assuming a signed char cannot represent the value 1000, a narrowing conversion would be required to convert the template-argument of type int to signed char, therefore substitution fails for the second template (14.3.2 [temp.arg.nontype])..
template <int> int f(int); template <signed char> int f(int); int i1 = f<1000>(0); // ambiguous OK int i2 = f<1000>(0); // ambiguous; not narrowing—end example]
[Moved to DR at the November, 2014 meeting.]
Currently, 14.8.2.1 [temp.deduct.call] paragraph 1 says,
Template argument deduction is done by comparing each function template parameter type (call it P) with the type of the corresponding argument of the call (call it A) as described below. If removing references and cv-qualifiers from P gives std::initializer_list<P'> for some P' and the argument is an initializer list (8.5.4 [dcl.init.list]), then deduction is performed instead for each element of the initializer list, taking P' as a function template parameter type and the initializer element as its argument. Otherwise, an initializer list argument causes the parameter to be considered a non-deduced context (14.8.2.5 [temp.deduct.type]).
It would seem reasonable, however, to allow an array bound to be deduced from the number of elements in the initializer list, e.g.,
template<int N> void g(int const (&)[N]); void f() { g( { 1, 2, 3, 4 } ); }
Additional note (March, 2013):
The element type should also be deducible.
Proposed resolution (February, 2014):
Change 14.8.2.1 [temp.deduct.call] paragraph 1 as follows:
Template argument deduction is done by comparing each function template parameter type (call it P) with the type of the corresponding argument of the call (call it A) as described below. If P is a dependent type, removing references and cv-qualifiers from P gives std::initializer_list<P'> or P'[N] for some P' and N, and the argument is an a non-empty initializer list (8.5.4 [dcl.init.list]), then deduction is performed instead for each element of the initializer list, taking P' as a function template parameter type and the initializer element as its argument, and in the P'[N] case, if N is a non-type template parameter, N is deduced from the length of the initializer list. Otherwise, an initializer list argument causes the parameter to be considered a non-deduced context (14.8.2.5 [temp.deduct.type]). [Example:
template<class T> void f(std::initializer_list<T>); f({1,2,3}); // T deduced to int f({1,"asdf"}); // error: T deduced to both int and const char* template<class T> void g(T); g({1,2,3}); // error: no argument deduced for T template<class T, int N> void h(T const(&)[N]); h({1,2,3}); // T deduced to int, N deduced to 3 template<class T> void j(T const(&)[3]); j({42}); // T deduced to int, array bound not considered struct Aggr { int i; int j; }; template<int N> void k(Aggr const(&)[N]); k({1,2,3}); // error: deduction fails, no conversion from int to Aggr k({{1},{2},{3}}); // OK, N deduced to 3 template<int M, int N> void m(int const(&)[M][N]); m({{1,2},{3,4}}); // M and N both deduced to 2 template<class T, int N> void n(T const(&)[N], T); n({{1},{2},{3}},Aggr()); // OK, T is Aggr, N is 3—end example] For a function parameter pack...
Change the penultimate bullet of 14.8.2.5 [temp.deduct.type] paragraph 5 as follows:
The non-deduced contexts are:
...
A function parameter for which the associated argument is an initializer list (8.5.4 [dcl.init.list]) but the parameter does not have std::initializer_list or reference to possibly cv-qualified std::initializer_list type a type for which deduction from an initializer list is specified (14.8.2.1 [temp.deduct.call]). [Example:...
A function parameter pack that does not occur at the end of the parameter-declaration-list.
[Moved to DR at the November, 2014 meeting.]
The current wording of 14.8.2.4 [temp.deduct.partial] paragraph 10 is:
If for each type being considered a given template is at least as specialized for all types and more specialized for some set of types and the other template is not more specialized for any types or is not at least as specialized for any types, then the given template is more specialized than the other template. Otherwise, neither template is more specialized than the other.
This is confusing and needs to be clarified.
Proposed resolution (September, 2013) [SUPERSEDED]:
Change 14.8.2.4 [temp.deduct.partial] paragraphs 9 and 10 as follows:
If, for a given type, deduction succeeds in both directions (i.e., the types are identical after the transformations above) and both P and A were reference types (before being replaced with the type referred to above):
if the type from the argument template was an lvalue reference and the type from the parameter template was not, the argument type is considered to be more specialized than the other the other type is not considered to be at least as specialized as the argument type; otherwise,
if the type from the argument template is more cv-qualified than the type from the parameter template (as described above), the argument type is considered to be more specialized than the other; otherwise, the other type is not considered to be at least as specialized as the argument type.
neither type is more specialized than the other.
If for each type being considered a given template is at least as specialized for all types and more specialized for some set of types and the other template is not more specialized for any types or is not at least as specialized for any types, then the given template is more specialized than the other template. Otherwise, neither template is more specialized than the other. A given template is at least as specialized as another template if it is at least as specialized as the other template for all types being considered. A given template is more specialized than another template if it is at least as specialized as the other template for all types being considered, and the other template is not at least as specialized as the given template for any type being considered.
Proposed resolution (February, 2014):
Change 14.8.2.4 [temp.deduct.partial] paragraphs 9-10 as follows:
If, for a given type, deduction succeeds in both directions (i.e., the types are identical after the transformations above) and both P and A were reference types (before being replaced with the type referred to above):
if the type from the argument template was an lvalue reference and the type from the parameter template was not, the argument type is considered to be more specialized than the other the parameter type is not considered to be at least as specialized as the argument type; otherwise,
if the type from the argument template is more cv-qualified than the type from the parameter template (as described above), the argument type is considered to be more specialized than the other; otherwise, the parameter type is not considered to be at least as specialized as the argument type.
neither type is more specialized than the other.
If for each type being considered a given template is at least as specialized for all types and more specialized for some set of types and the other template is not more specialized for any types or is not at least as specialized for any types, then the given template is more specialized than the other template. Otherwise, neither template is more specialized than the other. Function template F is at least as specialized as function template G if, for each pair of types used to determine the ordering, the type from F is at least as specialized as the type from G. F is more specialized than G if F is at least as specialized as G and G is not at least as specialized as F.
[Moved to DR at the November, 2014 meeting.]
N3690 comment CA 24The current wording of 15.5.1 [except.terminate] paragraph 2 affords implementations a significant degree of freedom when exception handling results in a call to std::terminate:
In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std::terminate() is called. In the situation where the search for a handler (15.3 [except.handle]) encounters the outermost block of a function with a noexcept-specification that does not allow the exception (15.4 [except.spec]), it is implementation-defined whether the stack is unwound, unwound partially, or not unwound at all before std::terminate() is called. In all other situations, the stack shall not be unwound before std::terminate() is called.
This contrasts with the treatment of subobjects and objects constructed via delegating constructos in 15.2 [except.ctor] paragraph 2:
An object of any storage duration whose initialization or destruction is terminated by an exception will have destructors executed for all of its fully constructed subobjects (excluding the variant members of a union-like class), that is, for subobjects for which the principal constructor (12.6.2 [class.base.init]) has completed execution and the destructor has not yet begun execution. Similarly, if the non-delegating constructor for an object has completed execution and a delegating constructor for that object exits with an exception, the object's destructor will be invoked.
Here the destructors must be called. It would be helpful if these requirements were harmonized.
Notes from the September, 2013 meeting:
Although the Canadian NB comment principally was a request to reconsider the resolution of issue 1424, which CWG decided to retain, the comment also raised the question above, which CWG felt merited its own issue.
Proposed resolution (June, 2014):
Change all of 15.2 [except.ctor], reparagraphing as follows:
As control passes from the point where an exception is thrown to a handler, destructors are invoked by a process, specified in this section, called stack unwinding. If a destructor directly invoked by stack unwinding exits with an exception, std::terminate is called (15.5.1 [except.terminate]). [Note: Consequently, destructors should generally catch exceptions and not let them propagate out of the destructor. —end note]
The destructor is invoked for all automatic objects each automatic object of class type constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the completion of their construction.
An For an object of class type of any storage duration whose initialization or destruction is terminated by an exception will have destructors executed, the destructor is invoked for all each of its the object's fully constructed subobjects (excluding the variant members of a union-like class), that is, for subobjects each subobject for which the principal constructor (12.6.2 [class.base.init]) has completed execution and the destructor has not yet begun execution. The subobjects are destroyed in the reverse order of the completion of their construction. Such destruction is sequenced before entering a handler of the function-try-block of the constructor or destructor, if any.
Similarly, if the non-delegating constructor for an object has completed execution and a delegating constructor for that object exits with an exception, the object's destructor will be is invoked. Such destruction is sequenced before entering a handler of the function-try-block of a delegating constructor for that object, if any.
[Note: If the object was allocated in by a new-expression (5.3.4 [expr.new]), the matching deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation], 5.3.4 [expr.new], 12.5 [class.free]), if any, is called to free the storage occupied by the object. —end note]
The process of calling destructors for automatic objects constructed on the path from a try block to the point where an exception is thrown is called “stack unwinding.” If a destructor called during stack unwinding exits with an exception, std::terminate is called (15.5.1 [except.terminate]). [Note: So destructors should generally catch exceptions and not let them propagate out of the destructor. —end note]
Delete 15.3 [except.handle] paragraph 11:
The fully constructed base classes and members of an object shall be destroyed before entering the handler of a function-try-block of a constructor for that object. Similarly, if a delegating constructor for an object exits with an exception after the non-delegating constructor for that object has completed execution, the object's destructor shall be executed before entering the handler of a function-try-block of a constructor for that object. The base classes and non-variant members of an object shall be destroyed before entering the handler of a function-try-block of a destructor for that object (12.4 [class.dtor]).
This resolution also resolves issue 1807.
[Moved to DR at the November, 2014 meeting.]
The destruction of fully-constructed array elements when array initialization is terminated by an exception is required by 15.2 [except.ctor] paragraph 2, but the order in which they are to be destroyed is not specified. Presumably it should be in reverse order of construction.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1774.
[Moved to DR at the November, 2014 meeting.]
According to 15.2 [except.ctor] paragraph 2,
An object of any storage duration whose initialization or destruction is terminated by an exception will have destructors executed for all of its fully constructed subobjects (excluding the variant members of a union-like class), that is, for subobjects for which the principal constructor (12.6.2 [class.base.init]) has completed execution and the destructor has not yet begun execution.
This introduces a potential leak if a variant member is initialized and has a non-trivial destructor. If the assumption can't be made that such an initialized member is the active member at the time an exception occurs so that it can be destroyed, perhaps variant members of types having a non-trivial destructor should be prohibited.
Notes from the June, 2014 meeting:
CWG favored removing the exclusion of variant members from the destruction following an exception during construction, though not during destruction. If the active member of the union has changed between the initialization and destruction, the behavior is undefined.
Proposed Resolution (July, 2014):
Change 15.2 [except.ctor] paragraph 2 as follows:
An object of any storage duration whose initialization or destruction is terminated by an exception will have destructors executed for all of its fully constructed subobjects (excluding the variant members of a union-like class), that is, for subobjects for which the principal constructor (12.6.2 [class.base.init]) has completed execution and the destructor has not yet begun execution, except that in the case of destruction, the variant members of a union-like class are not destroyed. Similarly, if the non-delegating constructor...
[Moved to DR at the November, 2014 meeting.
The determination of the exception-specification for an implicitly-declared special member function, as described in 15.4 [except.spec] paragraph 14, does not take into account the fact that nonstatic data member initializers and default arguments in default constructors can contain throw-expressions, which are not part of the exception-specification of any function that is “directly invoked” by the implicit definition. Also, the reference to “directly invoked” functions is not restricted to potentially-evaluated expressions, thus possibly including irrelevant exception-specifications.
Additional note (August, 2012):
The direction established by CWG for resolving this issue was to consider functions called from default arguments and non-static data member initializers in determining the exception-specification. This leads to a problem with ordering: because non-static data member initializers can refer to members declared later, their effect cannot be known until the end of the class. However, a non-static data member initializer could possibly refer to an implicitly-declared constructor, either its own or that of an enclosing class.
Proposed resolution (October, 2012) [SUPERSEDED]:
Add the following two new paragraphs and make the indicated changes to 15.4 [except.spec] paragraph 14:
A set of potential exceptions may contain types and the special value “any.” The set of potential exceptions of an expression is the union of all sets of potential exceptions of each potentially-evaluated subexpression e:
If e is a call to a function, member function, function pointer, or member function pointer (including implicit calls, such as a call to the allocation function in a new-expression):
if it has a non-throwing exception-specification or the call is a core constant expression (5.20 [expr.const]), the set is empty;
otherwise, if it has a dynamic-exception-specification, the set consists of every type in that dynamic-exception-specification;
otherwise, the set consists of “any.”
If e is a throw-expression (15.1 [except.throw]), the set consists of the type of the exception object that would be initialized by the operand if present, or “any” otherwise.
If e is a dynamic_cast expression that casts to a reference type and requires a run-time check (5.2.7 [expr.dynamic.cast]), the set consists of the type std::bad_cast.
If e is a typeid expression applied to a glvalue expression whose type is a polymorphic class type (5.2.8 [expr.typeid]), the set consists of the type std::bad_typeid.
If e is a new-expression with a non-constant expression in the noptr-new-declarator (5.3.4 [expr.new]), the set also includes the type std::bad_array_new_length.
Otherwise, the set is the empty set.
The set of potential exceptions of a function f of some class X, where f is an inheriting constructor or an implicitly-declared special member function, is defined as follows:
If f is a constructor, the set is the union of the sets of potential exceptions of the constructor invocations for X's non-variant non-static data members, for X's direct base classes, and, if X is non-abstract (10.4 [class.abstract]), for X's virtual base classes, as selected by overload resolution for the implicit definition of f (12.1 [class.ctor]), including default argument expressions used in such invocations. [Note: Even though destructors for fully constructed subobjects are invoked when an exception is thrown during the execution of a constructor (15.2 [except.ctor]), their exception-specifications do not contribute to the exception-specification of the constructor, because an exception thrown from such a destructor could never escape the constructor (15.1 [except.throw], 15.5.1 [except.terminate]). —end note]
If f is a default constructor or inheriting constructor, the set also contains all members of the sets of potential exceptions of the initialization of non-static data members from brace-or-equal-initializers.
If f is an assignment operator, the set is the union of the sets of potential exceptions of the assignment operator invocations for X's non-variant non-static data members and for X's virtual and direct base classes, as selected by overload resolution for the implicit definition of f (12.8 [class.copy]), including default argument expressions used in such invocations.
If f is a destructor, the set is the union of the sets of potential exceptions of the destructor invocations for X's non-variant non-static data members and for X's virtual and direct base classes.
An inheriting constructor (12.9 [class.inhctor]) and an implicitly declared implicitly-declared special member function (Clause 12 [special]) have an are considered to have an implicit exception-specification. If f is an inheriting constructor or an implicitly declared default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move assignment operator, its implicit exception-specification specifies the type-id T if and only if T is allowed by the exception-specification of a function directly invoked by f's implicit definition; f allows all exceptions if any function it directly invokes allows all exceptions, and f has the exception-specification noexcept(true) if every function it directly invokes allows no exceptions. The implicit exception-specification is noexcept(false) if the set of potential exceptions of the function contains “any;” otherwise, if that set contains at least one type, the implicit exception-specification specifies each type T contained in the set; otherwise, the implicit exception-specification is noexcept(true). [Note: An instantiation of an inheriting constructor template has an implied exception-specification as if it were a non-template inheriting constructor. —end note] [Example:
struct A { A(); A(const A&) throw(); A(A&&) throw(); ~A() throw(X); }; struct B { B() throw(); B(const B&) throw(); B(B&&, int = (throw Y(), 0)) throw(Y) noexcept; ~B() throw(Y); }; struct D : public A, public B { // Implicit declaration of D::D(); // Implicit declaration of D::D(const D&) noexcept(true); // Implicit declaration of D::D(D&&) throw(Y); // Implicit declaration of D::~D() throw(X, Y); };Furthermore, if...
Change 5.3.7 [expr.unary.noexcept] paragraph 3 as follows:
The result of the noexcept operator is false if in a potentially-evaluated context the set of potential exceptions of the expression (15.4 [except.spec]) would contain contains “any” or at least one type and true otherwise.
a potentially evaluated call80 to a function, member function, function pointer, or member function pointer that does not have a non-throwing exception-specification (15.4 [except.spec]), unless the call is a constant expression (5.20 [expr.const]),
a potentially evaluated throw-expression (15.1 [except.throw]),
a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), where T is a reference type, that requires a run-time check (5.2.7 [expr.dynamic.cast]), or
a potentially evaluated typeid expression (5.2.8 [expr.typeid]) applied to a glvalue expression whose type is a polymorphic class type (10.3 [class.virtual]).
Otherwise, the result is true.
(This resolution also resolves issues 1356 and 1465.)
Additional note (October, 2012):
The preceding wording has been modified from the version that was reviewed following the October, 2012 meeting and thus has been returned to "review" status.
Additional note (March, 2013):
It has been suggested that it might be more consistent with other parts of the language, and particularly in view of the deprecation of dynamic-exception-specifications, if a potentially-throwing non-static data member initializer simply made an implicit constructor noexcept(false) instead of giving it a set of potential exception types.
Additional note, April, 2013:
One problem with the approach suggested in the preceding note would be something like the following example:
struct S { virtual ~S() throw(int); }; struct D: S { };
This approach would make the example ill-formed, because the derived class destructor would be declared to throw types not permitted by the base class destructor's exception-specification. A further elaboration on the suggestion above that would not have this objection would be to define all dynamic-exception-specifications as simply equivalent to noexcept(false).
(See also issue 1639.)
Additional note, April, 2013:
The version of this resolution approved in Bristol assumed the underlying text of the C++11 IS; however, the wording of 15.4 [except.spec] paragraph 14 has been changed by previous resolutions, so this and the related issues are being returned to "review" status.
Proposed resolution, February, 2014 [SUPERSEDED]:
Change 15.4 [except.spec] paragraph 5 as follows:
If a virtual function has an exception-specification, all declarations, including the definition, of any function that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the exception-specification of the base class virtual function, unless the overriding function is defined as deleted. [Example:...
Add the following two new paragraphs and change 15.4 [except.spec] paragraph 14 as indicated:
A set of potential exceptions may contain types and the special value “any”. The set of potential exceptions of an expression is the union of all sets of potential exceptions of each potentially-evaluated subexpression e:
If e is a core constant expression (5.20 [expr.const]), the set is empty.
Otherwise, if e is a function call (5.2.2 [expr.call]) whose postfix-expression is not a (possibly parenthesized) id-expression (5.1.1 [expr.prim.general]) or class member access (5.2.5 [expr.ref]), the set consists of “any”.
Otherwise, if e invokes a function, member function, or function pointer (including implicit calls, such as to an overloaded operator or to an allocation function in a new-expression):
if its declaration has a non-throwing exception-specification, the set is empty;
otherwise, if its declaration has a dynamic-exception-specification, the set consists of every type in that dynamic-exception-specification;
otherwise, the set consists of “any”.
If e is a throw-expression (15.1 [except.throw]), the set consists of the type of the exception object that would be initialized by the operand if present, or “any” otherwise.
If e is a dynamic_cast expression that casts to a reference type and requires a run-time check (5.2.7 [expr.dynamic.cast]), the set consists of the type std::bad_cast.
If e is a typeid expression applied to a glvalue expression whose type is a polymorphic class type (5.2.8 [expr.typeid]), the set consists of the type std::bad_typeid.
If e is a new-expression with a non-constant expression in the noptr-new-declarator (5.3.4 [expr.new]), the set also includes the type std::bad_array_new_length.
If none of the previous items applies, the set is the empty set.
The set of potential exceptions of an implicitly-declared special member function f of some class X is defined as follows:
If f is a constructor, the set is the union of the sets of potential exceptions of the constructor invocations for X's non-variant non-static data members, for X's direct base classes, and, if X is non-abstract (10.4 [class.abstract]), for X's virtual base classes, as selected by overload resolution for the implicit definition of f (12.1 [class.ctor]), including default argument expressions used in such invocations. [Note: Even though destructors for fully constructed subobjects are invoked when an exception is thrown during the execution of a constructor (15.2 [except.ctor]), their exception-specifications do not contribute to the exception-specification of the constructor, because an exception thrown from such a destructor could never escape the constructor (15.1 [except.throw], 15.5.1 [except.terminate]). —end note]
If f is a default constructor, the set also contains all members of the sets of potential exceptions of the initialization of non-static data members from brace-or-equal-initializers.
If f is an assignment operator, the set is the union of the sets of potential exceptions of the assignment operator invocations for X's non-variant non-static data members and for X's virtual and direct base classes, as selected by overload resolution for the implicit definition of f (12.8 [class.copy]), including default argument expressions used in such invocations.
If f is a destructor, the set is the union of the sets of potential exceptions of the destructor invocations for X's non-variant non-static data members and for X's virtual and direct base classes.
An inheriting constructor (12.9 [class.inhctor]) and an implicitly-declared special member function (Clause 12 [special]) have are considered to have an implicit exception-specification. If f is an inheriting constructor or an implicitly declared default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move assignment operator, its implicit exception-specification specifies the type-id T if and only if T is allowed by the exception-specification of a function directly invoked by f's implicit definition; f allows all exceptions if any function it directly invokes allows all exceptions, and f has the exception-specification noexcept(true) if every function it directly invokes allows no exceptions. [Note: It follows that f has the exception-specification noexcept(true) if it invokes no other functions. —end note] [Note: An instantiation of an inheriting constructor template has an implied exception-specification as if it were a non-template inheriting constructor. —end note] The implicit exception-specification is noexcept(false) if the set of potential exceptions of the special member function contains “any”; otherwise, if that set contains at least one type, the implicit exception-specification specifies each type T contained in the set; otherwise, the implicit exception-specification is noexcept(true). [Example:
struct A { A(); A(const A&) throw(); A(A&&) throw(); ~A() throw(X); }; struct B { B() throw(); B(const B&) = default; // Declaration of B::B(const B&) noexcept(true) throw(); B(B&&, int = (throw Y(), 0)) throw(Y) noexcept; ~B() throw(Y); }; struct D : public A, public B { // Implicit declaration of D::D(); // Implicit declaration of D::D(const D&) noexcept(true); // Implicit declaration of D::D(D&&) throw(Y); // Implicit declaration of D::~D() throw(X, Y); };Furthermore...
Change 5.3.7 [expr.unary.noexcept]paragraph 3 as follows:
The result of the noexcept operator is false true if in a potentially-evaluated context the set of potential exceptions of the expression (15.4 [except.spec]) would contain is empty, and false otherwise.
a potentially-evaluated call [[Footnote: This includes implicit calls such as the call to an allocation function in a new-expression. —end footnote] to a function, member function, function pointer, or member function pointer that does not have a non-throwing exception-specification (15.4 [except.spec]), unless the call is a constant expression (5.20 [expr.const]),
a potentially-evaluated throw-expression (15.1 [except.throw]),
a potentially-evaluated dynamic_cast expression dynamic_cast<T>(v), where T is a reference type, that requires a run-time check (5.2.7 [expr.dynamic.cast]), or
a potentially-evaluated typeid expression (5.2.8 [expr.typeid]) applied to a glvalue expression whose type is a polymorphic class type (10.3 [class.virtual]).
Otherwise, the result is true.
(This resolution also resolves issues 1356, 1465, and 1639.)
Additional note, May, 2014:
The current version of the proposed resolution only defines the set of potential exceptions for special member functions; since an inheriting constructor is not a special member function, the exception-specification for an inheriting constructor is no longer specified.
In addition, the structure of the specification of the set of potential exceptions of an expression is unclear. If the bulleted list is intended to be the definition of general statement (“union of all sets of potential exceptions...”), it's incomplete because it doesn't consider exceptions thrown by the evaluation of function arguments in a call, just the exceptions thrown by the function itself; if it's intended to be a list of exceptions to the general rule, the rule about core constant expressions doesn't exclude unselected subexpressions that might throw, so those exceptions are incorrect included in the union.
The issue has been returned to "review" status to allow discussion of these points.
See also the discussion in messages 25290 through 25293.
Proposed resolution (June, 2014):
If a virtual function has an exception-specification, all declarations, including the definition, of any function that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the exception-specification of the base class virtual function, unless the overriding function is defined as deleted. [Example:...
Add the following new paragraphs following 15.4 [except.spec] paragraph 13:
An exception-specification is not considered part of a function's type.
A potential exception of a given context is either a type that might be thrown as an exception or a pseudo-type, denoted by “any”, that represents the situation where an exception of an arbitrary type might be thrown. A subexpression e1 of an expression e is an immediate subexpression if there is no subexpression e2 of e such that e1 is a subexpression of e2.
The set of potential exceptions of a function, function pointer, or member function pointer f is defined as follows:
If the declaration of f has a non-throwing exception-specification, the set is empty.
Otherwise, if the declaration of f has a dynamic-exception-specification, the set consists of every type in that dynamic-exception-specification.
Otherwise, the set consists of the pseudo-type “any”.
The set of potential exceptions of an expression e is empty if e is a core constant expression (5.20 [expr.const]). Otherwise, it is the union of the sets of potential exceptions of the immediate subexpressions of e, including default argument expressions used in a function call, combined with a set S defined by the form of e, as follows:
If e is a function call (5.2.2 [expr.call]):
If its postfix-expression is a (possibly parenthesized) id-expression (5.1.1 [expr.prim.general]), class member access (5.2.5 [expr.ref]), or pointer-to-member operation (5.5 [expr.mptr.oper]) whose cast-expression is an id-expression, S is the set of potential exceptions of the entity selected by the contained id-expression (after overload resolution, if applicable).
Otherwise, S contains the pseudo-type “any”.
If e implicitly invokes a function (such as an overloaded operator, an allocation function in a new-expression, or a destructor if e is a full-expression), S is the set of potential exceptions of the function.
if e is a throw-expression (15.1 [except.throw]), S consists of the type of the exception object that would be initialized by the operand, if present, or the pseudo-type “any” otherwise.
if e is a dynamic_cast expression that casts to a reference type and requires a run-time check (5.2.7 [expr.dynamic.cast]), S consists of the type std::bad_cast.
if e is a typeid expression applied to a glvalue expression whose type is a polymorphic class type (5.2.8 [expr.typeid]), S consists of the type std::bad_typeid.
if e is a new-expression with a non-constant expression in the noptr-new-declarator (5.3.4 [expr.new]), S consists of the type std::bad_array_new_length.
[Example: Given the following declarations
void f() throw(int); void g(); struct A { A(); }; struct B { B() noexcept; }; struct D() { D() throw (double); };
the set of potential exceptions for some sample expressions is:
for f(), the set consists of int;
for g(), the set consists of “any”;
for new A, the set consists of “any”;
for B(), the set is empty;
for new D, the set consists of “any” and double.
—end example]
Given a member function f of some class X, where f is an inheriting constructor (12.9 [class.inhctor]) or an implicitly-declared special member function, the set of potential exceptions of the implicitly-declared member function f consists of all the members from the following sets:
if f is a constructor,
the sets of potential exceptions of the constructor invocations
for X's non-variant non-static data members,
for X's direct base classes, and
if X is non-abstract (10.4 [class.abstract]), for X's virtual base classes,
(including default argument expressions used in such invocations) as selected by overload resolution for the implicit definition of f (12.1 [class.ctor]). [Note: Even though destructors for fully-constructed subobjects are invoked when an exception is thrown during the execution of a constructor (15.2 [except.ctor]), their exception-specifications do not contribute to the exception-specification of the constructor, because an exception thrown from such a destructor could never escape the constructor (15.1 [except.throw], 15.5.1 [except.terminate]). —end note]
the sets of potential exceptions of the initialization of non-static data members from brace-or-equal-initializers that are not ignored (12.6.2 [class.base.init]);
if f is an assignment operator, the sets of potential exceptions of the assignment operator invocations for X's non-variant non-static data members and for X's direct base classes (including default argument expressions used in such invocations), as selected by overload resolution for the implicit definition of f (12.8 [class.copy]);
if f is a destructor, the sets of potential exceptions of the destructor invocations for X's non-variant non-static data members and for X's virtual and direct base classes.
Change 15.4 [except.spec] paragraph 14 as follows:
An inheriting constructor (12.9 [class.inhctor]) and an implicitly declared implicitly-declared special member function (Clause 12 [special]) are considered to have an implicit exception-specification, as follows, where f is the member function and S is the set of potential exceptions of the implicitly-declared member function f:.
if S contains the pseudo-type “any”, the implicit exception-specification is noexcept(false);
otherwise, if S contains at least one type, the implicit exception-specification specifies each type T contained in S;
otherwise, the implicit exception-specification is noexcept(true).
If f is an inheriting constructor or an implicitly declared default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move assignment operator, its implicit exception-specification specifies the type-id T if and only if T is allowed by the exception-specification of a function directly invoked by f's implicit definition; f allows all exceptions if any function it directly invokes allows all exceptions, and f has the exception-specification noexcept(true) if every function it directly invokes allows no exceptions. [Note: It follows that f has the exception-specification noexcept(true) if it invokes no other functions. —end note] [Note: An instantiation of an inheriting constructor template has an implied exception-specification as if it were a non-template inheriting constructor. —end note] [Example:
struct A { A(int = (A(5), 0)) noexcept; A(const A&) throw(); A(A&&) throw(); ~A() throw(X); }; struct B { B() throw(); B(const B&) = default; // Declaration of B::B(const B&) noexcept(true) B(B&&, int = (throw Y(), 0)) throw(Y) noexcept; ~B() throw(Y); }; int n = 7; struct D : public A, public B { int * p = new (std::nothrow) int[n]; // Implicit declaration of D::D() throw(X, std::bad_array_new_length); // Implicit declaration of D::D(); // Implicit declaration of D::D(const D&) noexcept(true); // Implicit declaration of D::D(D&&) throw(Y); // Implicit declaration of D::~D() throw(X, Y); };
Change 5.3.7 [expr.unary.noexcept] paragraph 3 as follows:
The result of the noexcept operator is false true if in a potentially-evaluated context the set of potential exceptions of the expression would contain is empty, and false otherwise.
a potentially-evaluated call83 to a function, member function, function pointer, or member function pointer that does not have a non-throwing exception-specification (15.4 [except.spec]), unless the call is a constant expression (5.20 [expr.const]),
a potentially-evaluated throw-expression (15.1 [except.throw]),
a potentially-evaluated dynamic_cast expression dynamic_cast<T>(v), where T is a reference type, that requires a run-time check (5.2.7 [expr.dynamic.cast]), or
a potentially-evaluated typeid expression (5.2.8 [expr.typeid]) applied to a glvalue expression whose type is a polymorphic class type (10.3 [class.virtual]).
Otherwise, the result is true.
This resolution also resolves issues 1356, 1465, and 1639.
[Moved to DR at the November, 2014 meeting.]
It is unspecified if an implicitly-defined copy assignment operator directly invokes the copy assignment operators of virtual bases. The exception-specification of such a copy assignment operator is thus also unspecified. The specification in 15.4 [except.spec] paragraph 14 should explicitly include the exceptions from the copy assignment operators of virtual base classes, regardless of whether the implicit definition actually invokes the virtual base assignment operators or not.
Proposed resolution (June, 2014):
This issue is resolved by the resolution of issue 1351.
[Moved to DR at the November, 2014 meeting.]
The current specification is not clear whether the exception-specification for a function is propagated to the result of taking its address. For example:
template<class T> struct A { void f() noexcept(false) {} void g() noexcept(true) {} }; int main() { if (noexcept((A<short>().*(&A<short>::f))())) return 1; if (!noexcept((A<long>().*(&A<long>::g))())) return 1; return 0; }
There is implementation variance on whether main returns 0 or 1 for this example. (It also appears that taking the address of a member function of a class template requires instantiating its exception-specification, but it is not clear whether the Standard currently specifies this or not.)
(See also issues 92 and 1351.)
Proposed resolution (June, 2013):
This issue is resolved by the proposed resolution of issue 1351.
[Moved to DR at the November, 2014 meeting.]
According to 14.5.3 [temp.variadic] paragraph 6, describing an empty pack expansion,
When N is zero, the instantiation of the expansion produces an empty list. Such an instantiation does not alter the syntactic interpretation of the enclosing construct, even in cases where omitting the list entirely would otherwise be ill-formed or would result in an ambiguity in the grammar.
This leaves open the question of whether something like
template<typename...T> void f() throw(T...);
should be considered to have a non-throwing exception-specification when T... is empty. The definition in 15.4 [except.spec] paragraph 12 appears to be syntactic regarding dynamic-exception-specifications:
An exception-specification is non-throwing if it is of the form throw(), noexcept, or noexcept(constant-expression ) where the constant-expression yields true. A function with a non-throwing exception-specification does not allow any exceptions.
It seems evident, however, that a dynamic-exception-specification with an empty pack expansion “does not allow any exceptions.”
Proposed resolution (February, 2014):
Change 15.4 [except.spec] paragraph 12 as follows:
A function with no exception-specification or with an exception-specification of the form noexcept(constant-expression ) where the constant-expression yields false allows all exceptions. An exception-specification is non-throwing if it is of the form throw(), noexcept, or noexcept(constant-expression ) where the a dynamic-exception-specification whose set of adjusted types is empty (after any packs are expanded) or a noexcept-specification whose constant-expression is either absent or yields true. A function with a non-throwing exception-specification does not allow any exceptions.
[Addressed by the adoption of paper N4266 at the November, 2104 meeting.]
During the discussion of paper N3394, it was observed that the grammar does not currently, but perhaps should, permit attributes to be specified for namespaces and enumerators.
The example in 5.20 [expr.const] paragraph 6,
struct A { constexpr A(int i) : val(i) { } constexpr operator int() { return val; } constexpr operator long() { return 43; } private: int val; }; template<int> struct X { }; constexpr A a = 42; X<a> x; // OK: unique conversion to int int ary[a]; // error: ambiguous conversion
is no longer correct now that constexpr does not imply const for member functions, since the conversion functions cannot be invoked for the constant a.
Notes from the September, 2013 meeting:
This issue is being handled editorially and is being placed in "review" status to ensure that the change has been made.
[Voted into the WP at the June, 2008 meeting.]
The C99 and C++ Standards disagree about the validity of two Cyrillic characters for use in identifiers. C++ (_N2691_.E [extendid]) says that 040d is valid in an identifier but that 040e is not; C99 (Annex D) says exactly the opposite. In fact, both characters should be accepted in identifiers; see the Unicode chart.
Proposed resolution (February, 2008):
The reference in paragraph 2 should be changed to ISO/IEC TR 10176:2003 and the table should be changed to conform to the one in that document (beginning on page 34).
[Voted into WP at April, 2007 meeting.]
Section 1.3 [intro.defs], definition of "signature" omits the function name as part of the signature. Since the name participates in overload resolution, shouldn't it be included in the definition? I didn't find a definition of signature in the ARM, but I might have missed it.
Fergus Henderson: I think so. In particular, _N4140_.17.6.4.3.2 [global.names] reserves certain "function signatures" for use by the implementation, which would be wrong unless the signature includes the name.
-2- Each global function signature declared with external linkage in a header is reserved to the implementation to designate that function signature with external linkage.
-5- Each function signature from the Standard C library declared with external linkage is reserved to the implementation for use as a function signature with both extern "C" and extern "C++" linkage, or as a name of namespace scope in the global namespace.
Other uses of the term "function signature" in the description of the standard library also seem to assume that it includes the name.
James Widman:
Names don't participate in overload resolution; name lookup is separate from overload resolution. However, the word “signature” is not used in clause 13 [over]. It is used in linkage and declaration matching (e.g., 14.5.6.1 [temp.over.link]). This suggests that the name and scope of the function should be part of its signature.
Proposed resolution (October, 2006):
Replace 1.3 [intro.defs] “signature” with the following:
the name and the parameter-type-list (8.3.5 [dcl.fct]) of a function, as well as the class or namespace of which it is a member. If a function or function template is a class member its signature additionally includes the cv-qualifiers (if any) on the function or function template itself. The signature of a function template additionally includes its return type and its template parameter list. The signature of a function template specialization includes the signature of the template of which it is a specialization and its template arguments (whether explicitly specified or deduced). [Note: Signatures are used as a basis for name-mangling and linking. —end note]
Delete paragraph 3 and replace the first sentence of 14.5.6.1 [temp.over.link] as follows:
The signature of a function template specialization consists of the signature of the function template and of the actual template arguments (whether explicitly specified or deduced).
The signature of a function template consists of its function signature, its return type and its template parameter list is defined in 1.3 [intro.defs]. The names of the template parameters are significant...
(See also issue 537.)
[Voted into WP at April, 2007 meeting.]
The standard defines “signature” in two places: 1.3 [intro.defs] and 14.5.6.1 [temp.over.link] paragraphs 3-4. The former seems to be meant as a formal definition (I think it's the only place covering the nontemplate case), yet it lacks some bits mentioned in the latter (specifically, the notion of a “signature of a function template,” which is part of every signature of the associated function template specializations).
Also, I think the 1.3 [intro.defs] words “the information about a function that participates in overload resolution” isn't quite right either. Perhaps, “the information about a function that distinguishes it in a set of overloaded functions?”
Eric Gufford:
In 1.3 [intro.defs] the definition states that “Function signatures do not include return type, because that does not participate in overload resolution,” while 14.5.6.1 [temp.over.link] paragraph 4 states “The signature of a function template consists of its function signature, its return type and its template parameter list.” This seems inconsistent and potentially confusing. It also seems to imply that two identical function templates with different return types are distinct signatures, which is in direct violation of 13.3 [over.match]. 14.5.6.1 [temp.over.link] paragraph 4 should be amended to include verbiage relating to overload resolution.
Either return types are included in function signatures, or they're not, across the board. IMHO, they should be included as they are an integral part of the function declaration/definition irrespective of overloads. Then verbiage should be added about overload resolution to distinguish between signatures and overload rules. This would help clarify things, as it is commonly understood that overload resolution is based on function signature.
In short, the term “function signature” should be made consistent, and removed from its (implicit, explicit or otherwise) linkage to overload resolution as it is commonly understood.
James Widman:
The problem is that (a) if you say the return type is part of the signature of a non-template function, then you have overloading but not overload resolution on return types (i.e., what we have now with function templates). I don't think anyone wants to make the language uglier in that way. And (b) if you say that the return type is not part of the signature of a function template, you will break code. Given those alternatives, it's probably best to maintain the status quo (which the implementors appear to have rendered faithfully).
Proposed resolution (September, 2006):
This issue is resolved by the resolution of issue 357.
[Voted into WP at April, 2006 meeting.]
The standard uses “most derived object” in some places (for example, 1.3 [intro.defs] “dynamic type,” 5.3.5 [expr.delete]) to refer to objects of both class and non-class type. However, 1.8 [intro.object] only formally defines it for objects of class type.
Possible fix: Change the wording in 1.8 [intro.object] paragraph 4 from
an object of a most derived class type is called a most derived object
to
an object of a most derived class type, or of non-class type, is called a most derived object
Proposed resolution (October, 2005):
Add the indicated words to 1.8 [intro.object] paragraph 4:
If a complete object, a data member (9.2 [class.mem]), or an array element is of class type, its type is considered the most derived class, to distinguish it from the class type of any base class subobject; an object of a most derived class type, or of a non-class type, is called a most derived object.
[Voted into the WP at the September, 2008 meeting.]
In 1.9 [intro.execution] paragraph 16, the following expression is still listed as an example of undefined behavior:
i = ++i + 1;
However, it appears that the new sequencing rules make this expression well-defined:
The assignment side-effect is required to be sequenced after the value computations of both its LHS and RHS (5.18 [expr.ass] paragraph 1).
The LHS (i) is an lvalue, so its value computation involves computing the address of i.
In order to value-compute the RHS (++i + 1), it is necessary to first value-compute the lvalue expression ++i and then do an lvalue-to-rvalue conversion on the result. This guarantees that the incrementation side-effect is sequenced before the computation of the addition operation, which in turn is sequenced before the assignment side effect. In other words, it yields a well-defined order and final value for this expression.
It should be noted that a similar expression
i = i++ + 1;
is still not well-defined, since the incrementation side-effect remains unsequenced with respect to the assignment side-effect.
It's unclear whether making the expression in the example well-defined was intentional or just a coincidental byproduct of the new sequencing rules. In either case either the example should be fixed, or the rules should be changed.
Clark Nelson: In my opinion, the poster's argument is perfectly correct. The rules adopted reflect the CWG's desired outcome for issue 222. At the Portland meeting, I presented (and still sympathize with) Tom Plum's case that these rules go a little too far in nailing down required behavior; this is a consequence of that.
One way or another, a change needs to be made, and I think we should seriously consider weakening the resolution of issue 222 to keep this example as having undefined behavior. This could be done fairly simply by having the sequencing requirements for an assignment expression depend on whether it appears in an lvalue context.
James Widman: How's this for a possible re-wording?
In all cases, the side effect of the assignment expression is sequenced after the value computations of the right and left operands. Furthermore, if the assignment expression appears in a context where an lvalue is required, the side effect of the assignment expression is sequenced before its value computation.
Notes from the February, 2008 meeting:
There was no real support in the CWG for weakening the resolution of issue 222 and returning the example to having undefined behavior. No one knew of an implementation that doesn't already do the (newly) right thing for such an example, so there was little motivation to go out of our way to increase the domain of undefined behavior. So the proposed resolution is to change the example to one that definitely does have undependable behavior in existing practice, and undefined behavior under the new rules.
Also, the new formulation of the sequencing rules approved in Oxford contained the wording that by and large resolved issue 222, so with the resolution of this issue, we can also close issue 222.
Proposed resolution (March, 2008):
Change the example in 1.9 [intro.execution] paragraph 16 as follows:
i = v[i++]; // the behavior is undefined i = 7, i++, i++; // i becomes 9 i = ++i i++ + 1; // the behavior is undefined i = i + 1; // the value of i is incremented
This resolution also resolves issue 222.
[Voted into the WP at the September, 2008 meeting.]
Is the behavior undefined in the following example?
void f() { int n = 0; n = --n; }
1.9 [intro.execution] paragraph 16 says,
If a side effect on a scalar object is unsequenced relative to either a different side effect on the same scalar object or a value computation using the value of the same scalar object, the behavior is undefined.
It's not clear to me whether the two side-effects in n=--n are “different.” As far as I can tell, it seems that both side-effects involve the assignment of -1 to n, which in a sense makes them non-“different.” But I don't know if that's the intent. Would it be better to say “another” instead of “a different?”
On a related note, can we include this example to illustrate?
void f( int, int ); void g( int a ) { f( a = -1, a = -1 ); } // Undefined?
Proposed resolution (March, 2008):
Change 1.9 [intro.execution] paragraph 16 as follows:
...If a side effect on a scalar object is unsequenced relative to either a different another side effect on the same scalar object or a value computation using the value of the same scalar object, the behavior is undefined. [Example:
void f(int, int); void g(int i, int* v) { i = v[i++]; // the behavior is undefined i = 7, i++, i++; // i becomes 9 i = ++i + 1; // the behavior is undefined i = i + 1; // the value of i is incremented f(i = -1, i = -1); // the behavior is undefined }—end example] When calling...
[Voted into WP at March 2004 meeting.]
Should this program do what its author obviously expects? As far as I can tell, the standard says that the point of instantiation for Fib<n-1>::Value is the same as the point of instantiation as the enclosing specialization, i.e., Fib<n>::Value. What in the standard actually says that these things get initialized in the right order?
template<int n> struct Fib { static int Value; }; template <> int Fib<0>::Value = 0; template <> int Fib<1>::Value = 1; template<int n> int Fib<n>::Value = Fib<n-1>::Value + Fib<n-2>::Value; int f () { return Fib<40>::Value; }
John Spicer: My opinion is that the standard does not specify the behavior of this program. I thought there was a core issue related to this, but I could not find it. The issue that I recall proposed tightening up the static initialization rules to make more cases well defined.
Your comment about point of instantiation is correct, but I don't think that really matters. What matters is the order of execution of the initialization code at execution time. Instantiations don't really live in "translation units" according to the standard. They live in "instantiation units", and the handling of instantiation units in initialization is unspecified (which should probably be another core issue). See 2.2 [lex.phases] paragraph 8.
Notes from October 2002 meeting:
We discussed this and agreed that we really do mean the the order is unspecified. John Spicer will propose wording on handling of instantiation units in initialization.
Proposed resolution (April 2003):
TC1 contains the following text in 3.6.2 [basic.start.init] paragraph 1:
Objects with static storage duration defined in namespace scope in the same translation unit and dynamically initialized shall be initialized in the order in which their definition appears in the translation unit.
This was revised by issue 270 to read:
Dynamic initialization of an object is either ordered or unordered. Explicit specializations and definitions of class template static data members have ordered initialization. Other class template static data member instances have unordered initialization. Other objects defined in namespace scope have ordered initialization. Objects defined within a single translation unit and with ordered initialization shall be initialized in the order of their definitions in the translation unit. The order of initialization is unspecified for objects with unordered initialization and for objects defined in different translation units.
This addresses this issue but while reviewing this issue some additional changes were suggested for the above wording:
Dynamic initialization of an object is either ordered or unordered. Definitions of explicitly specialized Explicit specializations and definitions of class template static data members have ordered initialization. Other class template static data members (i.e., implicitly or explicitly instantiated specializations) instances have unordered initialization. Other objects defined in namespace scope have ordered initialization. Objects defined within a single translation unit and with ordered initialization shall be initialized in the order of their definitions in the translation unit. The order of initialization is unspecified for objects with unordered initialization and for objects defined in different translation units.
[Moved to DR at October 2007 meeting.]
C99 and C++ differ in their approach to universal character names (UCNs).
Issue 248 already covers the differences in UCNs allowed for identifiers, but a more fundamental issue is that of UCNs that correspond to codes reserved by ISO 10676 for surrogate pair forms.
Specifically, C99 does not allow UCNs whose short names are in the range 0xD800 to 0xDFFF. I think C++ should have the same constraint. If someone really wants to place such a code in a character or string literal, they should use a hexadecimal escape sequence instead, for example:
wchar_t w1 = L'\xD900'; // Okay. wchar_t w2 = L'\uD900'; // Error, not a valid character.
(Compare 6.4.3 paragraph 2 in ISO/IEC 9899/1999 with 2.3 [lex.charset] paragraph 2 in the C++ standard.)
Proposed resolution (October, 2007):
This issue is resolved by the adoption of paper J16/07-0030 = WG21 N2170.
[Voted into WP at the October, 2006 meeting.]
The current wording of 2.13.3 [lex.ccon] paragraph 3 states,
If the character following a backslash is not one of those specified, the behavior is undefined.
Paper J16/04-0167=WG21 N1727 suggests that such character escapes be ill-formed. In discussions at the Lillehammer meeting, however, the CWG felt that the newly-approved category of conditionally-supported behavior would be more appropriate.
Proposed resolution (April, 2006):
Change the next-to-last sentence of 2.13.3 [lex.ccon] paragraph 3 from:
If the character following a backslash is not one of those specified, the behavior is undefined.
to:
Escape sequences in which the character following the backslash is not listed in Table 6 are conditionally-supported, with implementation-defined semantics.
[Voted into the WP at the June, 2008 meeting.]
3 [basic] paragraph 8, while not incorrect, does not allow for linkage of operators and conversion functions. It says:
An identifier used in more than one translation unit can potentially refer to the same entity in these translation units depending on the linkage (3.5 [basic.link]) of the identifier specified in each translation unit.
Proposed Resolution (November, 2006):
This issue is resolved by the proposed resolution of issue 485.
[Voted into the WP at the June, 2008 meeting.]
Clause 3 [basic] paragraph 4 says:
A name is a use of an identifier (2.10 [lex.name]) that denotes an entity or label (6.6.4 [stmt.goto], 6.1 [stmt.label]).
Just three paragraphs later, it says
Two names are the same if
- they are identifiers composed of the same character sequence; or
- they are the names of overloaded operator functions formed with the same operator; or
- they are the names of user-defined conversion functions formed with the same type.
The last two bullets contradict the definition of name in paragraph 4 because they are not identifiers.
This definition affects other parts of the Standard, as well. For example, in 3.4.2 [basic.lookup.argdep] paragraph 1,
When an unqualified name is used as the postfix-expression in a function call (5.2.2 [expr.call]), other namespaces not considered during the usual unqualified lookup (3.4.1 [basic.lookup.unqual]) may be searched, and in those namespaces, namespace-scope friend function declarations (11.3 [class.friend]) not otherwise visible may be found.
With the current definition of name, argument-dependent lookup apparently does not apply to function-notation calls to overloaded operators.
Another related question is whether a template-id is a name or not and thus would trigger an argument-dependent lookup. Personally, I have always viewed a template-id as a name, just like operator+.
Proposed Resolution (November, 2006):
Change clause 3 [basic] paragraphs 3-8 as follows:
An entity is a value, object, subobject, base class subobject, array element, variable, reference, function, instance of a function, enumerator, type, class member, template, template specialization, namespace, or parameter pack.
A name is a use of an identifier identifier (2.10 [lex.name]), operator-function-id (13.5 [over.oper]), conversion-function-id (12.3.2 [class.conv.fct]), or template-id (14.2 [temp.names]) that denotes an entity or label (6.6.4 [stmt.goto], 6.1 [stmt.label]). A variable is introduced by the declaration of an object. The variable's name denotes the object.
Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is introduced either by a goto statement (6.6.4 [stmt.goto]) or a labeled-statement (6.1 [stmt.label]).
A variable is introduced by the declaration of an object. The variable's name denotes the object.
Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine whether or not a name denotes one of these entities before parsing the program that contains it. The process that determines this is called name lookup (3.4 [basic.lookup]).
Two names are the same if
they are identifiers identifiers composed of the same character sequence; or
they are the names of overloaded operator functions operator-function-ids formed with the same operator; or
they are the names of user-defined conversion functions conversion-function-ids formed with the same type., or
they are template-ids that refer to the same class or function (14.4 [temp.type]).
An identifier A name used in more than one translation unit can potentially refer to the same entity in these translation units depending on the linkage (3.5 [basic.link]) of the identifier name specified in each translation unit.
Change 3.3.7 [basic.scope.class] paragraph 1 item 5 as follows:
The potential scope of a declaration that extends to or past the end of a class definition also extends to the regions defined by its member definitions, even if the members are defined lexically outside the class (this includes static data member definitions, nested class definitions, member function definitions (including the member function body and any portion of the declarator part of such definitions which follows the identifier declarator-id, including a parameter-declaration-clause and any default arguments (8.3.6 [dcl.fct.default]).
[Drafting note: This last change is not really mandated by the issue, but it's another case of “identifier” confusion.]
(This proposed resolution also resolves issue 309.)
[Moved to DR at October 2002 meeting.]
3.2 [basic.def.odr] paragraph 2 says that a deallocation function is "used" by a new-expression or delete-expression appearing in a potentially-evaluated expression. 3.2 [basic.def.odr] paragraph 3 requires only that "used" functions be defined.
This wording runs afoul of the typical implementation technique for polymorphic delete-expressions in which the deallocation function is invoked from the virtual destructor of the most-derived class. The problem is that the destructor must be defined, because it's virtual, and if it contains an implicit reference to the deallocation function, the deallocation function must also be defined, even if there are no relevant new-expressions or delete-expressions in the program.
For example:
struct B { virtual ~B() { } }; struct D: B { void operator delete(void*); ~D() { } };
Is it required that D::operator delete(void*) be defined, even if no B or D objects are ever created or deleted?
Suggested resolution: Add the words "or if it is found by the lookup at the point of definition of a virtual destructor (12.4 [class.dtor])" to the specification in 3.2 [basic.def.odr] paragraph 2.
Notes from 04/01 meeting:
The consensus was in favor of requiring that any declared non-placement operator delete member function be defined if the destructor for the class is defined (whether virtual or not), and similarly for a non-placement operator new if a constructor is defined.
Proposed resolution (10/01):
In 3.2 [basic.def.odr] paragraph 2, add the indicated text:
An allocation or deallocation function for a class is used by a new expression appearing in a potentially-evaluated expression as specified in 5.3.4 [expr.new] and 12.5 [class.free]. A deallocation function for a class is used by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 [expr.delete] and 12.5 [class.free]. A non-placement allocation or deallocation function for a class is used by the definition of a constructor of that class. A non-placement deallocation function for a class is used by the definition of the destructor of that class, or by being selected by the lookup at the point of definition of a virtual destructor (12.4 [class.dtor]). [Footnote: An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a permissible implementation technique.]
[Moved to DR at October 2002 meeting.]
3.2 [basic.def.odr] paragraph 4 has a note listing the contexts that require a class type to be complete. It does not list use as a base class as being one of those contexts.
Proposed resolution (10/01):
In 3.2 [basic.def.odr] paragraph 4 add a new bullet at the end of the note as the next-to-last bullet:
[Voted into WP at March 2004 meeting.]
Consider the following translation unit:
template<class T> struct S { void f(union U*); // (1) }; template<class T> void S<T>::f(union U*) {} // (2) U *p; // (3)
Does (1) introduce U as a visible name in the surrounding namespace scope?
If not, then (2) could presumably be an error since the "union U" in that definition does not find the same type as the declaration (1).
If yes, then (3) is OK too. However, we have gone through much trouble to allow template implementations that do not pre-parse the template definitions, but requiring (1) to be visible would change that.
A slightly different case is the following:
template<typename> void f() { union U *p; } U *q; // Should this be valid?
Notes from October 2003 meeting:
There was consensus that example 1 should be allowed. (Compilers already parse declarations in templates; even MSVC++ 6.0 accepts this case.) The vote was 7-2.
Example 2, on the other hand, is wrong; the union name goes into a block scope anyway.
Proposed resolution:
In 3.3.2 [basic.scope.pdecl] change the second bullet of paragraph 5 as follows:
for an elaborated-type-specifier of the formclass-key identifierif the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a function defined in namespace scope, the identifier is declared as a class-name in the namespace that contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the smallest non-class, non-function-prototype scope that contains the declaration. [Note: These rules also apply within templates.] [Note: ...]
[Voted into WP at March 2004 meeting.]
Consider the following example (inspired by a question from comp.lang.c++.moderated):
template<typename> struct B {}; template<typename T> struct D: B<D> {};
Most (all?) compilers reject this code because D is handled as a template name rather than as the injected class name.
9 [class]/2 says that the injected class name is "inserted into the scope of the class."
3.3.7 [basic.scope.class]/1 seems to be the text intended to describe what "scope of a class" means, but it assumes that every name in that scope was introduced using a "declarator". For an implicit declaration such as the injected-class name it is not clear what that means.
So my questions:
John Spicer: I do not believe the injected class name should be available in the base specifier. I think the semantics of injected class names should be as if a magic declaration were inserted after the opening "{" of the class definition. The injected class name is a member of the class and members don't exist at the point where the base specifiers are scanned.
John Spicer: I believe the 3.3.7 [basic.scope.class] wording should be updated to reflect the fact that not all names come from declarators.
Notes from October 2003 meeting:
We agree with John Spicer's suggested answers above.
Proposed Resolution (October 2003):
The answer to question 1 above is No and no change is required.
For question 1, change 3.3.7 [basic.scope.class] paragraph 1 rule 1 to:
1) The potential scope of a name declared in a class consists not only of the declarative region following the name's point of declaration declarator, but also of all function bodies, default arguments, and constructor ctor-initializers in that class (including such things in nested classes). The point of declaration of an injected-class-name (clause 9 [class]) is immediately following the opening brace of the class definition.
(Note that this change overlaps a change in issue 417.)
Also change 3.3.2 [basic.scope.pdecl] by adding a new paragraph 8 for the injected-class-name case:
The point of declaration for an injected-class-name (clause 9 [class]) is immediately following the opening brace of the class definition.
Alternatively this paragraph could be added after paragraph 5 and before the two note paragraphs (i.e. it would become paragraph 5a).
[Moved to DR at 10/01 meeting.]
The example in 3.4.1 [basic.lookup.unqual] paragraph 3 is incorrect:
typedef int f; struct A { friend void f(A &); operator int(); void g(A a) { f(a); } };Regardless of the resolution of other issues concerning the lookup of names in friend declarations, this example is ill-formed (the function and the typedef cannot exist in the same scope).
One possible repair of the example would be to make f a class with a constructor taking either A or int as its parameter.
(See also issues 95, 136, 138, 143, 165, and 166.)
Proposed resolution (04/01):
Change the example in 3.4.1 [basic.lookup.unqual] paragraph 3 to read:
typedef int f; namespace N { struct A { friend int f(A &); operator int(); void g(A a) { int i = f(a); // f is the typedef, not the friend function: // equivalent to int(a) } }; }
Delete the sentence immediately following the example:
The expression f(a) is a cast-expression equivalent to int(a).
[Voted into WP at the October, 2006 meeting.]
Is the following code well-formed?
namespace N { int i; extern int j; } int N::j = i;
The question here is whether the lookup for i in the initializer of N::j finds the declaration in namespace N or not. Implementations differ on this question.
If N::j were a static data member of a class, the answer would be clear: both 3.4.1 [basic.lookup.unqual] paragraph 12 and 8.5 [dcl.init] paragraph 11 say that the initializer “is in the scope of the member's class.” There is no such provision for namespace members defined outside the namespace, however.
The reasoning given in 3.4.1 [basic.lookup.unqual] may be instructive:
A name used in the definition of a static data member of class X (9.4.2 [class.static.data]) (after the qualified-id of the static member) is looked up as if the name was used in a member function of X.
It is certainly the case that a name used in a function that is a member of a namespace is looked up in that namespace (3.4.1 [basic.lookup.unqual] paragraph 6), regardless of whether the definition is inside or outside that namespace. Initializers for namespace members should probably be looked up the same way.
Proposed resolution (April, 2006):
Add a new paragraph following 3.4.1 [basic.lookup.unqual] paragraph 12:
If a variable member of a namespace is defined outside of the scope of its namespace then any name used in the definition of the variable member (after the declarator-id) is looked up as if the definition of the variable member occurred in its namespace. [Example:
namespace N { int i = 4; extern int j; } int i = 2; int N::j = i; // N::j == 4—end example]
[Moved to DR at 4/02 meeting.]
Paragraphs 1 and 2 of 3.4.2 [basic.lookup.argdep] say, in part,
When an unqualified name is used as the postfix-expression in a function call (5.2.2 [expr.call] )... namespace-scope friend function declarations (11.3 [class.friend] ) not otherwise visible may be found... the set of declarations found by the lookup of the function name [includes] the set of declarations found in the... classes associated with the argument types.The most straightforward reading of this wording is that if a function of namespace scope (as opposed to a class member function) is declared as a friend in a class, and that class is an associated class in a function call, the friend function will be part of the overload set, even if it is not visible to normal lookup.
Consider the following example:
namespace A { class S; }; namespace B { void f(A::S); }; namespace A { class S { int i; friend void B::f(S); }; } void g() { A::S s; f(s); // should find B::f(A::S) }This example would seem to satisfy the criteria from 3.4.2 [basic.lookup.argdep] : A::S is an associated class of the argument, and A::S has a friend declaration of the namespace-scope function B::f(A::S), so Koenig lookup should include B::f(A::S) as part of the overload set in the call.
Another interpretation is that, instead of finding the friend declarations in associated classes, one only looks for namespace-scope functions, visible or invisible, in the namespaces of which the the associated classes are members; the only use of the friend declarations in the associated classes is to validate whether an invisible function declaration came from an associated class or not and thus whether it should be included in the overload set or not. By this interpretation, the call f(s) in the example will fail, because B::f(A::S) is not a member of namespace A and thus is not found by the lookup.
Notes from 10/99 meeting: The second interpretation is correct. The wording should be revised to make clear that Koenig lookup works by finding "invisible" declarations in namespace scope and not by finding friend declarations in associated classes.
Proposed resolution (04/01): The "associated classes" are handled adequately under this interpretation by 3.4.2 [basic.lookup.argdep] paragraph 3, which describes the lookup in the associated namespaces as including the friend declarations from the associated classes. Other mentions of the associated classes should be removed or qualified to avoid the impression that there is a lookup in those classes:
In 3.4.2 [basic.lookup.argdep], change
When an unqualified name is used as the postfix-expression in a function call (5.2.2 [expr.call]), other namespaces not considered during the usual unqualified lookup (3.4.1 [basic.lookup.unqual]) may be searched, and namespace-scope friend function declarations (11.3 [class.friend]) not otherwise visible may be found.
to
When an unqualified name is used as the postfix-expression in a function call (5.2.2 [expr.call]), other namespaces not considered during the usual unqualified lookup (3.4.1 [basic.lookup.unqual]) may be searched, and in those namespaces, namespace-scope friend function declarations (11.3 [class.friend]) not otherwise visible may be found.
In 3.4.2 [basic.lookup.argdep] paragraph 2, delete the words and classes in the following two sentences:
If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associated namespaces and classes are not considered. Otherwise the set of declarations found by the lookup of the function name is the union of the set of declarations found using ordinary unqualified lookup and the set of declarations found in the namespaces and classes associated with the argument types.
(See also issues 95, 136, 138, 139, 165, 166, and 218.)
[Voted into WP at April, 2007 meeting.]
The original intent of the Committee when Koenig lookup was added to the language was apparently something like the following:
This approach is not reflected in the current wording of the Standard. Instead, the following appears to be the status quo:
John Spicer: Argument-dependent lookup was created to solve the problem of looking up function names within templates where you don't know which namespace to use because it may depend on the template argument types (and was then expanded to permit use in nontemplates). The original intent only concerned functions. The safest and simplest change is to simply clarify the existing wording to that effect.
Bill Gibbons: I see no reason why non-function declarations should not be found. It would take a special rule to exclude "function objects", as well as pointers to functions, from consideration. There is no such rule in the standard and I see no need for one.
There is also a problem with the wording in 3.4.2 [basic.lookup.argdep] paragraph 2:
If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associated namespaces and classes are not considered.
This implies that if the ordinary lookup of the name finds the declaration of a data member which is a pointer to function or function object, argument-dependent lookup is still done.
My guess is that this is a mistake based on the incorrect assumption that finding any member other than a member function would be an error. I would just change "class member function" to "class member" in the quoted sentence.
Mike Miller: In light of the issue of "short-circuiting" Koenig lookup when normal lookup finds a non-function, perhaps it should be written as "...finds the declaration of a class member, an object, or a reference, the associated namespaces..."?
Andy Koenig: I think I have to weigh in on the side of extending argument-dependent lookup to include function objects and pointers to functions. I am particularly concerned about [function objects], because I think that programmers should be able to replace functions by function objects without changing the behavior of their programs in fundamental ways.
Bjarne Stroustrup: I don't think we could seriously argue from first principles that [argument-dependent lookup should find only function declarations]. In general, C++ name lookup is designed to be independent of type: First we find the name(s), then, we consider its(their) meaning. 3.4 [basic.lookup] states "The name lookup rules apply uniformly to all names ..." That is an important principle.
Thus, I consider text that speaks of "function call" instead of plain "call" or "application of ()" in the context of koenig lookup an accident of history. I find it hard to understand how 5.2.2 [expr.call] doesn't either disallow all occurrences of x(y) where x is a class object (that's clearly not intended) or requires koenig lookup for x independently of its type (by reference from 3.4 [basic.lookup]). I suspect that a clarification of 5.2.2 [expr.call] to mention function objects is in order. If the left-hand operand of () is a name, it should be looked up using koenig lookup.
John Spicer: This approach causes otherwise well-formed programs to be ill-formed, and it does so by making names visible that might be completely unknown to the author of the program. Using-directives already do this, but argument-dependent lookup is different. You only get names from using-directives if you actually use using-directives. You get names from argument-dependent lookup whether you want them or not.
This basically breaks an important reason for having namespaces. You are not supposed to need any knowledge of the names used by a namespace.
But this example breaks if argument-dependent lookup finds non-functions and if the translation unit includes the <list> header somewhere.
namespace my_ns { struct A {}; void list(std::ostream&, A&); void f() { my_ns::A a; list(cout, a); } }
This really makes namespaces of questionable value if you still need to avoid using the same name as an entity in another namespace to avoid problems like this.
Erwin Unruh: Before we really decide on this topic, we should have more analysis on the impact on programs. I would also like to see a paper on the possibility to overload functions with function surrogates (no, I won't write one). Since such an extension is bound to wait until the next official update, we should not preclude any outcome of the discussion.
I would like to have a change right now, which leaves open several outcomes later. I would like to say that:
Koenig lookup will find non-functions as well. If it finds a variable, the program is ill-formed. If the primary lookup finds a variable, Koenig lookup is done. If the result contains both functions and variables, the program is ill-formed. [Note: A future standard will assign semantics to such a program.]
I myself are not comfortable with this as a long-time result, but it prepares the ground for any of the following long term solutions:
The note is there to prevent compiler vendors to put their own extensions in here.
(See also issues 113 and 143.)
Notes from 04/00 meeting:
Although many agreed that there were valid concerns motivating a desire for Koenig lookup to find non-function declarations, there was also concern that supporting this capability would be more dangerous than helpful in the absence of overload resolution for mixed function and non-function declarations.
A straw poll of the group revealed 8 in favor of Koenig lookup finding functions and function templates only, while 3 supported the broader result.
Notes from the 10/01 meeting:
There was unanimous agreement on one less controversial point: if the normal lookup of the identifier finds a non-function, argument-dependent lookup should not be done.
On the larger issue, the primary point of consensus is that making this change is an extension, and therefore it should wait until the point at which we are considering extensions (which could be very soon). There was also consensus on the fact that the standard as it stands is not clear: some introductory text suggests that argument-dependent lookup finds only functions, but the more detailed text that describes the lookup does not have any such restriction.
It was also noted that some existing implementations (e.g., g++) do find some non-functions in some cases.
The issue at this point is whether we should (1) make a small change to make the standard clear (presumably in the direction of not finding the non-functions in the lookup), and revisit the issue later as an extension, or (2) leave the standard alone for now and make any changes only as part of considering the extension. A straw vote favored option (1) by a strong majority.
Additional Notes (September, 2006):
Recent discussion of this issue has emphasized the following points:
The concept of finding function pointers and function objects as part of argument-dependent lookup is not currently under active discussion in the Evolution Working Group.
The major area of concern with argument-dependent lookup is finding functions in unintended namespaces. There are current proposals to deal with this concern either by changing the definition of “associated namespace” so that fewer namespaces are considered or to provide a mechanism for enabling or disabling ADL altogether. Although this concern is conceptually distinct from the question of whether ADL finds function pointers and function objects, it is related in the sense that the current rules are perceived as finding too many functions (because of searching too many namespaces), and allowing function pointers and function objects would also increase the number of entities found by ADL.
Any expansion of ADL to include function pointers and function objects must necessarily update the overloading rules to specify how they interact with functions and function templates in the overload set. Current implementation experience (g++) is not helpful in making this decision because, although it performs a uniform lookup and finds non-function entities, it diagnoses an error in overload resolution if non-function entities are in the overload set.
There is a possible problem if types are found by ADL: it is not clear that overloading between callable entities (functions, function templates, function pointers, and function objects) and types (where the postfix syntax means a cast or construction of a temporary) is reasonable or useful.
James Widman:
There is a larger debate here about whether ADL should find object names; the proposed wording below is only intended to answer the request for wording to clarify the status quo (option 1 above) and not to suggest the outcome of the larger debate.
Proposed Resolution (October, 2006):
Replace the normative text in 3.4.2 [basic.lookup.argdep] paragraph 3 with the following (leaving the text of the note and example unchanged):
Let X be the lookup set produced by unqualified lookup (3.4.1 [basic.lookup.unqual]) and let Y be the lookup set produced by argument dependent lookup (defined as follows). If X contains
- a declaration of a class member, or
- a block-scope function declaration that is not a using-declaration, or
- a declaration that is neither a function nor a function template
then Y is empty. Otherwise Y is the set of declarations found in the namespaces associated with the argument types as described below. The set of declarations found by the lookup of the name is the union of X and Y.
Change 3.4.1 [basic.lookup.unqual] paragraph 4 as indicated:
When considering an associated namespace, the lookup is the same as the lookup performed when the associated namespace is used as a qualifier (3.4.3.2 [namespace.qual]) except that:
- Any using-directives in the associated namespace are ignored.
- Any namespace-scope friend functions or friend function templates declared in associated classes are visible within their respective namespaces even if they are not visible during an ordinary lookup (11.3 [class.friend]).
- All names except those of (possibly overloaded) functions and function templates are ignored.
[Voted into WP at March 2004 meeting.]
Spun off from issue 384.
3.4.2 [basic.lookup.argdep] says:
If T is a template-id, its associated namespaces and classes are the namespace in which the template is defined; for member templates, the member template's class; the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces in which any template template arguments are defined; and the classes in which any member templates used as template template arguments are defined. [Note: non-type template arguments do not contribute to the set of associated namespaces. ]There is a problem with the term "is a template-id". template-id is a syntactic construct and you can't really talk about a type being a template-id. Presumably, this is intended to mean "If T is the type of a class template specialization ...".
Proposed Resolution (October 2003):
In 3.4.2 [basic.lookup.argdep], paragraph 2, bullet 8, replace
If T is a template-id ...with
If T is a class template specialization ...
[Voted into WP at the October, 2006 meeting.]
One might assume from 14.7.1 [temp.inst] paragraph 1 that argument-dependent lookup would require instantiation of any class template specializations used in argument types:
Unless a class template specialization has been explicitly instantiated (14.7.2 [temp.explicit]) or explicitly specialized (14.7.3 [temp.expl.spec]), the class template specialization is implicitly instantiated when the specialization is referenced in a context that requires a completely-defined object type or when the completeness of the class type affects the semantics of the program.
A complete class type is required to determine the associated classes and namespaces for the argument type (to determine the class's bases) and to determine the friend functions declared by the class, so the completeness of the class type certainly “affects the semantics of the program.”
This conclusion is reinforced by the second bullet of 3.4.2 [basic.lookup.argdep] paragraph 2:
If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces in which its associated classes are defined.
A class template specialization is a class type, so the second bullet would appear to apply, requiring the specialization to be instantiated in order to determine its base classes.
However, bullet 8 of that paragraph deals explicitly with class template specializations:
If T is a class template specialization its associated namespaces and classes are the namespace in which the template is defined; for member templates, the member template's class; the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces in which any template template arguments are defined; and the classes in which any member templates used as template template arguments are defined.
Note that the class template specialization itself is not listed as an associated class, unlike other class types, and there is no mention of base classes. If bullet 8 were intended as a supplement to the treatment of class types in bullet 2, one would expect phrasing along the lines of, “In addition to the associated namespaces and classes for all class types...” or some such; instead, bullet 8 reads like a self-contained and complete specification.
If argument-dependent lookup does not cause implicit instantiation, however, examples like the following fail:
template <typename T> class C { friend void f(C<T>*) { } }; void g(C<int>* p) { f(p); // found by ADL?? }
Implementations differ in whether this example works or not.
Proposed resolution (April, 2006):
Change bullet 2 of 3.4.2 [basic.lookup.argdep] paragraph 2 as indicated:
If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces in of which its associated classes are defined members. Furthermore, if T is a class template specialization, its associated namespaces and classes also include: the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces of which any template template arguments are members; and the classes of which any member templates used as template template arguments are members. [Note: Non-type template arguments do not contribute to the set of associated namespaces. —end note]
Delete bullet 8 of 3.4.2 [basic.lookup.argdep] paragraph 2:
If T is a class template specialization its associated namespaces and classes are the namespace in which the template is defined; for member templates, the member template's class; the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces in which any template template arguments are defined; and the classes in which any member templates used as template template arguments are defined. [Note: non-type template arguments do not contribute to the set of associated namespaces. —end note]
[Voted into WP at April 2003 meeting.]
Can a typedef T to a cv-qualified class type be used in a qualified name T::x?
struct A { static int i; }; typedef const A CA; int main () { CA::i = 0; // Okay? }
Suggested answer: Yes. All the compilers I tried accept the test case.
Proposed resolution (10/01):
In 3.4.3.1 [class.qual] paragraph 1 add the indicated text:
If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-specifier is looked up in the scope of the class (10.2 [class.member.lookup]), except for the cases listed below. The name shall represent one or more members of that class or of one of its base classes (clause 10 [class.derived]). If the class-or-namespace-name of the nested-name-specifier names a cv-qualified class type, it nominates the underlying class (the cv-qualifiers are ignored).
Notes from 4/02 meeting:
There is a problem in that class-or-namespace-name does not include typedef names for cv-qualified class types. See 7.1.3 [dcl.typedef] paragraph 4:
Argument and text removed from proposed resolution (October 2002):
7.1.3 [dcl.typedef] paragraph 5:
Here's a good question: in this example, should X be used as a name-for-linkage-purposes (FLP name)?
typedef class { } const X;
Because a type-qualifier is parsed as a decl-specifier, it isn't possible to declare cv-qualified and cv-unqualified typedefs for a type in a single declaration. Also, of course, there's no way to declare a typedef for the cv-unqualified version of a type for which only a cv-qualified version has a name. So, in the above example, if X isn't used as the FLP name, then there can be no FLP name. Also note that a FLP name usually represents a parameter type, where top-level cv-qualifiers are usually irrelevant anyway.
Data points: for the above example, Microsoft uses X as the FLP name; GNU and EDG do not.
My recommendation: for consistency with the direction we're going on this issue, for simplicity of description (e.g., "the first class-name declared by the declaration"), and for (very slightly) increased utility, I think Microsoft has this right.
If the typedef declaration defines an unnamed class type (or enum type), the first typedef-name declared by the declaration to be have that class type (or enum type) or a cv-qualified version thereof is used to denote the class type (or enum type) for linkage purposes only (3.5 [basic.link]). [Example: ...
Proposed resolution (October 2002):
3.4.4 [basic.lookup.elab] paragraphs 2 and 3:
This sentence is deleted twice:
... If this name lookup finds a typedef-name, the elaborated-type-specifier is ill-formed. ...
Note that the above changes are included in N1376 as part of the resolution of issue 245.
5.1.1 [expr.prim.general] paragraph 7:
This is only a note, and it is at least incomplete (and quite possibly inaccurate), despite (or because of) its complexity. I propose to delete it.
... [Note: a typedef-name that names a class is a class-name (9.1 [class.name]). Except as the identifier in the declarator for a constructor or destructor definition outside of a class member-specification (12.1 [class.ctor], 12.4 [class.dtor]), a typedef-name that names a class may be used in a qualified-id to refer to a constructor or destructor. ]
7.1.3 [dcl.typedef] paragraph 4:
My first choice would have been to make this the primary statement about the equivalence of typedef-name and class-name, since the equivalence comes about as a result of a typedef declaration. Unfortunately, references to class-name point to 9.1 [class.name], so it would seem that the primary statement should be there instead. To avoid the possiblity of conflicts in the future, I propose to make this a note.
[Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1 [class.name]). If a typedef-name is used following the class-key in an elaborated-type-specifier (7.1.6.3 [dcl.type.elab]), or in the class-head of a class declaration (9 [class]), or is used as the identifier in the declarator for a constructor or destructor declaration (12.1 [class.ctor], 12.4 [class.dtor]), to identify the subject of an elaborated-type-specifier (7.1.6.3 [dcl.type.elab]), class declaration (clause 9 [class]), constructor declaration (12.1 [class.ctor]), or destructor declaration (12.4 [class.dtor]), the program is ill-formed. ] [Example: ...
7.1.6.3 [dcl.type.elab] paragraph 2:
This is the only remaining (normative) statement that a typedef-name can't be used in an elaborated-type-specifier. The reference to template type-parameter is deleted by the resolution of issue 283.
... If the identifier resolves to a typedef-name or a template type-parameter, the elaborated-type-specifier is ill-formed. [Note: ...
8 [dcl.decl] grammar rule declarator-id:
When I looked carefully into the statement of the rule prohibiting a typedef-name in a constructor declaration, it appeared to me that this grammar rule (inadvertently?) allows something that's always forbidden semantically.
declarator-id:
id-expression
::opt nested-name-specifieropt type-name class-name
9.1 [class.name] paragraph 5:
Unlike the prohibitions against appearing in an elaborated-type-specifier or constructor or destructor declarator, each of which was expressed more than once, the prohibition against a typedef-name appearing in a class-head was previously stated only in 7.1.3 [dcl.typedef]. It seems to me that that prohibition belongs here instead. Also, it seems to me important to clarify that a typedef-name that is a class-name is still a typedef-name. Otherwise, the various prohibitions can be argued around easily, if perversely ("But that isn't a typedef-name, it's a class-name; it says so right there in 9.1 [class.name].")
A typedef-name (7.1.3 [dcl.typedef]) that names a class type or a cv-qualified version thereof is also a class-name, but shall not be used in an elaborated-type-specifier; see also 7.1.3 [dcl.typedef]. as the identifier in a class-head.
12.1 [class.ctor] paragraph 3:
The new nonterminal references are needed to really nail down what we're talking about here. Otherwise, I'm just eliminating redundancy. (A typedef-name that doesn't name a class type is no more valid here than one that does.)
A typedef-name that names a class is a class-name (7.1.3 [dcl.typedef]); however, a A typedef-name that names a class shall not be used as the identifier class-name in the declarator declarator-id for a constructor declaration.
12.4 [class.dtor] paragraph 1:
The same comments apply here as to 12.1 [class.ctor].
... A typedef-name that names a class is a class-name (7.1.3); however, a A typedef-name that names a class shall not be used as the identifier class-name following the ~ in the declarator for a destructor declaration.
[Voted into WP at April 2003 meeting.]
A use of an injected-class-name in an elaborated-type-specifier should not name the constructor of the class, but rather the class itself, because in that context we know that we're looking for a type. See issue 147.
Proposed Resolution (revised October 2002):
This clarifies the changes made in the TC for issue 147.
In 3.4.3.1 [class.qual] paragraph 1a replace:
If the nested-name-specifier nominates a class C, and the name specified after the nested-name-specifier, when looked up in C, is the injected class name of C (clause 9 [class]), the name is instead considered to name the constructor of class C.
with
In a lookup in which the constructor is an acceptable lookup result, if the nested-name-specifier nominates a class C and the name specified after the nested-name-specifier, when looked up in C, is the injected class name of C (clause 9 [class]), the name is instead considered to name the constructor of class C. [Note: For example, the constructor is not an acceptable lookup result in an elaborated type specifier so the constructor would not be used in place of the injected class name.]
Note that issue 263 updates a part of the same paragraph.
Append to the example:
struct A::A a2; // object of type A
[Voted into WP at March 2004 meeting.]
Consider this code:
struct A { int i; struct i {}; }; struct B { int i; struct i {}; }; struct D : public A, public B { using A::i; void f (); }; void D::f () { struct i x; }
I can't find anything in the standard that says definitively what this means. 7.3.3 [namespace.udecl] says that a using-declaration shall name "a member of a base class" -- but here we have two members, the data member A::i and the class A::i.
Personally, I'd find it more attractive if this code did not work. I'd like "using A::i" to mean "lookup A::i in the usual way and bind B::i to that", which would mean that while "i = 3" would be valid in D::f, "struct i x" would not be. However, if there were no A::i data member, then "A::i" would find the struct and the code in D::f would be valid.
John Spicer: I agree with you, but unfortunately the standard committee did not.
I remembered that this was discussed by the committee and that a resolution was adopted that was different than what I hoped for, but I had a hard time finding definitive wording in the standard.
I went back though my records and found the paper that proposed a resolution and the associated committee motion that adopted the proposed resolution The paper is N0905, and "option 1" from that paper was adopted at the Stockholm meeting in July of 1996. The resolution is that "using A::i" brings in everything named i from A.
3.4.3.2 [namespace.qual] paragraph 2 was modified to implement this resolution, but interestingly that only covers the namespace case and not the class case. I think the class case was overlooked when the wording was drafted. A core issue should be opened to make sure the class case is handled properly.
Notes from April 2003 meeting:
This is related to issue 11. 7.3.3 [namespace.udecl] paragraph 10 has an example for namespaces.
Proposed resolution (October 2003):
Add a bullet to the end of 3.4.3.1 [class.qual] paragraph 1:
Change the beginning of 7.3.3 [namespace.udecl] paragraph 4 from
A using-declaration used as a member-declaration shall refer to a member of a base class of the class being defined, shall refer to a member of an anonymous union that is a member of a base class of the class being defined, or shall refer to an enumerator for an enumeration type that is a member of a base class of the class being defined.
to
In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the class being defined. Such a using-declaration introduces the set of declarations found by member name lookup (10.2 [class.member.lookup], 3.4.3.1 [class.qual]).
[Voted into WP at April 2003 meeting.]
I have some concerns with the description of name lookup for elaborated type specifiers in 3.4.4 [basic.lookup.elab]:
Paragraph 2 has some parodoxical statements concerning looking up names that are simple identifers:
If the elaborated-type-specifier refers to an enum-name and this lookup does not find a previously declared enum-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier refers to an [sic] class-name and this lookup does not find a previously declared class-name... the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.2 [basic.scope.pdecl]."
It is not clear how an elaborated-type-specifier can refer to an enum-name or class-name given that the lookup does not find such a name and that class-name and enum-name are not part of the syntax of an elaborated-type-specifier.
The second sentence quoted above seems to suggest that the name found will not be used if it is not a class name. typedef-name names are ill-formed due to the sentence preceding the quote. If lookup finds, for instance, an enum-name then a new declaration will be created. This differs from C, and from the enum case, and can have surprising effects:
struct S { enum E { one = 1 }; class E* p; // declares a global class E? };
Was this really the intent? If this is the case then some more work is needed on 3.4.4 [basic.lookup.elab]. Note that the section does not make finding a type template formal ill-formed, as is done in 7.1.6.3 [dcl.type.elab]. I don't see anything that makes a type template formal name a class-name. So the example in 7.1.6.3 [dcl.type.elab] of friend class T; where T is a template type formal would no longer be ill-formed with this interpretation because it would declare a new class T.
(See also issue 254.)
Notes from the 4/02 meeting:
This will be consolidated with the changes for issue 254. See also issue 298.
Proposed resolution (October 2002):
As given in N1376=02-0034. Note that the inserts and strikeouts in that document do not display correctly in all browsers; <del> --> <strike> and <ins> --> <b>, and the similar changes for the closing delimiters, seem to do the trick.
[Voted into WP at April 2003 meeting.]
The text in 3.4.4 [basic.lookup.elab] paragraph 2 twice refers to the possibility that an elaborated-type-specifier might have the form
class-key identifier ;
However, the grammar for elaborated-type-specifier does not include a semicolon.
In both 3.4.4 [basic.lookup.elab] and 7.1.6.3 [dcl.type.elab], the text asserts that an elaborated-type-specifier that refers to a typedef-name is ill-formed. However, it is permissible for the form of elaborated-type-specifier that begins with typename to refer to a typedef-name.
This problem is the result of adding the typename form to the elaborated-type-name grammar without changing the verbiage correspondingly. It could be fixed either by updating the verbiage or by moving the typename syntax into its own production and referring to both nonterminals when needed.
(See also issue 180. If this issue is resolved in favor of a separate nonterminal in the grammar for the typename forms, the wording in that issue's resolution must be changed accordingly.)
Notes from 04/01 meeting:
The consensus was in favor of moving the typename forms out of the elaborated-type-specifier grammar.
Notes from the 4/02 meeting:
This will be consolidated with the changes for issue 245.
Proposed resolution (October 2002):
As given in N1376=02-0034.
[Voted into the WP at the June, 2008 meeting.]
3.4.5 [basic.lookup.classref] paragraph 1 says,
In a class member access expression (5.2.5 [expr.ref] ), if the . or -> token is immediately followed by an identifier followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template argument list (14.2 [temp.names] ) or a less-than operator. The identifier is first looked up in the class of the object expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression and shall name a class or function template.
There do not seem to be any circumstances in which use of a non-member template function would be well-formed as the id-expression of a class member access expression.
Proposed Resolution (November, 2006):
Change 3.4.5 [basic.lookup.classref] paragraph 1 as follows:
In a class member access expression (5.2.5 [expr.ref]), if the . or -> token is immediately followed by an identifier followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template argument list (14.2 [temp.names]) or a less-than operator. The identifier is first looked up in the class of the object expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression and shall name a class or function template...
[Voted into WP at the October, 2006 meeting.]
I believe this program is invalid:
struct A { }; struct C { struct A {}; void f (); }; void C::f () { ::A *a; a->~A (); }The problem is that 3.4.5 [basic.lookup.classref] says that you have to look up A in both the context of the pointed-to-type (i.e., ::A), and in the context of the postfix-expression (i.e., the body of C::f), and that if the name is found in both places it must name the same type in both places.
The EDG front end does not issue an error about this program, though.
Am I reading the standardese incorrectly?
John Spicer: I think you are reading it correctly. I think I've been hoping that this would get changed. Unlike other dual lookup contexts, this is one in which the compiler already knows the right answer (the type must match that of the left hand of the -> operator). So I think that if either of the types found matches the one required, it should be sufficient. You can't say a->~::A(), which means you are forced to say a->::A::~A(), which disables the virtual mechanism. So you would have to do something like create a local typedef for the desired type.
See also issues 244, 399, and 466.
Proposed resolution (April, 2006):
Remove the indicated text from 3.4.5 [basic.lookup.classref] paragraph 2:
If the id-expression in a class member access (5.2.5 [expr.ref]) is an unqualified-id, and the type of the object expression is of a class type C (or of pointer to a class type C), the unqualified-id is looked up in the scope of class C...
Change 3.4.5 [basic.lookup.classref] paragraph 3 as indicated:
If the unqualified-id is ~type-name,
the type-name is looked up in the context of the entire
postfix-expression. and If the
type T of the object expression is of a class
type C (or of pointer to a class type C),
the type-name is also looked up in the context of the
entire postfix-expression and in the scope of
class C. The type-name shall refer to
a class-name. If type-name is found in both contexts,
the name shall refer to the same class type. If the type of the object
expression is of scalar type, the type-name is looked up in the
scope of the complete postfix-expression. At least one
of the lookups shall find a name that refers to (possibly
cv-qualified)
T. [Example:
struct A { };
struct B {
struct A { };
void f(::A* a);
};
void B::f(::A* a) {
a->~A(); // OK, lookup in *a finds the injected-class-name
}
—end example]
[Note: this change also resolves issue 414.]
[Voted into WP at October 2004 meeting.]
The example in 3.4.5 [basic.lookup.classref] paragraph 4 is wrong (see 11.2 [class.access.base] paragraph 5; the cast to the naming class can't be done) and needs to be corrected. This was noted when the final version of the algorithm for issue 39 was checked against it.
Proposed Resolution (October 2003):
Remove the entire note at the end of 3.4.5 [basic.lookup.classref] paragraph 4, including the entire example.
[Voted into WP at the October, 2006 meeting.]
By 3.4.5 [basic.lookup.classref] paragraph 3, the following is ill-formed because the two lookups of the destructor name (in the scope of the class of the object and in the surrounding context) find different Xs:
struct X {}; int main() { X x; struct X {}; x.~X(); // Error? }
This is silly, because the compiler knows what the type has to be, and one of the things found matches that. The lookup should require only that one of the lookups finds the required class type.
Proposed resolution (April, 2005):
This issue is resolved by the resolution of issue 305.
[Moved to DR at 10/01 meeting.]
3.5 [basic.link] paragraph 4 says (among other things):A name having namespace scope has external linkage if it is the name ofThat prohibits for example:
- [...]
- a named enumeration (7.2 [dcl.enum]), or an unnamed enumeration defined in a typedef declaration in which the enumeration has the typedef name for linkage purposes (7.1.3 [dcl.typedef])
typedef enum { e1 } *PE; void f(PE) {} // Cannot declare a function (with linkage) using a // type with no linkage.
However, the same prohibition was not made for class scope types. Indeed, 3.5 [basic.link] paragraph 5 says:
In addition, a member function, static data member, class or enumeration of class scope has external linkage if the name of the class has external linkage.
That allows for:
struct S { typedef enum { e1 } *MPE; void mf(MPE) {} };
My guess is that this is an unintentional consequence of 3.5 [basic.link] paragraph 5, but I would like confirmation on that.
Proposed resolution:
Change text in 3.5 [basic.link] paragraph 5 from:
In addition, a member function, static data member, class or enumeration of class scope has external linkage if the name of the class has external linkage.to:
In addition, a member function, a static data member, a named class or enumeration of class scope, or an unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for linkage purposes (7.1.3 [dcl.typedef]), has external linkage if the name of the class has external linkage.
[Voted into WP at October 2004 meeting.]
According to 3.5 [basic.link] paragraph 8, "A name with no linkage ... shall not be used to declare an entity with linkage." This would appear to rule out code such as:
typedef struct { int i; } *PT; extern "C" void f(PT);[likewise]
static enum { a } e;which seems rather harmless to me.
See issue 132, which dealt with a closely related issue.
Andrei Iltchenko submitted the same issue via comp.std.c++ on 17 Dec 2001:
Paragraph 8 of Section 3.5 [basic.link] contains the following sentences: "A name with no linkage shall not be used to declare an entity with linkage. If a declaration uses a typedef name, it is the linkage of the type name to which the typedef refers that is considered."
The problem with this wording is that it doesn't cover cases where the type to which a typedef-name refers has no name. As a result it's not clear whether, for example, the following program is well-formed:
#include <vector> int main() { enum { sz = 6u }; typedef int (* aptr_type)[sz]; typedef struct data { int i, j; } * elem_type; std::vector<aptr_type> vec1; std::vector<elem_type> vec2; }
Suggested resolution:
My feeling is that the rules for whether or not a typedef-name used in a declaration shall be treated as having or not having linkage ought to be modelled after those for dependent types, which are explained in 14.6.2.1 [temp.dep.type].
Add the following text at the end of Paragraph 8 of Section 3.5 [basic.link] and replace the following example:
In case of the type referred to by a typedef declaration not having a name, the newly declared typedef-name has linkage if and only if its referred type comprises no names of no linkage excluding local names that are eligible for appearance in an integral constant-expression (5.20 [expr.const]). [Note: if the referred type contains a typedef-name that does not denote an unnamed class, the linkage of that name is established by the recursive application of this rule for the purposes of using typedef names in declarations.] [Example:void f() { struct A { int x; }; // no linkage extern A a; // ill-formed typedef A Bl extern B b; // ill-formed enum { sz = 6u }; typedef int (* C)[sz]; // C has linkage because sz can // appear in a constant expression }--end example.]
Additional issue (13 Jan 2002, from Andrei Iltchenko):
Paragraph 2 of Section 14.3.1 [temp.arg.type] is inaccurate and unnecessarily prohibits a few important cases; it says "A local type, a type with no linkage, an unnamed type or a type compounded from any of these types shall not be used as a template-argument for a template-parameter." The inaccuracy stems from the fact that it is not a type but its name that can have a linkage.
For example based on the current wording of 14.3.1 [temp.arg.type], the following example is ill-formed.
#include <vector> struct data { int i, j; }; int main() { enum { sz = 6u }; std::vector<int(*)[sz]> vec1; // The types 'int(*)[sz]' and 'data*' std::vector<data*> vec2; // have no names and are thus illegal // as template type arguments. }
Suggested resolution:
Replace the whole second paragraph of Section 14.3.1 [temp.arg.type] with the following wording:
A type whose name does not have a linkage or a type compounded from any such type shall not be used as a template-argument for a template-parameter. In case of a type T used as a template type argument not having a name, T constitutes a valid template type argument if and only if the name of an invented typedef declaration referring to T would have linkage; see 3.5. [Example:template <class T> class X { /* ... */ }; void f() { struct S { /* ... */ }; enum { sz = 6u }; X<S> x3; // error: a type name with no linkage // used as template-argument X<S*> x4; // error: pointer to a type name with // no linkage used as template-argument X<int(*)[sz]> x5; // OK: since the name of typedef int // (*pname)[sz] would have linkage }--end example] [Note: a template type argument may be an incomplete type (3.9 [basic.types]).]
Proposed resolution:
This is resolved by the changes for issue 389. The present issue was moved back to Review status in February 2004 because 389 was moved back to Review.
[Voted into WP at October 2004 meeting.]
3.5 [basic.link] paragraph 8 says (among other things):
A name with no linkage (notably, the name of a class or enumeration declared in a local scope (3.3.3 [basic.scope.block])) shall not be used to declare an entity with linkage. If a declaration uses a typedef name, it is the linkage of the type name to which the typedef refers that is considered.
I would expect this to catch situations such as the following:
// File 1: typedef struct {} *UP; void f(UP) {} // File 2: typedef struct {} *UP; // Or: typedef struct {} U, *UP; void f(UP);
The problem here is that most implementations must generate the same mangled name for "f" in two translation units. The quote from the standard above isn't quite clear, unfortunately: There is no type name to which the typedef refers.
A related situation is the following:
enum { no, yes } answer;The variable "answer" is declared as having external linkage, but it is declared with an unnamed type. Section 3.5 [basic.link] talks about the linkage of names, however, and does therefore not prohibit this. There is no implementation issue for most compilers because they do not ordinarily mangle variable names, but I believe the intent was to allow that implementation technique.
Finally, these problems are much less relevant when declaring names with internal linkage. For example, I would expect there to be few problems with:
typedef struct {} *UP; static void g(UP);
I recently tried to interpret 3.5 [basic.link] paragraph 8 with the assumption that types with no names have no linkage. Surprisingly, this resulted in many diagnostics on variable declarations (mostly like "answer" above).
I'm pretty sure the standard needs clarifying words in this matter, but which way should it go?
See also issue 319.
Notes from April 2003 meeting:
There was agreement that this check is not needed for variables and functions with extern "C" linkage, and a change there is desirable to allow use of legacy C headers. The check is also not needed for entities with internal linkage, but there was no strong sentiment for changing that case.
We also considered relaxing this requirement for extern "C++" variables but decided that we did not want to change that case.
We noted that if extern "C" functions are allowed an additional check is needed when such functions are used as arguments in calls of function templates. Deduction will put the type of the extern "C" function into the type of the template instance, i.e., there would be a need to mangle the name of an unnamed type. To plug that hole we need an additional requirement on the template created in such a case.
Proposed resolution (April 2003, revised slightly October 2003 and March 2004):
In 3.5 [basic.link] paragraph 8, change
A name with no linkage (notably, the name of a class or enumeration declared in a local scope (3.3.3 [basic.scope.block])) shall not be used to declare an entity with linkage. If a declaration uses a typedef name, it is the linkage of the type name to which the typedef refers that is considered.
to
A type is said to have linkage if and only ifA type without linkage shall not be used as the type of a variable or function with linkage, unless the variable or function has extern "C" linkage (7.5 [dcl.link]). [Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside of its translation unit. An entity with external linkage declared using such a type could not correspond to any other entity in another translation unit of the program and is thus not permitted. Also note that classes with linkage may contain members whose types do not have linkage, and that typedef names are ignored in the determination of whether a type has linkage.]
- it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3 [dcl.typedef])) and the name has linkage; or
- it is a specialization of a class template (14 [temp]) [Footnote: a class template always has external linkage, and the requirements of 14.3.1 [temp.arg.type] and 14.3.2 [temp.arg.nontype] ensure that the template arguments will also have appropriate linkage]; or
- it is a fundamental type (3.9.1 [basic.fundamental]); or
- it is a compound type (3.9.2 [basic.compound]) other than a class or enumeration, compounded exclusively from types that have linkage; or
- it is a cv-qualified (3.9.3 [basic.type.qualifier]) version of a type that has linkage.
Change 14.3.1 [temp.arg.type] paragraph 2 from (note: this is the wording as updated by issue 62)
The following types shall not be used as a template-argument for a template type-parameter:
- a type whose name has no linkage
- an unnamed class or enumeration type that has no name for linkage purposes (7.1.3 [dcl.typedef])
- a cv-qualified version of one of the types in this list
- a type created by application of declarator operators to one of the types in this list
- a function type that uses one of the types in this list
to
A type without linkage (3.5 [basic.link]) shall not be used as a template-argument for a template type-parameter.
Once this issue is ready, issue 319 should be moved back to ready as well.
[Voted into WP at October 2005 meeting.]
Consider the following bit of code:
namespace N { struct S { void f(); }; } using namespace N; void S::f() { extern void g(); // ::g or N::g? }
In 3.5 [basic.link] paragraph 7 the Standard says (among other things),
When a block scope declaration of an entity with linkage is not found to refer to some other declaration, then that entity is a member of the innermost enclosing namespace.
The question then is whether N is an “enclosing namespace” for the local declaration of g()?
Proposed resolution (October 2004):
Add the following text as a new paragraph at the end of 7.3.1 [namespace.def]:
The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears, except for a redeclaration of a namespace member outside its original namespace (e.g., a definition as specified in 7.3.1.2 [namespace.memdef]). Such a redeclaration has the same enclosing namespaces as the original declaration. [Example:namespace Q { namespace V { void f(); // enclosing namespaces are the global namespace, Q, and Q::V class C { void m(); }; } void V::f() { // enclosing namespaces are the global namespace, Q, and Q::V extern void h(); // ... so this declares Q::V::h } void V::C::m() { // enclosing namespaces are the global namespace, Q, and Q::V } }—end example]
[Moved to DR at 4/02 meeting.]
The Standard does not appear to address how the rules for order of initialization apply to static data members of class templates.
Suggested resolution: Add the following verbiage to either 3.6.2 [basic.start.init] or 9.4.2 [class.static.data]:
Initialization of static data members of class templates shall be performed during the initialization of static data members for the first translation unit to have static initialization performed for which the template member has been instantiated. This requirement shall apply to both the static and dynamic phases of initialization.
Notes from 04/01 meeting:
Enforcing an order of initialization on static data members of class templates will result in substantial overhead on access to such variables. The problem is that the initialization be required as the result of instantiation in a function used in the initialization of a variable in another translation unit. In current systems, the order of initialization of static data data members of class templates is not predictable. The proposed resolution is to state that the order of initialization is undefined.
Proposed resolution (04/01, updated slightly 10/01):
Replace the following sentence in 3.6.2 [basic.start.init] paragraph 1:
Objects with static storage duration defined in namespace scope in the same translation unit and dynamically initialized shall be initialized in the order in which their definition appears in the translation unit.
with
Dynamic initialization of an object is either ordered or unordered. Explicit specializations and definitions of class template static data members have ordered initialization. Other class template static data member instances have unordered initialization. Other objects defined in namespace scope have ordered initialization. Objects defined within a single translation unit and with ordered initialization shall be initialized in the order of their definitions in the translation unit. The order of initialization is unspecified for objects with unordered initialization and for objects defined in different translation units.
Note that this wording is further updated by issue 362.
Note (07/01):
Brian McNamara argues against the proposed resolution. The following excerpt captures the central point of a long message on comp.std.c++:
I have a class for representing linked lists which looks something liketemplate <class T> class List { ... static List<T>* sentinel; ... }; template <class T> List<T>* List<T>::sentinel( new List<T> ); // static member definitionThe sentinel list node is used to represent "nil" (the null pointer cannot be used with my implementation, for reasons which are immaterial to this discussion). All of the List's non-static member functions and constructors depend upon the value of the sentinel. Under the proposed resolution for issue #270, Lists cannot be safely instantiated before main() begins, as the sentinel's initialization is "unordered".
(Some readers may propose that I should use the "singleton pattern" in the List class. This is undesirable, for reasons I shall describe at the end of this post at the location marked "[*]". For the moment, indulge me by assuming that "singleton" is not an adequate solution.)
Though this is a particular example from my own experience, I believe it is representative of a general class of examples. It is common to use static data members of a class to represent the "distinguished values" which are important to instances of that class. It is imperative that these values be initialized before any instances of the class are created, as the instances depend on the values.
In a comp.std.c++ posting on 28 Jul 2001, Brian McNamara proposes the following alternative resolution:
Replace the following sentence in 3.6.2 [basic.start.init] paragraph 1:
Objects with static storage duration defined in namespace scope in the same translation unit and dynamically initialized shall be initialized in the order in which their definition appears in the translation unit.with
Objects with static storage duration defined in namespace scope shall be initialized in the order described below.and then after paragraph 1, add this text:
Dynamic initialization is either ordered or quasi-ordered. Explicit specializations of class template static data members have ordered initialization. Other class template static data member instances have quasi-ordered initialization. All other objects defined in namespace scope have ordered initialization. The order of initialization is specified as follows:along with a non-normative note along the lines of
- Objects that are defined within a single translation unit and that have ordered initialization shall be initialized in the order of their definitions in the translation unit.
- Objects that are defined only within a single translation unit and that have quasi-ordered initialization shall also be initialized in the order of their definitions in the translation unit -- that is, as though these objects had ordered initialization.
- Objects that are defined within multiple translation units (which, therefore, must have quasi-ordered initialization) shall be initialized as follows: in exactly one translation unit (which one is unspecified), the object shall be treated as though it has ordered initialization; in the other translation units which define the object, the object will be initialized before all other objects that have ordered initialization in those translation units.
- For any two objects, "X" and "Y", with static storage duration and defined in namespace scope, if the previous bullets do not imply a relationship for the initialization ordering between "X" and "Y", then the relative initialization order of these objects is unspecified.
[ Note: The intention is that translation units can each be compiled separately with no knowledge of what objects may be re-defined in other translation units. Each translation unit can contain a method which initializes all objects (both quasi-ordered and ordered) as though they were ordered. When these translation units are linked together to create an executable program, all of these objects can be initialized by simply calling the initialization methods (one from each translation unit) in any order. Quasi-ordered objects require some kind of guard to ensure that they are not initialized more than once (the first attempt to initialize such an object should succeed; any subsequent attempts should simply be ignored). ]
Erwin Unruh replies: There is a point which is not mentioned with this posting. It is the cost for implementing the scheme. It requires that each static template variable is instantiated in ALL translation units where it is used. There has to be a flag for each of these variables and this flag has to be checked in each TU where the instantiation took place.
I would reject this idea and stand with the proposed resolution of issue 270.
There just is no portable way to ensure the "right" ordering of construction.
Notes from 10/01 meeting:
The Core Working Group reaffirmed its previous decision.
[Voted into WP at April 2005 meeting.]
I have a couple of questions about 3.6.2 [basic.start.init], "Initialization of non-local objects." I believe I recall some discussion of related topics, but I can't find anything relevant in the issues list.
The first question arose when I discovered that different implementations treat reference initialization differently. Consider, for example, the following (namespace-scope) code:
int i; int& ir = i; int* ip = &i;Both initializers, "i" and "&i", are constant expressions, per 5.20 [expr.const] paragraph 4-5 (a reference constant expression and an address constant expression, respectively). Thus, both initializations are categorized as static initialization, according to 3.6.2 [basic.start.init] paragraph 1:
Zero-initialization and initialization with a constant expression are collectively called static initialization; all other initialization is dynamic initialization.
However, that does not mean that both ir and ip must be initialized at the same time:
Objects of POD types (3.9) with static storage duration initialized with constant expressions (5.19) shall be initialized before any dynamic initialization takes place.
Because "int&" is not a POD type, there is no requirement that it be initialized before dynamic initialization is performed, and implementations differ in this regard. Using a function called during dynamic initialization to print the values of "ip" and "&ir", I found that g++, Sun, HP, and Intel compilers initialize ir before dynamic initialization and the Microsoft compiler does not. All initialize ip before dynamic initialization. I believe this is conforming (albeit inconvenient :-) behavior.
So, my first question is whether it is intentional that a reference of static duration, initialized with a reference constant expression, need not be initialized before dynamic initialization takes place, and if so, why?
The second question is somewhat broader. As 3.6.2 [basic.start.init] is currently worded, it appears that there are no requirements on when ir is initialized. In fact, there is a whole category of objects -- non-POD objects initialized with a constant expression -- for which no ordering is specified. Because they are categorized as part of "static initialization," they are not subject to the requirement that they "shall be initialized in the order in which their definition appears in the translation unit." Because they are not POD types, they are not required to be initialized before dynamic initialization occurs. Am I reading this right?
My preference would be to change 3.6.2 [basic.start.init] paragraph 1 so that 1) references are treated like POD objects with respect to initialization, and 2) "static initialization" applies only to POD objects and references. Here's some sample wording to illustrate:
Suggested resolution:
Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization takes place. Initializing a reference, or an object of POD type, of static storage duration with a constant expression (5.19) is called constant initialization. Together, zero-initialization and constant initialization are called static initialization; all other initialization is dynamic initialization. Static initialization shall be performed before any dynamic initialization takes place. [Remainder unchanged.]
Proposed Resolution:
Change 3.6.2 [basic.start.init] paragraph 1 as follows:
Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization takes place. Initializing a reference, or an object of POD type, of static storage duration with a constant expression (5.19) is called constant initialization. Together, zero-initialization and constant initialization are Zero-initialization and initialization with a constant expression are collectively called static initialization; all other initialization is dynamic initialization. Static initialization shall be performed Objects of POD types (3.9) with static storage duration initialized with constant expressions (5.19) shall be initialized before any dynamic initialization takes place.
[Voted into the WP at the September, 2008 meeting (resolution in paper N2757).]
Given this literal type,
struct X { constexpr X() { } };
and this definition,
static X x;
the current specification does not require that x be statically initialized because it is not “initialized with a constant expression” (3.6.1 [basic.start.main] paragraph 1).
Lawrence Crowl:
This guarantee is essential for atomics.
Jens Maurer:
Suggestion:
A reference with static storage duration or an object of literal type with static storage duration can be initialized with a constant expression (5.20 [expr.const]) or with a constexpr constructor; this is called constant initialization.
(Not spelling out “default constructor” makes it easier to handle multiple-parameter constexpr constructors, where there isn't “a” constant expression but several.)
Peter Dimov:
In addition, there is a need to enforce static initialization for non-literal types: std::shared_ptr, std::once_flag, and std::atomic_* all have nontrivial copy constructors, making them non-literal types. However, we need a way to ensure that a constexpr constructor called with constant expressions will guarantee static initialization, regardless of the nontriviality of the copy constructor.
Proposed resolution (April, 2008):
Change 3.6.2 [basic.start.init] paragraph 1 as follows:
...A reference with static storage duration and an object of trivial or literal type with static storage duration can be initialized with a constant expression (5.20 [expr.const]); this If a reference with static storage duration is initialized with a constant expression (5.20 [expr.const]) or if the initialization of an object with static storage duration satisfies the requirements for the object being declared with constexpr (7.1.5 [dcl.constexpr]), that initialization is called constant initialization...
Change 6.7 [stmt.dcl] paragraph 4 as follows:
...A local object of trivial or literal type (3.9 [basic.types]) with static storage duration initialized with constant-expressions is initialized Constant initialization (3.6.2 [basic.start.init]) of a local entity with static storage duration is performed before its block is first entered...
Change 7.1.5 [dcl.constexpr] paragraph 7 as follows:
A constexpr specifier used in an object declaration declares the object as const. Such an object shall be initialized, and every expression that appears in its initializer (8.5 [dcl.init]) shall be a constant expression. Every implicit conversion used in converting the initializer expressions and every constructor call used for the initialization shall be one of those allowed in a constant expression (5.20 [expr.const])...
Replace 8.5.1 [dcl.init.aggr] paragraph 14 as follows:
When an aggregate with static storage duration is initialized with a brace-enclosed initializer-list, if all the member initializer expressions are constant expressions, and the aggregate is a trivial type, the initialization shall be done during the static phase of initialization (3.6.2 [basic.start.init]); otherwise, it is unspecified whether the initialization of members with constant expressions takes place during the static phase or during the dynamic phase of initialization. [Note: The order of initialization for aggregates with static storage duration is specified in 3.6.2 [basic.start.init] and 6.7 [stmt.dcl]. —end note]
(Note: the change to 3.6.2 [basic.start.init] paragraph 1 needs to be reconciled with the conflicting change in issue 684.)
[Voted into the WP at the June, 2008 meeting.]
The C++ standard has inherited the definition of the 'exit' function more or less unchanged from ISO C.
However, when the 'exit' function is called, objects of static extent which have been initialised, will be destructed if their types posses a destructor.
In addition, the C++ standard has inherited the definition of the 'signal' function and its handlers from ISO C, also pretty much unchanged.
The C standard says that the only standard library functions that may be called while a signal handler is executing, are the functions 'abort', 'signal' and 'exit'.
This introduces a bit of a nasty turn, as it is not at all unusual for the destruction of static objects to have fairly complex destruction semantics, often associated with resource release. These quite commonly involve apparently simple actions such as calling 'fclose' for a FILE handle.
Having observed some very strange behaviour in a program recently which in handling a SIGTERM signal, called the 'exit' function as indicated by the C standard.
But unknown to the programmer, a library static object performed some complicated resource deallocation activities, and the program crashed.
The C++ standard says nothing about the interaction between signals, exit and static objects. My observations, was that in effect, because the destructor called a standard library function other than 'abort', 'exit' or 'signal', while transitively in the execution context of the signal handler, it was in fact non-compliant, and the behaviour was undefined anyway.
This is I believe a plausible judgement, but given the prevalence of this common programming technique, it seems to me that we need to say something a lot more positive about this interaction.
Curiously enough, the C standard fails to say anything about the analogous interaction with functions registered with 'atexit' ;-)
Proposed Resolution (10/98):
The current Committee Draft of the next version of the ISO C standard specifies that the only standard library function that may be called while a signal handler is executing is 'abort'. This would solve the above problem.
[This issue should remain open until it has been decided that the next version of the C++ standard will use the next version of the C standard as the basis for the behavior of 'signal'.]
Notes (November, 2006):
C89 is slightly contradictory here: It allows any signal handler to terminate by calling abort, exit, longjmp, but (for asynchronous signals, i.e. not those produced by abort or raise) then makes calling any library function other than signal with the current signal undefined behavior (C89 7.7.1.1). For synchronous signals, C99 forbids calls to raise, but imposes no other restrictions. For asynchronous signals, C99 allows only calls to abort, _Exit, and signal with the current signal (C99 7.14.1.1). The current C++ WP refers to “plain old functions” and “conforming C programs” (18.10 [support.runtime] paragraph 6).
Proposed Resolution (November, 2006):
Change the footnote in 18.10 [support.runtime] paragraph 6 as follows:
In particular, a signal handler using exception handling is very likely to have problems. Also, invoking std::exit may cause destruction of objects, including those of the standard library implementation, which, in general, yields undefined behavior in a signal handler (see 1.9 [intro.execution]).
[Voted into WP at the October, 2006 meeting.]
According to 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 3,
Any other allocation function that fails to allocate storage shall only indicate failure by throwing an exception of class std::bad_alloc (18.6.2.1 [bad.alloc]) or a class derived from std::bad_alloc.
Shouldn't this statement have the usual requirements for an unambiguous and accessible base class?
Proposed resolution (April, 2006):
Change the last sentence of 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 3 as indicated:
Any other allocation function that fails to allocate storage shall only indicate failure only by throwing an exception of class std::bad_alloc (18.6.2.1 [bad.alloc]) or a class derived from std::bad_alloc a type that would match a handler (15.3 [except.handle]) of type std::bad_alloc (18.6.2.1 [bad.alloc]).
[Voted into the WP at the September, 2008 meeting (resolution in paper N2757).]
[Picked up by evolution group at October 2002 meeting.]
The default global operators delete are specified to not throw, but there is no requirement that replacement global, or class-specific, operators delete must not throw. That ought to be required.
In particular:
We already require that all versions of an allocator's deallocate() must not throw, so that part is okay.
Rationale (04/00):
Note (March, 2008):
The Evolution Working Group has accepted the intent of this issue and referred it to CWG for action for C++0x (see paper J16/07-0033 = WG21 N2173).
Proposed resolution (March, 2008):
Change 3.7.4.2 [basic.stc.dynamic.deallocation] paragraph 3 as follows:
A deallocation function shall not terminate by throwing an exception. The value of the first argument supplied to a deallocation function...
[Voted into WP at October 2005 meeting.]
Standard is clear on behaviour of default allocation/deallocation functions. However, it is surpisingly vague on requirements to the behaviour of user-defined deallocation function and an interaction between delete-expression and deallocation function. This caused a heated argument on fido7.su.c-cpp newsgroup.
Resume:
It is not clear if user-supplied deallocation function is called from delete-expr when the operand of delete-expr is the null pointer (5.3.5 [expr.delete]). If it is, standard does not specify what user-supplied deallocation function shall do with the null pointer operand (18.6.1 [new.delete]). Instead, Standard uses the term "has no effect", which meaning is too vague in context given (5.3.5 [expr.delete]).
Description:
Consider statements
char* p= 0; //result of failed non-throwing ::new char[] ::delete[] p;Argument passed to delete-expression is valid - it is the result of a call to the non-throwing version of ::new, which has been failed. 5.3.5 [expr.delete] paragraph 1 explicitly prohibit us to pass 0 without having the ::new failure.
Standard does NOT specify whether user-defined deallocation function should be called in this case, or not.
Specifically, standard says in 5.3.5 [expr.delete] paragraph 2:
...if the value of the operand of delete is the null pointer the operation has no effect.Standard doesn't specify term "has no effect". It is not clear from this context, whether the called deallocation function is required to have no effect, or delete-expression shall not call the deallocation function.
Furthermore, in para 4 standard says on default deallocation function:
If the delete-expression calls the implementation deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]), if the operand of the delete expression is not the null pointer constant, ...Why it is so specific on interaction of default deallocation function and delete-expr?
If "has no effect" is a requirement to the deallocation function, then it should be stated in 3.7.4.2 [basic.stc.dynamic.deallocation], or in 18.6.1.1 [new.delete.single] and 18.6.1.2 [new.delete.array], and it should be stated explicitly.
Furthermore, standard does NOT specify what actions shall be performed by user-supplied deallocation function if NULL is given (18.6.1.1 [new.delete.single] paragraph 12):
Required behaviour: accept a value of ptr that is null or that was returned by an earlier call to the default operator new(std::size_t) or operator new(std::size_t, const std::nothrow_t&).
The same corresponds to ::delete[] case.
Expected solution:
Notes from October 2002 meeting:
We believe that study of 18.6.1.1 [new.delete.single] paragraphs 12 and 13, 18.6.1.2 [new.delete.array] paragraphs 11 and 12, and 3.7.4.2 [basic.stc.dynamic.deallocation] paragraph 3 shows that the system-provided operator delete functions must accept a null pointer and ignore it. Those sections also show that a user-written replacement for the system-provided operator delete functions must accept a null pointer. There is no requirement that such functions ignore a null pointer, which is okay -- perhaps the reason for replacing the system-provided functions is to do something special with null pointer values (e.g., log such calls and return).
We believe that the standard should not require an implementation to call a delete function with a null pointer, but it must allow that. For the system-provided delete functions or replacements thereof, the standard already makes it clear that the delete function must accept a null pointer. For class-specific delete functions, we believe the standard should require that such functions accept a null pointer, though it should not mandate what they do with null pointers.
5.3.5 [expr.delete] needs to be updated to say that it is unspecified whether or not the operator delete function is called with a null pointer, and 3.7.4.2 [basic.stc.dynamic.deallocation] needs to be updated to say that any deallocation function must accept a null pointer.
Proposed resolution (October, 2004):
Change 5.3.5 [expr.delete] paragraph 2 as indicated:
If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned conversion function, and the converted operand is used in place of the original operand for the remainder of this section. In either alternative, if the value of the operand of delete is the null pointer the operation has no effect may be a null pointer value. If it is not a null pointer value, in In the first alternative (delete object), the value of the operand of delete shall be a pointer to a non-array object or a pointer to a sub-object (1.8 [intro.object]) representing a base class of such an object (clause 10 [class.derived])...
Change 5.3.5 [expr.delete] paragraph 4 as follows (note that the old wording reflects the changes proposed by issue 442:
The cast-expression in a delete-expression shall be evaluated exactly once. If the delete-expression calls the implementation deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]), and if the value of the operand of the delete expression is not a null pointer, the deallocation function will deallocate the storage referenced by the pointer thus rendering the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indeterminate. —end note]
Change 5.3.5 [expr.delete] paragraphs 6-7 as follows:
The If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion of their constructor; see 12.6.2 [class.base.init]).
The If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will call a deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]). Otherwise, it is unspecified whether the deallocation function will be called. [Note: The deallocation function is called regardless of whether the destructor for the object or some element of the array throws an exception. —end note]
Change 3.7.4.2 [basic.stc.dynamic.deallocation] paragraph 3 as indicated:
The value of the first argument supplied to one of the a deallocation functions provided in the standard library may be a null pointer value; if so, and if the deallocation function is one supplied in the standard library, the call to the deallocation function has no effect. Otherwise, the value supplied to operator delete(void*) in the standard library shall be one of the values returned by a previous invocation of either operator new(std::size_t) or operator new(std::size_t, const std::nothrow_t&) in the standard library, and the value supplied to operator delete[](void*) in the standard library shall be one of the values returned by a previous invocation of either operator new[](std::size_t) or operator new[](std::size_t, const std::nothrow_t&) in the standard library.
[Note: this resolution also resolves issue 442.]
[Moved to DR at 4/02 meeting.]
Jack Rouse: 3.8 [basic.life] paragraph 1 includes:
The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins when:Consider the code:
- storage with the proper alignment and size for type T is obtained, and
- if T is a class type with a non-trivial constructor (12.1 [class.ctor] ), the constructor call has completed.
struct B { B( int = 0 ); ~B(); }; struct S { B b1; }; int main() { S s = { 1 }; return 0; }In the code above, class S does have a non-trivial constructor, the default constructor generated by the compiler. According the text above, the lifetime of the auto s would never begin because a constructor for S is never called. I think the second case in the text needs to include aggregate initialization.
Mike Miller: I see a couple of ways of fixing the problem. One way would be to change "the constructor call has completed" to "the object's initialization is complete."
Another would be to add following "a class type with a non-trivial constructor" the phrase "that is not initialized with the brace notation (8.5.1 [dcl.init.aggr] )."
The first formulation treats aggregate initialization like a constructor call; even POD-type members of an aggregate could not be accessed before the aggregate initialization completed. The second is less restrictive; the POD-type members of the aggregate would be usable before the initialization, and the members with non-trivial constructors (the only way an aggregate can acquire a non-trivial constructor) would be protected by recursive application of the lifetime rule.
Proposed resolution (04/01):
In 3.8 [basic.life] paragraph 1, change
If T is a class type with a non-trivial constructor (12.1 [class.ctor]), the constructor call has completed.
to
If T is a class type with a non-trivial constructor (12.1 [class.ctor]), the initialization is complete. [Note: the initialization can be performed by a constructor call or, in the case of an aggregate with an implicitly-declared non-trivial default constructor, an aggregate initialization (8.5.1 [dcl.init.aggr]).]
[Voted into WP at April 2003 meeting.]
The wording in 3.8 [basic.life] paragraph 6 allows an lvalue designating an out-of-lifetime object to be used as the operand of a static_cast only if the conversion is ultimately to "char&" or "unsigned char&". This description excludes the possibility of using a cv-qualified version of these types for no apparent reason.
Notes on 04/01 meeting:
The wording should be changed to allow cv-qualified char types.
Proposed resolution (04/01):
In 3.8 [basic.life] paragraph 6 change the third bullet:
[Voted into WP at March 2004 meeting.]
3.8 [basic.life] paragraph 1 second bullet says:
if T is a class type with a non-trivial constructor (12.1), the constructor call has completed.
This is confusing; what was intended is probably something like
if T is a class type and the constructor invoked to create the object is non-trivial (12.1), the constructor call has completed.
Proposed Resolution (October 2003):
As given above.
[Voted into the WP at the September, 2008 meeting.]
In ISO/IEC 14882:2003, the second bullet of 3.8 [basic.life] paragraph 1 reads,
if T is a class type with a non-trivial constructor (12.1 [class.ctor]), the constructor call has completed.
Issue 119 pointed out that aggregate initialization can be used with some classes with a non-trivial implicitly-declared default constructor, and that in such cases there is no call to the object's constructor. The resolution for that issue was to change the previously-cited wording to read,
If T is a class type with a non-trivial constructor (12.1 [class.ctor], the initialization is complete.
Later (but before the WP was revised with the wording from the resolution of issue 119), issue 404 changed the 2003 wording to read,
If T is a class type and the constructor invoked to create the object is non-trivial (12.1 [class.ctor]), the constructor call has completed.
thus reversing the effect of issue 119, whose whole purpose was to cover objects with non-trivial constructors that are not invoked.
Through an editorial error, the post-Redmond draft (N1905) still contained the original 2003 wording that should have been replaced by the resolution of issue 119, in addition to the new wording from the resolution:
if T is a class type and the constructor invoked to create the object is non-trivial (12.1 [class.ctor]), the constructor call has completed. the initialization is complete.
Finally, during the application of the edits for delegating constructors (N1986), this editing error was “fixed” by retaining the original 2003 wording (which was needed for the application of the change specified in N1986), so that the current draft (N2009) reads,
if T is a class type and the constructor invoked to create the object is non-trivial (12.1 [class.ctor]), the principal constructor call 12.6.2 [class.base.init]) has completed.
Because the completion of the call to the principal constructor corresponds to the point at which the object is “fully constructed” (15.2 [except.ctor] paragraph 2), i.e., its initialization is complete, I believe that the exact wording of the issue 119 resolution would be correct and should be restored verbatim.
Proposed resolution (June, 2008):
Change 3.8 [basic.life] paragraph 1 as follows:
The lifetime of an object is a runtime property of the object. An object is said to have non-trivial initialization if it is of a class or aggregate type and it or one of its members is initialized by a constructor other than a trivial default constructor. [Note: Initialization by a trivial copy constructor is non-trivial initialization. —end note] The lifetime of an object of type T begins when:
storage with the proper alignment and size for type T is obtained, and
if T is a class type and the constructor invoked to create the object is non-trivial (12.1 [class.ctor]), the principal constructor call (12.6.2 [class.base.init]) has completed. [Note: the initialization can be performed by a constructor call or, in the case of an aggregate with an implicitly-declared non-trivial default constructor, an aggregate initialization 8.5.1 [dcl.init.aggr]. —end note] the object has non-trivial initialization, its initialization is complete.
The lifetime of an object of type T ends when...
[Voted into the WP at the June, 2008 meeting.]
The original proposed wording for 3.9 [basic.types] paragraph 11 required a constexpr constructor for a literal class only “if the class has at least one user-declared constructor.” This wording was dropped during the review by CWG out of a desire to ensure that literal types not have any uninitialized members. Thus, a class like
struct pixel { int x, y; };
is not a literal type. However, if an object of that type is aggregate-initialized or value-initialized, there can be no uninitialized members; the missing wording should be restored in order to permit use of expressions like pixel().x as constant expressions.
Proposed resolution (February, 2008):
Change 3.9 [basic.types] paragraph 10 as follows:
A type is a literal type if it is:
- a scalar type; or
- a class type (clause 9 [class]) with
- a trivial copy constructor,
- a trivial destructor,
- a trivial default constructor or at least one constexpr constructor other than the copy constructor,
- no virtual base classes, and
- all non-static data members and base classes of literal types; or
- an array of literal type.
[Moved to DR at 4/02 meeting.]
3.10 [basic.lval] paragraph 15 lists the types via which an lvalue can be used to access the stored value of an object; using an lvalue type that is not listed results in undefined behavior. It is permitted to add cv-qualification to the actual type of the object in this access, but only at the top level of the type ("a cv-qualified version of the dynamic type of the object").
However, 4.4 [conv.qual] paragraph 4 permits a "conversion [to] add cv-qualifiers at levels other than the first in multi-level pointers." The combination of these two rules allows creation of pointers that cannot be dereferenced without causing undefined behavior. For instance:
int* jp; const int * const * p1 = &jp; *p1; // undefined behavior!
The reason that *p1 results in undefined behavior is that the type of the lvalue is const int * const", which is not "a cv-qualified version of" int*.
Since the conversion is permitted, we must give it defined semantics, hence we need to fix the wording in 3.10 [basic.lval] to include all possible conversions of the type via 4.4 [conv.qual].
Proposed resolution (04/01):
Add a new bullet to 3.10 [basic.lval] paragraph 15, following "a cv-qualified version of the dynamic type of the object:"
[Voted into the WP at the September, 2008 meeting.]
The requirements on an implementation when presented with an alignment-specifier not supported by that implementation in that context are contradictory: 3.11 [basic.align] paragraph 9 says,
If a request for a specific extended alignment in a specific context is not supported by an implementation, the implementation may reject the request as ill-formed. The implementation may also silently ignore the requested alignment.
In contrast, 7.6.2 [dcl.align] paragraph 2, bullet 4 says simply,
- if the constant expression evaluates to an extended alignment and the implementation does not support that alignment in the context of the declaration, the program is ill-formed
with no provision to “silently ignore” the requested alignment. These two passages need to be reconciled.
If the outcome of the reconciliation is to grant implementations the license to accept and ignore extended alignment requests, the specification should be framed in terms of mechanisms that already exist in the Standard, such as undefined behavior and/or conditionally-supported constructs; “ill-formed” is a category that is defined by the Standard, not something that an implementation can decide.
Notes from the February, 2008 meeting:
The consensus was that such requests should be ill-formed and require a diagnostic. However, it was also observed that an implementation need not reject an ill-formed program; the only requirement is that it issue a diagnostic. It would thus be permissible for an implementation to “noisily ignore” (as opposed to “silently ignoring”) an unsupported alignment request.
Proposed resolution (June, 2008):
Change 3.11 [basic.align] paragraph 9 as follows:
If a request for a specific extended alignment in a specific context is not supported by an implementation, the implementation may reject the request as program is ill-formed. The implementation may also silently ignore the requested alignment. [Note: aAdditionally, a request for runtime allocation of dynamic memory storage for which the requested alignment cannot be honored may shall be treated as an allocation failure. —end note]
[Voted into WP at April, 2006 meeting.]
The C standard says in 6.3.2.3, paragraph 4:
Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null pointers shall compare equal.
C++ appears to be incompatible with the first sentence in only two areas:
A *a = 0; void *v = a;
C++ (4.10 [conv.ptr] paragraph 2) says nothing about the value of v.
void *v = 0; A *b = (A*)v; // aka static_cast<A*>(v)
C++ (5.2.9 [expr.static.cast] paragraph 10) says nothing about the value of b.
Suggested changes:
Add the following sentence to 4.10 [conv.ptr] paragraph 2:
The null pointer value is converted to the null pointer value of the destination type.
Add the following sentence to 5.2.9 [expr.static.cast] paragraph 10:
The null pointer value (4.10 [conv.ptr]) is converted to the null pointer value of the destination type.
Proposed resolution (October, 2005):
Add the indicated words to 4.10 [conv.ptr] paragraph 2:
An rvalue of type “pointer to cv T,” where T is an object type, can be converted to an rvalue of type “pointer to cv void”. The result of converting a “pointer to cv T” to a “pointer to cv void” points to the start of the storage location where the object of type T resides, as if the object is a most derived object (1.8 [intro.object]) of type T (that is, not a base class subobject). The null pointer value is converted to the null pointer value of the destination type.
Add the indicated words to 5.2.9 [expr.static.cast] paragraph 11:
An rvalue of type “pointer to cv1 void” can be converted to an rvalue of type “pointer to cv2 T,” where T is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null pointer value is converted to the null pointer value of the destination type. A value of type pointer to object converted to “pointer to cv void” and back, possibly with different cv-qualification, shall have its original value...
[Voted into the WP at the June, 2008 meeting as paper N2656.]
In the interest of promoting use of nullptr instead of the integer literal 0 as the null pointer constant, the proposal accepted by the Committee does not provide for converting a zero-valued integral constant to type std::nullptr_t. However, this omission reduces the utility of the feature for use in the library for smart pointers. In particular, the addition of that conversion (along with a converting constructor accepting a std::nullptr_t) would allow smart pointers to be used just like ordinary pointers in expressions like:
if (p == 0) { } if (0 == p) { } if (p != 0) { } if (0 != p) { } p = 0;
The existing use of the “unspecified bool type” idiom supports this usage, but being able to use std::nullptr_t instead would be simpler and more elegant.
Jason Merrill: I have another reason to support the conversion as well: it seems to me very odd for nullptr_t to be more restrictive than void*. Anything we can do with an arbitrary pointer, we ought to be able to do with nullptr_t as well. Specifically, since there is a standard conversion from literal 0 to void*, and there is a standard conversion from void* to bool, nullptr_t should support the same conversions.
This changes two of the example lines in the proposal as adopted:
if (nullptr) ; // error, no conversion to bool if (nullptr == 0) ; // error
become
if (nullptr) ; // evaluates to false if( nullptr == 0 ); // evaluates to true
And later,
char* ch3 = expr ? nullptr : nullptr; // ch3 is the null pointer value char* ch4 = expr ? 0 : nullptr; // ch4 is the null pointer value int n3 = expr ? nullptr : nullptr; // error, nullptr_t can't be converted to int int n4 = expr ? 0 : nullptr; // error, nullptr_t can't be converted to int
I would also allow reinterpret_cast from nullptr_t to integral type, with the same semantics as a reinterpret_cast from the null pointer value to integral type.
Basically, I would like nullptr_t to act like a void* which is constrained to always be (void*)0.
[Voted into WP at the October, 2006 meeting.]
When the Standard refers to a virtual base class, it should be understood to include base classes of virtual bases. However, the Standard doesn't actually say this anywhere, so when 4.11 [conv.mem] (for example) forbids casting to a derived class member pointer from a virtual base class member pointer, it could be read as meaning:
struct B {}; struct D : public B {}; struct D2 : virtual public D {}; int B::*p; int D::*q; void f() { static_cast<int D2::*>(p); // permitted static_cast<int D2::*>(q); // forbidden }
Proposed resolution (October, 2005):
Change 4.11 [conv.mem] paragraph 2 as indicated:
...If B is an inaccessible (clause 11 [class.access]), ambiguous (10.2 [class.member.lookup]) or virtual (10.1 [class.mi]) base class of D, or a base class of a virtual base class of D, a program that necessitates this conversion is ill-formed...
Change 5.2.9 [expr.static.cast] paragraph 2 as indicated:
...and B is not neither a virtual base class of D nor a base class of a virtual base class of D...
Change 5.2.9 [expr.static.cast] paragraph 9 as indicated:
...and B is not neither a virtual base class of D nor a base class of a virtual base class of D...
[Voted into the WP at the September, 2008 meeting.]
I believe that the committee has neglected to take into account one of the differences between C and C++ when defining sequence points. As an example, consider
(a += b) += c;
where a, b, and c all have type int. I believe that this expression has undefined behavior, even though it is well-formed. It is not well-formed in C, because += returns an rvalue there. The reason for the undefined behavior is that it modifies the value of `a' twice between sequence points.
Expressions such as this one are sometimes genuinely useful. Of course, we could write this particular example as
a += b; a += c;
but what about
void scale(double* p, int n, double x, double y) { for (int i = 0; i < n; ++i) { (p[i] *= x) += y; } }
All of the potential rewrites involve multiply-evaluating p[i] or unobvious circumlocations like creating references to the array element.
One way to deal with this issue would be to include built-in operators in the rule that puts a sequence point between evaluating a function's arguments and evaluating the function itself. However, that might be overkill: I see no reason to require that in
x[i++] = y;
the contents of `i' must be incremented before the assignment.
A less stringent alternative might be to say that when a built-in operator yields an lvalue, the implementation shall not subsequently change the value of that object as a consequence of that operator.
I find it hard to imagine an implementation that does not do this already. Am I wrong? Is there any implementation out there that does not `do the right thing' already for (a += b) += c?
5.18 [expr.ass] paragraph 1 says,
The result of the assignment operation is the value stored in the left operand after the assignment has taken place; the result is an lvalue.
What is the normative effect of the words "after the assignment has taken place"? I think that phrase ought to mean that in addition to whatever constraints the rules about sequence points might impose on the implementation, assignment operators on built-in types have the additional constraint that they must store the left-hand side's new value before returning a reference to that object as their result.
One could argue that as the C++ standard currently stands, the effect of x = y = 0; is undefined. The reason is that it both fetches and stores the value of y, and does not fetch the value of y in order to compute its new value.
I'm suggesting that the phrase "after the assignment has taken place" should be read as constraining the implementation to set y to 0 before yielding the value of y as the result of the subexpression y = 0.
Francis Glassborow:
My understanding is that for a single variable:
It is the 3) that is often ignored because in practice the compiler hardly ever codes for the read because it already has that value but in complicated evaluations with a shortage of registers, that is not always the case. Without getting too close to the hardware, I think we both know that a read too close to a write can be problematical on some hardware.
So, in x = y = 0;, the implementation must NOT fetch a value from y, instead it has to "know" what that value will be (easy because it has just computed that in order to know what it must, at some time, store in y). From this I deduce that computing the lvalue (to know where to store) and the rvalue to know what is stored are two entirely independent actions that can occur in any order commensurate with the overall requirements that both operands for an operator be evaluated before the operator is.
Erwin Unruh:
C distinguishes between the resulting value of an assignment and putting the value in store. So in C a compiler might implement the statement x=y=0; either as x=0;y=0; or as y=0;x=0; In C the statement (x += 5) += 7; is not allowed because the first += yields an rvalue which is not allowed as left operand to +=. So in C an assignment is not a sequence of write/read because the result is not really "read".
In C++ we decided to make the result of assignment an lvalue. In this case we do not have the option to specify the "value" of the result. That is just the variable itself (or its address in a different view). So in C++, strictly speaking, the statement x=y=0; must be implemented as y=0;x=y; which makes a big difference if y is declared volatile.
Furthermore, I think undefined behaviour should not be the result of a single mentioning of a variable within an expression. So the statement (x +=5) += 7; should NOT have undefined behaviour.
In my view the semantics could be:
Jerry Schwarz:
My recollection is different from Erwin's. I am confident that the intention when we decided to make assignments lvalues was not to change the semantics of evaluation of assignments. The semantics was supposed to remain the same as C's.
Ervin seems to assume that because assignments are lvalues, an assignment's value must be determined by a read of the location. But that was definitely not our intention. As he notes this has a significant impact on the semantics of assignment to a volatile variable. If Erwin's interpretation were correct we would have no way to write a volatile variable without also reading it.
Lawrence Crowl:
For x=y=0, lvalue semantics implies an lvalue to rvalue conversion on the result of y=0, which in turn implies a read. If y is volatile, lvalue semantics implies both a read and a write on y.
The standard apparently doesn't state whether there is a value dependence of the lvalue result on the completion of the assignment. Such a statement in the standard would solve the non-volatile C compatibility issue, and would be consistent with a user-implemented operator=.
Another possible approach is to state that primitive assignment operators have two results, an lvalue and a corresponding "after-store" rvalue. The rvalue result would be used when an rvalue is required, while the lvalue result would be used when an lvalue is required. However, this semantics is unsupportable for user-defined assignment operators, or at least inconsistent with all implementations that I know of. I would not enjoy trying to write such two-faced semantics.
Erwin Unruh:
The intent was for assignments to behave the same as in C. Unfortunately the change of the result to lvalue did not keep that. An "lvalue of type int" has no "int" value! So there is a difference between intent and the standard's wording.
So we have one of several choices:
I think the last one has the least impact on existing programs, but it is an ugly solution.
Andrew Koenig:
Whatever we may have intended, I do not think that there is any clean way of making
volatile int v; int i; i = v = 42;have the same semantics in C++ as it does in C. Like it or not, the subexpression v = 42 has the type ``reference to volatile int,'' so if this statement has any meaning at all, the meaning must be to store 42 in v and then fetch the value of v to assign it to i.
Indeed, if v is volatile, I cannot imagine a conscientious programmer writing a statement such as this one. Instead, I would expect to see
v = 42; i = v;if the intent is to store 42 in v and then fetch the (possibly changed) value of v, or
v = 42; i = 42;if the intent is to store 42 in both v and i.
What I do want is to ensure that expressions such as ``i = v = 42'' have well-defined semantics, as well as expressions such as (i = v) = 42 or, more realistically, (i += v) += 42 .
I wonder if the following resolution is sufficient:
Append to 5.18 [expr.ass] paragraph 1:
There is a sequence point between assigning the new value to the left operand and yielding the result of the assignment expression.
I believe that this proposal achieves my desired effect of not constraining when j is incremented in x[j++] = y, because I don't think there is a constraint on the relative order of incrementing j and executing the assignment. However, I do think it allows expressions such as (i += v) += 42, although with different semantics from C if v is volatile.
Notes on 10/01 meeting:
There was agreement that adding a sequence point is probably the right solution.
Notes from the 4/02 meeting:
The working group reaffirmed the sequence-point solution, but we will look for any counter-examples where efficiency would be harmed.
For drafting, we note that ++x is defined in 5.3.2 [expr.pre.incr] as equivalent to x+=1 and is therefore affected by this change. x++ is not affected. Also, we should update any list of all sequence points.
Notes from October 2004 meeting:
Discussion centered around whether a sequence point “between assigning the new value to the left operand and yielding the result of the expression” would require completion of all side effects of the operand expressions before the value of the assignment expression was used in another expression. The consensus opinion was that it would, that this is the definition of a sequence point. Jason Merrill pointed out that adding a sequence point after the assignment is essentially the same as rewriting
b += a
as
b += a, b
Clark Nelson expressed a desire for something like a “weak” sequence point that would force the assignment to occur but that would leave the side effects of the operands unconstrained. In support of this position, he cited the following expression:
j = (i = j++)
With the proposed addition of a full sequence point after the assignment to i, the net effect is no change to j. However, both g++ and MSVC++ behave differently: if the previous value of j is 5, the value of the expression is 5 but j gets the value 6.
Clark Nelson will investigate alternative approaches and report back to the working group.
Proposed resolution (March, 2008):
This issue is resolved by the adoption of the sequencing rules and the resolution of issue 637.
[Voted into WP at March 2004 meeting.]
I have found what looks like a bug in clause 5 [expr], paragraph 4:
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full expression; otherwise the behavior is undefined. Example:i = v[i++]; // the behavior is unspecified i = 7, i++, i++; // i becomes 9 i = ++i + 1; // the behavior is unspecified i = i + 1; // the value of i is incremented--end example]
So which is it, unspecified or undefined?
Notes from October 2002 meeting:
We should find out what C99 says and do the same thing.
Proposed resolution (April 2003):
Change the example in clause 5 [expr], paragraph 4 from
[Example:i = v[i++]; // the behavior is unspecified i = 7, i++, i++; // i becomes 9 i = ++i + 1; // the behavior is unspecified i = i + 1; // the value of i is incremented--- end example]
to (changing "unspecified" to "undefined" twice)
[Example:i = v[i++]; // the behavior is undefined i = 7, i++, i++; // i becomes 9 i = ++i + 1; // the behavior is undefined i = i + 1; // the value of i is incremented--- end example]
[Voted into WP at October 2005 meeting.]
Clause 5 [expr] par. 5 of the standard says:
If during the evaluation of an expression, the result is not mathematically defined or not in the range of representable values for its type, the behavior is undefined, unless such an expression is a constant expression (5.19), in which case the program is ill-formed.
Well, we do know that except in some contexts (e.g. controlling expression of a #if, array bounds), a compiler is not required to evaluate constant-expressions in compile time, right?
Now, let us consider, the following simple snippet:
if (a && 1/0) ...with a, to fix our attention, being *not* a constant expression. The quote above seems to say that since 1/0 is a constant (sub-)expression, the program is ill-formed. So, is it the intent that such ill-formedness is diagnosable at run-time? Or is it the intent that the above gives undefined behavior (if 1/0 is evaluated) and is not ill-formed?
I think the intent is actually the latter, so I propose the following rewording of the quoted section:
If an expression is evaluated but its result is not mathematically defined or not in the range of representable values for its type the behavior is undefined, unless such an expression is a constant expression (5.19) that shall be evaluated during program translation, in which case the program is ill-formed.
Rationale (March, 2004):
We feel the standard is clear enough. The quoted sentence does begin "If during the evaluation of an expression, ..." so the rest of the sentence does not apply to an expression that is not evaluated.
Note (September, 2004):
Gennaro Prota feels that the CWG missed the point of his original comment: unless a constant expression appears in a context that requires a constant expression, an implementation is permitted to defer its evaluation to runtime. An evaluation that fails at runtime cannot affect the well-formedness of the program; only expressions that are evaluated at compile time can make a program ill-formed.
The status has been reset to “open” to allow further discussion.
Proposed resolution (October, 2004):
Change paragraph 5 of 5 [expr] as indicated:
If during the evaluation of an expression, the result is not mathematically defined or not in the range of representable values for its type, the behavior is undefined, unless such an expression is a constant expression appears where an integral constant expression is required (5.20 [expr.const]), in which case the program is ill-formed.
[Moved to DR at 10/01 meeting.]
5.1.1 [expr.prim.general] paragraph 11 reads,
A template-id shall be used as an unqualified-id only as specified in 14.7.2 [temp.explicit] , 14.7 [temp.spec] , and 14.5.5 [temp.class.spec] .
What uses of template-ids as unqualified-ids is this supposed to prevent? And is the list of referenced sections correct/complete? For instance, what about 14.8.1 [temp.arg.explicit], "Explicit template argument specification?" Does its absence from the list in 5.1.1 [expr.prim.general] paragraph 11 mean that "f<int>()" is ill-formed?
This is even more confusing when you recall that unqualified-ids are contained in qualified-ids:
qualified-id: ::opt nested-name-specifier templateopt unqualified-id
Is the wording intending to say "used as an unqualified-id that is not part of a qualified-id?" Or something else?
Proposed resolution (10/00):
Remove the referenced sentence altogether.
[Voted into WP at March 2004 meeting.]
The example below is ambiguous.
struct A{ struct B{}; }; A::B C(); namespace B{ A C(); } struct Test { friend A::B ::C(); };Here, it is not clear whether the friend declaration denotes A B::C() or A::B C(), yet the standard does not resolve this ambiguity.
The ambiguity arises since both the simple-type-specifier (7.1.6.2 [dcl.type.simple] paragra 1) and an init-declararator (8 [dcl.decl] paragraph 1) contain an optional :: and an optional nested-name-specifier (5.1.1 [expr.prim.general] paragraph 1). Therefore, two different ways to analyse this code are possible:
simple-type-specifier = A::Bor
init-declarator = ::C()
simple-declaration = friend A::B ::C();
simple-type-specifier = ASince it is a friend declaration, the init-declarator may be qualified, and start with a global scope.
init-declarator = ::B::C()
simple-declaration = friend A ::B::C();
Suggested Resolution: In the definition of nested-name-specifier, add a sentence saying that a :: token immediately following a nested-name-specifier is always considered as part of the nested-name-specifier. Under this interpretation, the example is ill-formed, and should be corrected as either
friend A (::B::C)(); //or friend A::B (::C)();
An alternate suggestion — changing 7.1 [dcl.spec] to say that
The longest sequence of tokens that could possibly be a type name is taken as the decl-specifier-seq of a declaration.
— is undesirable because it would make the example well-formed rather than requiring the user to disambiguate the declaration explicitly.
Proposed resolution (04/01):
(See below for problem with this, from 10/01 meeting.)
In 5.1.1 [expr.prim.general] paragraph 7,
Before the grammar for qualified-id, start a new paragraph 7a with the text
A qualified-id is an id-expression that contains the scope resolution operator ::.
Following the grammar fragment, insert the following:
The longest sequence of tokens that could form a qualified-id constitutes a single qualified-id. [Example:
// classes C, D; functions F, G, namespace N; non-class type T friend C ::D::F(); // ill-formed, means friend (C::D::F)(); friend C (::D::F)(); // well-formed friend N::T ::G(); // ill-formed, means friend (N::T::G)(); friend N::T (::G)(); // well-formed—end example]
Start a new paragraph 7b following the example.
(This resolution depends on that of issue 215.)
Notes from 10/01 meeting:
It was pointed out that the proposed resolution does not deal with cases like X::Y where X is a type but not a class type. The working group reaffirmed its decision that the disambiguation should be syntactic only, i.e., it should depend only on whether or not the name is a type.
Jason Merrill :At the Seattle meeting, I suggested that a solution might be to change the class-or-namespace-name in the nested-name-specifier rule to just be "identifier"; there was some resistance to this idea. FWIW, I've tried this in g++. I had to revise the idea so that only the second and subsequent names were open to being any identifier, but that seems to work just fine.
So, instead of
it would be
Or some equivalent but right-associative formulation, if people feel that's important, but it seems irrelevant to me.
Clark Nelson :
Personally, I prefer the left-associative rule. I think it makes it easier to understand. I was thinking about this production a lot at the meeting, considering also some issues related to 301. My formulation was getting kind of ugly, but with a left-associative rule, it gets a lot nicer.
Your proposal isn't complete, however, as it doesn't allow template arguments without an explicit template keyword. You probably want to add an alternative for:
There is admittedly overlap between this alternative and
but I think they're both necessary.
Notes from the 4/02 meeting:
The changes look good. Clark Nelson will merge the two proposals to produce a single proposed resolution.
Proposed resolution (April 2003):
nested-name-specifier is currently defined in 5.1.1 [expr.prim.general] paragraph 7 as:
The proposed definition is instead:
Issue 215 is addressed by using type-name instead of class-name in the first alternative. Issue 125 (this issue) is addressed by using identifier instead of anything more specific in the third alternative. Using left association instead of right association helps eliminate the need for class-or-namespace-name (or type-or-namespace-name, as suggested for issue 215).
It should be noted that this formulation also rules out the possibility of A::template B::, i.e. using the template keyword without any template arguments. I think this is according to the purpose of the template keyword, and that the former rule allowed such a construct only because of the difficulty of formulation of a right-associative rule that would disallow it. But I wanted to be sure to point out this implication.
Notes from April 2003 meeting:
See also issue 96.
The proposed change resolves only part of issue 215.
[Moved to DR at 10/01 meeting.]
Christophe de Dinechin: In 5.2.2 [expr.call] , paragraph 2 reads:
If no declaration of the called function is visible from the scope of the call the program is ill-formed.I think nothing there or in the previous paragraph indicates that this does not apply to calls through pointer or virtual calls.
Mike Miller: "The called function" is unfortunate phraseology; it makes it sound as if it's referring to the function actually called, as opposed to the identifier in the postfix expression. It's wrong with respect to Koenig lookup, too (the declaration need not be visible if it can be found in a class or namespace associated with one or more of the arguments).
In fact, this paragraph should be a note. There's a general rule that says you have to find an unambiguous declaration of any name that is used (3.4 [basic.lookup] paragraph 1); the only reason this paragraph is here is to contrast with C's implicit declaration of called functions.
Proposed resolution:
Change section 5.2.2 [expr.call] paragraph 2 from:If no declaration of the called function is visible from the scope of the call the program is ill-formed.to:
[Note: if a function or member function name is used, and name lookup (3.4 [basic.lookup]) does not find a declaration of that name, the program is ill-formed. No function is implicitly declared by such a call. ]
(See also issue 218.)
[Voted into the WP at the June, 2008 meeting.]
Martin O'Riordan: Having gone through all the relevant references in the IS, it is not conclusive that a call via a pointer to a virtual member function is polymorphic at all, and could legitimately be interpreted as being static.
Consider 5.2.2 [expr.call] paragraph 1:
The function called in a member function call is normally selected according to the static type of the object expression (clause 10 [class.derived] ), but if that function is virtual and is not specified using a qualified-id then the function actually called will be the final overrider (10.3 [class.virtual] ) of the selected function in the dynamic type of the object expression.Here it is quite specific that you get the polymorphic call only if you use the unqualified syntax. But, the address of a member function is "always" taken using the qualified syntax, which by inference would indicate that call with a PMF is static and not polymorphic! Not what was intended.
Yet other references such as 5.5 [expr.mptr.oper] paragraph 4:
If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is undefined.indicate that the opposite may have been intended, by stating that it is the dynamic type and not the static type that matters. Also, 5.5 [expr.mptr.oper] paragraph 6:
If the result of .* or ->* is a function, then that result can be used only as the operand for the function call operator (). [Example:which also implies that it is the object pointed to that determines both the validity of the expression (the static type of 'ptr_to_obj' may not have a compatible function) and the implicit (polymorphic) meaning. Note too, that this is stated in the non-normative example text.(ptr_to_obj->*ptr_to_mfct)(10);calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. ]
Andy Sawyer: Assuming the resolution is what I've assumed it is for the last umpteen years (i.e. it does the polymorphic thing), then the follow on to that is "Should there also be a way of selecting the non-polymorphic behaviour"?
Mike Miller: It might be argued that the current wording of 5.2.2 [expr.call] paragraph 1 does give polymorphic behavior to simple calls via pointers to members. (There is no qualified-id in obj.*pmf, and the IS says that if the function is not specified using a qualified-id, the final overrider will be called.) However, it clearly says the wrong thing when the pointer-to-member itself is specified using a qualified-id (obj.*X::pmf).
Bill Gibbons: The phrase qualified-id in 5.2.2 [expr.call] paragraph 1 refers to the id-expression and not to the "pointer-to-member expression" earlier in the paragraph:
For a member function call, the postfix expression shall be an implicit (9.3.1 [class.mfct.non-static] , 9.4 [class.static] ) or explicit class member access (5.2.5 [expr.ref] ) whose id-expression is a function member name, or a pointer-to-member expression (5.5 [expr.mptr.oper] ) selecting a function member.
Mike Miller: To be clear, here's an example:
struct S { virtual void f(); }; void (S::*pmf)(); void g(S* sp) { sp->f(); // 1: polymorphic sp->S::f(); // 2: non-polymorphic (sp->S::f)(); // 3: non-polymorphic (sp->*pmf)(); // 4: polymorphic (sp->*&S::f)(); // 5: polymorphic }
Notes from October 2002 meeting:
This was moved back to open for lack of a champion. Martin O'Riordan is not expected to be attending meetings.
Proposed resolution (February, 2008):
Change 5.2.2 [expr.call] paragraph 1 as follows:
... For a member function call, the postfix expression shall be an implicit (9.3.1 [class.mfct.non-static], 9.4 [class.static]) or explicit class member access (5.2.5 [expr.ref]) whose id-expression is a function member name, or a pointer-to-member expression (5.5 [expr.mptr.oper]) selecting a function member. The first expression in the postfix expression is then called the object expression, and; the call is as a member of the object pointed to or referred to by the object expression (5.2.5 [expr.ref], 5.5 [expr.mptr.oper]). In the case of an implicit class member access, the implied object is the one pointed to by this. [Note: a member function call of the form f() is interpreted as (*this).f() (see 9.3.1 [class.mfct.non-static]). —end note] If a function or member function name is used, the name can be overloaded (clause 13 [over]), in which case the appropriate function shall be selected according to the rules in 13.3 [over.match]. The function called in a member function call is normally selected according to the static type of the object expression (clause 10 [class.derived]), but if that function is virtual and is not specified using a qualified-id then the function actually called will be the final overrider (10.3 [class.virtual]) of the selected function in the dynamic type of the object expression If the selected function is non-virtual, or if the id-expression in the class member access expression is a qualified-id, that function is called. Otherwise, its final overrider (10.3 [class.virtual]) in the dynamic type of the object expression is called. ...
Change 5.5 [expr.mptr.oper] paragraph 4 as follows:
The first operand is called the object expression. If the dynamic type of the object expression does not contain the member to which the pointer refers, the behavior is undefined.
[Voted into WP at the October, 2006 meeting.]
The current wording of 5.2.2 [expr.call] paragraph 7 states:
When there is no parameter for a given argument, the argument is passed in such a way that the receiving function can obtain the value of the argument by invoking va_arg (18.10 [support.runtime]). The lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), and function-to-pointer (4.3 [conv.func]) standard conversions are performed on the argument expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type (clause 9 [class]), the behavior is undefined.
Paper J16/04-0167=WG21 N1727 suggests that passing a non-POD object to ellipsis be ill-formed. In discussions at the Lillehammer meeting, however, the CWG felt that the newly-approved category of conditionally-supported behavior would be more appropriate.
Proposed resolution (October, 2005):
Change 5.2.2 [expr.call] paragraph 7 as indicated:
...After these conversions, if the argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type (clause 9), the behavior is undefined. Passing an argument of non-POD class type (clause 9) with no corresponding parameter is conditionally-supported, with implementation-defined semantics.
[Voted into the WP at the September, 2008 meeting.]
Issue 506 changed passing a non-POD class type to an ellipsis from undefined behavior to conditionally-supported behavior. As a result, an implementation could conceivably reject code like the following:
struct two {char _[2];}; template <class From, class To> struct is_convertible { private: static From f; template <class U> static char test(const U&); template <class U> static two test(...); public: static const bool value = sizeof(test<To>(f)) == 1; }; struct A { A(); }; int main() { const bool b = is_convertible<A,int>::value; // b == false }
This technique has become popular in template metaprogramming, and no non-POD object is actually passed at runtime. Concepts will eliminate much (perhaps not all) of the need for this kind of programming, but legacy code will persist.
Perhaps this technique should be officially supported by allowing implementations to reject passing a non-POD type to ellipsis only if it appears in a potentially-evaluated expression?
Notes from the July, 2007 meeting:
The CWG agreed with the suggestion to allow such calls in unevaluated contexts.
Proposed resolution (September, 2007):
Change 5.2.2 [expr.call] paragraph 7 as follows:
...Passing an a potentially-evaluated argument of non-trivial class type (clause 9 [class]) with no corresponding parameter is conditionally-supported, with implementation-defined semantics...
[Voted into WP at April, 2006 meeting.]
5.2.4 [expr.pseudo] paragraph 2 says both:
The type designated by the pseudo-destructor-name shall be the same as the object type.and also:
The cv-unqualified versions of the object type and of the type designated by the pseudo-destructor-name shall be the same type.Which is it? "The same" or "the same up to cv-qualifiers"? The second sentence is more generous than the first. Most compilers seem to implement the less restrictive form, so I guess that's what I think we should do.
Proposed resolution (October, 2005):
Change 5.2.4 [expr.pseudo] paragraph 2 as follows:
The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall be of pointer to scalar type. This scalar type is the object type. The type designated by the pseudo-destructor-name shall be the same as the object type. The cv-unqualified versions of the object type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the two type-names in a pseudo-destructor-name of the form::opt nested-name-specifieropt type-name ::~ type-name
shall designate the same scalar type. The cv-unqualified versions of the object type and of the type designated by the pseudo-destructor-name shall be the same type.
[Voted into WP at March 2004 meeting.]
Consider
typedef struct { int a; } A; A f(void) { A a; return a; } int main(void) { int* p = &f().a; // #1 }
Should #1 be rejected? The standard is currently silent.
Mike Miller: I don't believe the Standard is silent on this. I will agree that the wording of 5.2.5 [expr.ref] paragraph 4 bullet 2 is unfortunate, as it is subject to misinterpretation. It reads,
If E1 is an lvalue, then E1.E2 is an lvalue.The intent is, "and not otherwise."
Notes from October 2003 meeting:
We agree the reference should be an rvalue, and a change along the lines of that recommended by Mike Miller is reasonable.
Proposed Resolution (October 2003):
Change the second bullet of 5.2.5 [expr.ref] paragraph 4 to read:
If E1 is an lvalue, then E1.E2 is an lvalue; otherwise, it is an rvalue.
[Voted into WP at April, 2006 meeting.]
There is an inconsistency between the normative text in section 5.2.8 [expr.typeid] and the example that follows.
Here is the relevant passage (starting with paragraph 4):
When typeid is applied to a type-id, the result refers to a std::type_info object representing the type of the type-id. If the type of the type-id is a reference type, the result of the typeid expression refers to a std::type_info object representing the referenced type.
The top-level cv-qualifiers of the lvalue expression or the type-id that is the operand of typeid are always ignored.
and the example:
typeid(D) == typeid(const D&); // yields true
The second paragraph above says the “type-id that is the operand”. This would be const D&. In this case, the const is not at the top-level (i.e., applied to the operand itself).
By a strict reading, the above should yield false.
My proposal is that the strict reading of the normative test is correct. The example is wrong. Different compilers here give different answers.
Proposed resolution (April, 2005):
Change the second sentence of 5.2.8 [expr.typeid] paragraph 4 as follows:
If the type of the type-id is a reference to a possibly cv-qualified type, the result of the typeid expression refers to a std::type_info object representing the cv-unqualified referenced type.
[Voted into WP at October 2004 meeting.]
Is it okay to use a static_cast to cast from a private base class to a derived class? That depends on what the words "valid standard conversion" in paragraph 8 mean — do they mean the conversion exists, or that it would not get an error if it were done? I think the former was intended — and therefore a static_cast from a private base to a derived class would be allowed.
Rationale (04/99): A static_cast from a private base to a derived class is not allowed outside a member from the derived class, because 4.10 [conv.ptr] paragraph 3 implies that the conversion is not valid. (Classic style casts work.)
Reopened September 2003:
Steve Adamczyk: It makes some sense to disallow the inverse conversion that is pointer-to-member of derived to pointer-to-member of private base. There's less justification for the pointer-to-private-base to pointer-to-derived case. EDG, g++ 3.2, and MSVC++ 7.1 allow the pointer case and disallow the pointer-to-member case. Sun disallows the pointer case as well.
struct B {}; struct D : private B {}; int main() { B *p = 0; static_cast<D *>(p); // Pointer case: should be allowed int D::*pm = 0; static_cast<int B::*>(pm); // Pointer-to-member case: should get error }
There's a tricky case with old-style casts: because the static_cast interpretation is tried first, you want a case like the above to be considered a static_cast, but then issue an error, not be rejected as not a static cast; if you did the latter, you would then try the cast as a reinterpret_cast.
Ambiguity and casting to a virtual base should likewise be errors after the static_cast interpretation is selected.
Notes from the October 2003 meeting:
There was lots of sentiment for making things symmetrical: the pointer case should be the same as the pointer-to-member case. g++ 3.3 now issues errors on both cases.
We decided an error should be issued on both cases. The access part of the check should be done later; by some definition of the word the static_cast is valid, and then later an access error is issued. This is similar to the way standard conversions work.
Proposed Resolution (October 2003):
Replace paragraph 5.2.9 [expr.static.cast]/6:
The inverse of any standard conversion sequence (clause 4 [conv]), other than the lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), function-to-pointer (4.3 [conv.func]), and boolean (4.12 [conv.bool]) conversions, can be performed explicitly using static_cast. The lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), and function-to-pointer (4.3 [conv.func]) conversions are applied to the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast away constness (5.2.11 [expr.const.cast]), and the following additional rules for specific cases:
with two paragraphs:
The inverse of any standard conversion sequence (clause 4 [conv]), other than the lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), function-to-pointer (4.3 [conv.func]), and boolean (4.12 [conv.bool]) conversions, can be performed explicitly using static_cast. A program is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard conversion sequence.[Example:--- end example]struct B {}; struct D : private B {}; void f() { static_cast<D*>((B*)0); // Error: B is a private base of D. static_cast<int B::*>((int D::*)0); // Error: B is a private base of D. }
The lvalue-to-rvalue (4.1 [conv.lval]), array-to-pointer (4.2 [conv.array]), and function-to-pointer (4.3 [conv.func]) conversions are applied to the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast away constness (5.2.11 [expr.const.cast]), and the following additional rules for specific cases:
In addition, modify the second sentence of 5.4 [expr.cast]/5. The first two sentences of 5.4 [expr.cast]/5 presently read:
The conversions performed bycan be performed using the cast notation of explicit type conversion. The same semantic restrictions and behaviors apply.
- a const_cast (5.2.11),
- a static_cast (5.2.9),
- a static_cast followed by a const_cast,
- a reinterpret_cast (5.2.10), or
- a reinterpret_cast followed by a const_cast,
Change the second sentence to read:
The same semantic restrictions and behaviors apply, with the exception that in performing a static_cast in the following situations the conversion is valid even if the base class is inaccessible:
- a pointer to an object of derived class type or an lvalue of derived class type may be explicitly converted to a pointer or reference to an unambiguous base class type, respectively;
- a pointer to member of derived class type may be explicitly converted to a pointer to member of an unambiguous non-virtual base class type;
- a pointer to an object of an unambiguous non-virtual base class type, an lvalue of an unambiguous non-virtual base class type, or a pointer to member of an unambiguous non-virtual base class type may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type, respectively.
Remove paragraph 5.4 [expr.cast]/7, which presently reads:
In addition to those conversions, the following static_cast and reinterpret_cast operations (optionally followed by a const_cast operation) may be performed using the cast notation of explicit type conversion, even if the base class type is not accessible:
- a pointer to an object of derived class type or an lvalue of derived class type may be explicitly converted to a pointer or reference to an unambiguous base class type, respectively;
- a pointer to member of derived class type may be explicitly converted to a pointer to member of an unambiguous non-virtual base class type;
- a pointer to an object of non-virtual base class type, an lvalue of non-virtual base class type, or a pointer to member of non-virtual base class type may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type, respectively.
[Voted into WP at October 2004 meeting.]
Consider this code:
struct B {}; struct D : public B { D(const B&); }; extern B& b; void f() { static_cast<const D&>(b); }
The rules for static_cast permit the conversion to "const D&" in two ways:
The first alternative is 5.2.9 [expr.static.cast]/5; the second is 5.2.9 [expr.static.cast]/2.
Presumably the first alternative is better -- it's the "simpler" conversion. The standard does not seem to make that clear.
Steve Adamczyk: I take the "Otherwise" at the beginning of 5.2.9 [expr.static.cast]/3 as meaning that the paragraph 2 interpretation is used if available, which means in your example above interpretation 2 would be used. However, that's not what EDG's compiler does, and I agree that it's not the "simpler" conversion.
Proposed Resolution (October 2003):
Move paragraph 5.2.9/5:
An lvalue of type ``cv1 B'', where B is a class type, can be cast to type ``reference to cv2 D'', where D is a class derived (clause 10 [class.derived]) from B, if a valid standard conversion from ``pointer to D'' to ``pointer to B'' exists (4.10 [conv.ptr]), cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and B is not a virtual base class of D. The result is an lvalue of type ``cv2 D.'' If the lvalue of type ``cv1 B'' is actually a sub-object of an object of type D, the lvalue refers to the enclosing object of type D. Otherwise, the result of the cast is undefined. [Example:
struct B {}; struct D : public B {}; D d; B &br = d; static_cast<D&>(br); // produces lvalue to the original d object--- end example]
before paragraph 5.2.9 [expr.static.cast]/2.
Insert Otherwise, before the text of paragraph 5.2.9 [expr.static.cast]/2 (which will become 5.2.9 [expr.static.cast]/3 after the above insertion), so that it reads:
Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_cast<T>(e) if the declaration "T t(e);" is well-formed, for some invented temporary variable t (8.5 [dcl.init]). The effect of such an explicit conversion is the same as performing the declaration and initialization and then using the temporary variable as the result of the conversion. The result is an lvalue if T is a reference type (8.3.2 [dcl.ref]), and an rvalue otherwise. The expression e is used as an lvalue if and only if the initialization uses it as an lvalue.
[Voted into WP at April 2005 meeting.]
Paragraph 5.2.9 [expr.static.cast] paragraph 10 says that:
A value of type pointer to object converted to "pointer to cv void" and back to the original pointer type will have its original value.
That guarantee should be stronger. In particular, given:
T* p1 = new T; const T* p2 = static_cast<const T*>(static_cast<void *>(p1)); if (p1 != p2) abort ();there should be no call to "abort". The last sentence of Paragraph 5.2.9 [expr.static.cast] paragraph 10 should be changed to read:
A value of type pointer to object converted to "pointer to cv void" and back to the original pointer type (or a variant of the original pointer type that differs only in the cv-qualifiers applied to the object type) will have its original value. [Example:---end example.]T* p1 = new T; const T* p2 = static_cast<const T*>(static_cast<void *>(p1)); bool b = p1 == p2; // b will have the value true.
Proposed resolution:
Change 5.2.9 [expr.static.cast] paragraph 10 as indicated:
A value of type pointer to object converted to "pointer to
cv void" and back to the original pointer
type, possibly with different cv-qualification, will have
its original value. [Example:
T* p1 = new T;
const T* p2 = static_cast<const T*>(static_cast<void *>(p1));
bool b = p1 == p2; // b will have the value true.
---end example]
Rationale: The wording "possibly with different cv-qualification" was chosen over the suggested wording to allow for changes in cv-qualification at different levels in a multi-level pointer, rather than only at the object type level.
[Voted into the WP at the September, 2008 meeting.]
There appears to be no provision in the Standard for explicit conversion of a value of a scoped enumeration type to an integral type, even though the inverse conversion is permitted. That is,
enum class E { e }; static_cast<E>(0); // #1: OK static_cast<int>(E::e); // #2: error
This is because values of scope enumeration types (intentionally) cannot be implicitly converted to integral types (4.5 [conv.prom] and 4.7 [conv.integral]) and 5.2.9 [expr.static.cast] was not updated to permit #2, although #1 is covered by paragraph 8.
Proposed resolution (June, 2008):
Add the following as a new paragraph following 5.2.9 [expr.static.cast] paragraph 8:
A value of a scoped enumeration type (7.2 [dcl.enum]) can be explicitly converted to an integral type. The value is unchanged if the original value can be represented by the specified type. Otherwise, the resulting value is unspecified.
[Voted into WP at April 2005 meeting.]
It is currently not permitted to cast directly between a pointer to function type and a pointer to object type. This conversion is not listed in 5.2.9 [expr.static.cast] and 5.2.10 [expr.reinterpret.cast] and thus requires a diagnostic to be issued. However, if a sufficiently long integral type exists (as is the case in many implementations), it is permitted to cast between pointer to function types and pointer to object types using that integral type as an intermediary.
In C the cast results in undefined behavior and thus does not require a diagnostic, and Unix C compilers generally do not issue one. This fact is used in the definition of the standard Unix function dlsym, which is declared to return void* but in fact may return either a pointer to a function or a pointer to an object. The fact that C++ compilers are required to issue a diagnostic is viewed as a "competitive disadvantage" for the language.
Suggested resolution: Add wording to 5.2.10 [expr.reinterpret.cast] allowing conversions between pointer to function and pointer to object types, if the implementation has an integral data type that can be used as an intermediary.
Several points were raised in opposition to this suggestion:
Martin O'Riordan suggested an alternative approach:
The advantage of this approach is that it would permit writing portable, well-defined programs involving such conversions. However, it breaks the current degree of compatibility between old and new casts, and it adds functionality to dynamic_cast which is not obviously related to its current meaning.
Notes from 04/00 meeting:
Andrew Koenig suggested yet another approach: specify that "no diagnostic is required" if the implementation supports the conversion.
Later note:
It was observed that conversion between function and data pointers is listed as a "common extension" in C99.
Notes on the 10/01 meeting:
It was decided that we want the conversion defined in such a way that it always exists but is always undefined (as opposed to existing only when the size relationship is appropriate, and being implementation-defined in that case). This would allow an implementation to issue an error at compile time if the conversion does not make sense.
Bill Gibbons notes that the definitions of the other similar casts are inconsistent in this regard. Perhaps they should be updated as well.
Proposed resolution (April 2003):
After 5.2.10 [expr.reinterpret.cast] paragraph 6, insert:
A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect of calling a function through a pointer to a function type (8.3.5 [dcl.fct]) that is not the same as the type used in the definition of the function is undefined. Except that converting an rvalue of type ``pointer to T1'' to the type ``pointer to T2'' (where T1 and T2 are function types) and back to its original type yields the original pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 [conv.ptr] for more details of pointer conversions. ] It is implementation defined whether a conversion from pointer to object to pointer to function and/or a conversion from pointer to function to pointer to object exist.and in paragraph 10:
An lvalue expression of type T1 can be cast to the type ``reference to T2'' if T1 and T2 are object types and an expression of type ``pointer to T1'' can be explicitly converted to the type ``pointer to T2'' using a reinterpret_cast. That is, a reference cast reinterpret_cast< T& >(x) has the same effect as the conversion *reinterpret_cast< T* >(&x) with the built-in & and * operators. The result is an lvalue that refers to the same object as the source lvalue, but with a different type. No temporary is created, no copy is made, and constructors (12.1 [class.ctor]) or conversion functions (12.3 [class.conv]) are not called.
Drafting Note:
If either conversion exists, the implementation already has to define the behavior (paragraph 3).
Notes from April 2003 meeting:
The new consensus is that if the implementation allows this cast, pointer-to-function converted to pointer-to-object converted back to the original pointer-to-function should work; anything else is undefined behavior. If the implementation does not allow the cast, it should be ill-formed.
Tom Plum is investigating a new concept, that of a "conditionally-defined" feature, which may be applicable here.
Proposed Resolution (October, 2004):
(See paper J16/04-0067 = WG21 N1627 for background material and rationale for this resolution. The resolution proposed here differs only editorially from the one in the paper.)
Insert the following into 1.3 [intro.defs] and renumber all following definitions accordingly:
1.3.2 conditionally-supported behavior
behavior evoked by a program construct that is not a mandatory requirement of this International Standard. If a given implementation supports the construct, the behavior shall be as described herein; otherwise, the implementation shall document that the construct is not supported and shall treat a program containing an occurrence of the construct as ill-formed (1.3 [intro.defs]).
Add the indicated words to 1.4 [intro.compliance] paragraph 2, bullet 2:
If a program contains a violation of any diagnosable rule, or an occurrence of a construct described herein as “conditionally-supported” or as resulting in “conditionally-supported behavior” when the implementation does not in fact support that construct, a conforming implementation shall issue at least one diagnostic message, except that
Insert the following as a new paragraph following 5.2.10 [expr.reinterpret.cast] paragraph 7:
Converting a pointer to a function to a pointer to an object type or vice versa evokes conditionally-supported behavior. In any such conversion supported by an implementation, converting from an rvalue of one type to the other and back (possibly with different cv-qualification) shall yield the original pointer value; mappings between pointers to functions and pointers to objects are otherwise implementation-defined.
Change 7.4 [dcl.asm] paragraph 1 as indicated:
The meaning of an An asm declaration evokes conditionally-supported behavior. If supported, its meaning is implementation-defined.
Change 7.5 [dcl.link] paragraph 2 as indicated:
The string-literal indicates the required language linkage. The meaning of the string-literal is implementation-defined. A linkage-specification with a string that is unknown to the implementation is ill-formed. This International Standard specifies the semantics of C and C++ language linkage. Other values of the string-literal evoke conditionally-supported behavior, with implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-literal that is unknown to the implementation requires a diagnostic. When the string-literal in a linkage-specification names a programming language, the spelling of the programming language's name is implementation-defined. [Note: It is recommended that the spelling be taken from the document defining that language, for example Ada (not ADA) and Fortran or FORTRAN (depending on the vintage). The semantics of a language linkage other than C++ or C are implementation-defined. ]
Change 14 [temp] paragraph 4 as indicated:
A template, a template explicit specialization (14.7.3 [temp.expl.spec]), or a class template partial specialization shall not have C linkage. If the linkage of one of these is something other than C or C++, the behavior is implementation-defined result is conditionally-supported behavior, with implementation-defined semantics.
[Voted into WP at April, 2006 meeting.]
Is reinterpret_cast<T*>(null_pointer_constant) guaranteed to yield the null pointer value of type T*?
I think a committee clarification is needed. Here's why: 5.2.10 [expr.reinterpret.cast] par. 8 talks of "null pointer value", not "null pointer constant", so it would seem that
reinterpret_cast<T*>(0)is a normal int->T* conversion, with an implementation-defined result.
However a little note to 5.2.10 [expr.reinterpret.cast] par. 5 says:
Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but converting other expressions that happen to have value zero need not yield a null pointer.Where is this supported in normative text? It seems that either the footnote or paragraph 8 doesn't reflect the intent.
SUGGESTED RESOLUTION: I think it would be better to drop the footnote #64 (and thus the special case for ICEs), for two reasons:
a) it's not normative anyway; so I doubt anyone is relying on the guarantee it hints at, unless that guarantee is given elsewhere in a normative part
b) users expect reinterpret_casts to be almost always implementation dependent, so this special case is a surprise. After all, if one wants a null pointer there's static_cast. And if one wants reinterpret_cast semantics the special case requires doing some explicit cheat, such as using a non-const variable as intermediary:
int v = 0; reinterpret_cast<T*>(v); // implementation defined reinterpret_cast<T*>(0); // null pointer value of type T* const int w = 0; reinterpret_cast<T*>(w); // null pointer value of type T*
It seems that not only that's providing a duplicate functionality, but also at the cost to hide what seems the more natural one.
Notes from October 2004 meeting:
This footnote was added in 1996, after the invention of reinterpret_cast, so the presumption must be that it was intentional. At this time, however, the CWG feels that there is no reason to require that reinterpret_cast<T*>(0) produce a null pointer value as its result.
Proposed resolution (April, 2005):
Delete the footnote in 5.2.10 [expr.reinterpret.cast] paragraph 5 reading,
Converting an integral constant expression (5.20 [expr.const]) with value zero always yields a null pointer (4.10 [conv.ptr]), but converting other expressions that happen to have value zero need not yield a null pointer.
Add the indicated note to 5.2.10 [expr.reinterpret.cast] paragraph 8:
The null pointer value (4.10 [conv.ptr]) is converted to the null pointer value of the destination type. [Note: A null pointer constant, which has integral type, is not necessarily converted to a null pointer value. —end note]
[Voted into WP at October 2003 meeting.]
An assignment returns an lvalue for its left operand. If that operand refers to a bit field, can the "&" operator be applied to the assignment? Can a reference be bound to it?
struct S { int a:3; int b:3; int c:3; }; void f() { struct S s; const int *p = &(s.b = 0); // (a) const int &r = (s.b = 0); // (b) int &r2 = (s.b = 0); // (c) }
Notes from the 4/02 meeting:
The working group agreed that this should be an error.
Proposed resolution (October 2002):
In 5.3.2 [expr.pre.incr] paragraph 1 (prefix "++" and "--" operators), change
The value is the new value of the operand; it is an lvalue.to
The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a bit-field.
In 5.16 [expr.cond] paragraph 4 ("?" operator), add the indicated text:
If the second and third operands are lvalues and have the same type, the result is of that type and is an lvalue and it is a bit-field if the second or the third operand is a bit-field, or if both are bit-fields.
In 5.18 [expr.ass] paragraph 1 (assignment operators) add the indicated text (the original text is as updated by issue 221, which is DR but not in TC1):
The assignment operator (=) and the compound assignment operators all group right-to-left. All require a modifiable lvalue as their left operand and return an lvalue with the type and value of the left operand after the assignment has taken place. The result in all cases is a bit-field if the left operand is a bit-field.
Note that issue 222 adds (non-conflicting) text at the end of this same paragraph (5.18 [expr.ass] paragraph 1).
In 5.19 [expr.comma] paragraph 1 (comma operator), change:
The type and value of the result are the type and value of the right operand; the result is an lvalue if its right operand is.to
The type and value of the result are the type and value of the right operand; the result is an lvalue if the right operand is an lvalue, and is a bit-field if the right operand is an lvalue and a bit-field.
Relevant related text (no changes required):
5.3.1 [expr.unary.op] paragraph 4:
The operand of & shall not be a bit-field.
8.5.3 [dcl.init.ref] paragraph 5, bullet 1, sub-bullet 1 (regarding binding a reference to an lvalue):
... is an lvalue (but is not a bit-field) ...
[Voted into the WP at the September, 2008 meeting.]
[Picked up by evolution group at October 2002 meeting.]
(See also issue 476.)
The size requested by an array allocation is computed by multiplying the number of elements requested by the size of each element and adding an implementation-specific amount for overhead. It is possible for this calculation to overflow. Is an implementation required to detect this situation and, for instance, throw std::bad_alloc?
On one hand, the maximum allocation size is one of the implementation limits specifically mentioned in Annex B [implimits], and, according to 1.4 [intro.compliance] paragraph 2, an implementation is only required to "accept and correctly execute" programs that do not violate its resource limits.
On the other hand, it is difficult or impossible for user code to detect such overflows in a portable fashion, especially given that the array allocation overhead is not fixed, and it would be a service to the user to handle this situation gracefully.
Rationale (04/01):
Each implementation is required to document the maximum size of an object (Annex B [implimits]). It is not difficult for a program to check array allocations to ensure that they are smaller than this quantity. Implementations can provide a mechanism in which users concerned with this problem can request extra checking before array allocations, just as some implementations provide checking for array index and pointer validity. However, it would not be appropriate to require this overhead for every array allocation in every program.
(See issue 624 for a request to reconsider this resolution.)
Note (March, 2008):
The Evolution Working Group has accepted the intent of this issue and referred it to CWG for action for C++0x (see paper J16/07-0033 = WG21 N2173).
Proposed resolution (September, 2008):
This issue is resolved by the resolution of issue 624, given in paper N2757.
[Voted into WP at October 2005 meeting.]
In 5.3.4 [expr.new], the standard says that the expression in an array-new has to have integral type. There's already a DR (issue 74) that says it should also be allowed to have enumeration type. But, it should probably also say that it can have a class type with a single conversion to integral type; in other words the same thing as in 6.4.2 [stmt.switch] paragraph 2.
Suggested resolution:
In 5.3.4 [expr.new] paragraph 6, replace "integral or enumeration type (3.9.1 [basic.fundamental])" with "integral or enumeration type (3.9.1 [basic.fundamental]), or a class type for which a single conversion function to integral or enumeration type exists".
Proposed resolution (October, 2004):
Change 5.3.4 [expr.new] paragraph 6 as follows:
Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.20 [expr.const]) and evaluate to a strictly positive value. The expression in a direct-new-declarator shall have be of integral type, or enumeration type (3.9.1), or a class type for which a single conversion function to integral or enumeration type exists (12.3 [class.conv]). If the expression is of class type, the expression is converted by calling the conversion function, and the result of the conversion is used in place of the original expression. The value of the expression shall bewith a non-negative value. [Example: ...
Proposed resolution (April, 2005):
Change 5.3.4 [expr.new] paragraph 6 as follows:
Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.20 [expr.const]) and evaluate to a strictly positive value. The expression in a direct-new-declarator shall have integral or enumeration type (3.9.1 [basic.fundamental]) with a non-negative value be of integral type, enumeration type, or a class type for which a single conversion function to integral or enumeration type exists (12.3 [class.conv]). If the expression is of class type, the expression is converted by calling that conversion function, and the result of the conversion is used in place of the original expression. If the value of the expression is negative, the behavior is undefined. [Example: ...
[Voted into WP at October 2004 meeting.]
What does this example do?
#include <stdio.h> #include <stdlib.h> struct A { void* operator new(size_t alloc_size, size_t dummy=0) { printf("A::operator new()\n"); return malloc(alloc_size); }; void operator delete(void* p, size_t s) { printf("A::delete %d\n", s); }; A() {printf("A constructing\n"); throw 2;}; }; int main() { try { A* ap = new A; delete ap; } catch(int) {printf("caught\n"); return 1;} }
The fundamental issue here is whether the deletion-on-throw is driven by the syntax of the new (placement or non-placement) or by signature matching. If the former, the operator delete would be called with the second argument equal to the size of the class. If the latter, it would be called with the second argument 0.
Core issue 127 (in TC1) dealt with this topic. It removed some wording in 15.2 [except.ctor] paragraph 2 that implied a syntax-based interpretation, leaving wording in 5.3.4 [expr.new] paragraph 19 that is signature-based. But there is no accompanying rationale to confirm an explicit choice of the signature-based approach.
EDG and g++ get 0 for the second argument, matching the presumed core issue 127 resolution. But maybe this should be revisited.
Notes from October 2003 meeting:
There was widespread agreement that the compiler shouldn't just silently call the delete with either of the possible values. In the end, we decided it's smarter to issue an error on this case and force the programmer to say what he means.
Mike Miller's analysis of the status quo: 3.7.4.2 [basic.stc.dynamic.deallocation] paragraph 2 says that "operator delete(void*, std::size_t)" is a "usual (non-placement) deallocation function" if the class does not declare "operator delete(void*)." 3.7.4.1 [basic.stc.dynamic.allocation] does not use the same terminology for allocation functions, but the most reasonable way to understand the uses of the term "placement allocation function" in the Standard is as an allocation function that has more than one parameter and thus can (but need not) be called using the "new-placement" syntax described in 5.3.4 [expr.new]. (In considering issue 127, the core group discussed and endorsed the position that, "If a placement allocation function has default arguments for all its parameters except the first, it can be called using non-placement syntax.")
5.3.4 [expr.new] paragraph 19 says that any non-placement deallocation function matches a non-placement allocation function, and that a placement deallocation function matches a placement allocation function with the same parameter types after the first -- i.e., a non-placement deallocation function cannot match a placement allocation function. This makes sense, because non-placement ("usual") deallocation functions expect to free memory obtained from the system heap, which might not be the case for storage resulting from calling a placement allocation function.
According to this analysis, the example shows a placement allocation function and a non-placement deallocation function, so the deallocation function should not be invoked at all, and the memory will just leak.
Proposed Resolution (October 2003):
Add the following text at the end of 5.3.4 [expr.new] paragraph 19:
If the lookup finds the two-parameter form of a usual deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]), and that function, considered as a placement deallocation function, would have been selected as a match for the allocation function, the program is ill-formed. [Example:--- end example]struct S { // Placement allocation function: static void* operator new(std::size_t, std::size_t); // Usual (non-placement) deallocation function: static void operator delete(void*, std::size_t); }; S* p = new (0) S; // ill-formed: non-placement deallocation function matches // placement allocation function
[Voted into the WP at the September, 2008 meeting (resolution in paper N2757).]
Issue 256 was closed without action, principally on the the grounds that an implementation could provide a means (command-line option, #pragma, etc.) for requesting that the allocation size be checked for validity, but that “it would not be appropriate to require this overhead for every array allocation in every program.”
This rationale may be giving too much weight to the overhead such a check would add, especially when compared to the likely cost of actually doing the storage allocation. In particular, the test essentially amounts to something like
if (max_allocation_size / sizeof(T) < num_elements) throw std::bad_alloc();
(noting that max_allocation_size/sizeof(T) is a compile-time constant). It might make more sense to turn the rationale around and require the check, assuming that implementations could provide a mechanism for suppressing it if needed.
Suggested resolution:
In 5.3.4 [expr.new] paragraph 7, add the following words before the example:
If the value of the expression is such that the size of the allocated object would exceed the implementation-defined limit, an exception of type std::bad_alloc is thrown and no storage is obtained.
Note (March, 2008):
The Evolution Working Group has accepted the intent of issue 256 and referred it to CWG for action for C++0x (see paper J16/07-0033 = WG21 N2173).
Proposed resolution (March, 2008):
As suggested.
Notes from the June, 2008 meeting:
The CWG felt that this situation should not be treated like an out-of-memory situation and thus an exception of type std::bad_alloc (or, alternatively, returning a null pointer for a throw() allocator) would not be appropriate.
Proposed resolution (June, 2008):
Change 5.3.4 [expr.new] paragraph 8 as follows:
If the value of the expression in a direct-new-declarator is such that the size of the allocated object would exceed the implementation-defined limit, no storage is obtained and the new-expression terminates by throwing an exception of a type that would match a handler (15.3 [except.handle]) of type std::length_error (19.2.4 [length.error]). Otherwise, if When the value of the that expression in a direct-new-declarator is zero, the allocation function is called to allocate an array with no elements.
[Drafting note: std::length_error is thrown by std::string and std::vector and thus appears to be the right choice for the exception to be thrown here.]
[Voted into the WP at the June, 2008 meeting.]
For delete expressions, 5.3.5 [expr.delete] paragraph 1 says
The operand shall have a pointer type, or a class type having a single conversion function to a pointer type.
However, paragraph 3 of that same section says:
if the static type of the operand is different from its dynamic type, the static type shall be a base class of the operand's dynamic type and the static type shall have a virtual destructor or the behavior is undefined.
Since the operand must be of pointer type, its static type is necessarily the same as its dynamic type. That clause is clearly referring to the object being pointed at, and not to the pointer operand itself.
Correcting the wording gets a little complicated, because dynamic and static types are attributes of expressions, not objects, and there's no sub-expression of a delete-expression which has the relevant types.
Suggested resolution:
then there is a static type and a dynamic type that the hypothetical expression (* const-expression) would have. If that static type is different from that dynamic type, then that static type shall be a base class of that dynamic type, and that static type shall have a virtual destructor, or the behavior is undefined.
There's precedent for such use of hypothetical constructs: see 5.10 [expr.eq] paragraph 2, and 8.1 [dcl.name] paragraph 1.
10.3 [class.virtual] paragraph 3 has a similar problem. It refers to
the type of the pointer or reference denoting the object (the static type).
The type of the pointer is different from the type of the reference, both of which are different from the static type of '*pointer', which is what I think was actually intended. Paragraph 6 contains the exact same wording, in need of the same correction. In this case, perhaps replacing "pointer or reference" with "expression" would be the best fix. In order for this fix to be sufficient, pointer->member must be considered equivalent to (*pointer).member, in which case the "expression" referred to would be (*pointer).
12.5 [class.free] paragraph 4 says thatif a delete-expression is used to deallocate a class object whose static type has...
This should be changed to
if a delete-expression is used to deallocate a class object through a pointer expression whose dereferenced static type would have...
The same problem occurs later, when it says that the
static and dynamic types of the object shall be identical
In this case you could replace "object" with "dereferenced pointer expression".
Footnote 104 says that
5.3.5 [expr.delete] requires that ... the static type of the delete-expression's operand be the same as its dynamic type.
This would need to be changed to
the delete-expression's dereferenced operand
Proposed resolution (December, 2006):
Change 5.3.5 [expr.delete] paragraph 3 as follows:
In the first alternative (delete object), if the static type of the operand object to be deleted is different from its dynamic type, the static type shall be a base class of the operand's dynamic type of the object to be deleted and the static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined.
Change the footnote in 12.5 [class.free] paragraph 4 as follows:
A similar provision is not needed for the array version of operator delete because 5.3.5 [expr.delete] requires that in this situation, the static type of the delete-expression's operand object to be deleted be the same as its dynamic type.
Change the footnote in 12.5 [class.free] paragraph 5 as follows:
If the static type in the delete-expression of the object to be deleted is different from the dynamic type and the destructor is not virtual the size might be incorrect, but that case is already undefined; see 5.3.5 [expr.delete].
[Drafting notes: No change is required for 10.3 [class.virtual] paragraph 7 because “the type of the pointer” includes the pointed-to type. No change is required for 12.5 [class.free] paragraph 4 because “...used to deallocate a class object whose static type...” already refers to the object (and not the operand expression).]
[Voted into WP at April 2003 meeting.]
In a couple of comp.std.c++ threads, people have asked whether the Standard guarantees that the deallocation function will be called in a delete-expression if the destructor throws an exception. Most/all people have expressed the opinion that the deallocation function must be called in this case, although no one has been able to cite wording in the Standard supporting that view.
#include <new.h> #include <stdio.h> #include <stdlib.h> static int flag = 0; inline void operator delete(void* p) throw() { if (flag) printf("in deallocation function\n"); free(p); } struct S { ~S() { throw 0; } }; void f() { try { delete new S; } catch(...) { } } int main() { flag=1; f(); flag=0; return 0; }
Proposed resolution (October 2002):
Add to 5.3.5 [expr.delete] paragraph 7 the highlighted text:
The delete-expression will call a deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]) [Note: The deallocation function is called regardless of whether the destructor for the object or some element of the array throws an exception. ]
[Voted into WP at October 2005 meeting.]
After some discussion in comp.lang.c++.moderated we came to the conclusion that there seems to be a defect in 5.3.5 [expr.delete]/4, which says:
The cast-expression in a delete-expression shall be evaluated exactly once. If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus rendering the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indeterminate. ]
In the second sentence, the term "null pointer constant" should be changed to "null pointer". In its present form, the passage claims that the deallocation function will deallocate the storage refered to by a null pointer that did not come from a null pointer constant in the delete expression. Besides, how can the null pointer constant be the operand of a delete expression, as "delete 0" is an error because delete requires a pointer type or a class type having a single conversion function to a pointer type?
See also issue 348.
Proposed resolution:
Change the indicated sentence of 5.3.5 [expr.delete] paragraph 4 as follows:
If the delete-expression calls the implementation deallocation function (3.7.4.2 [basic.stc.dynamic.deallocation]), and if the value of the operand of the delete expression is not the a null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus rendering the pointer invalid.
Notes from October 2004 meeting:
This wording is superseded by, and this issue will be resolved by, the resolution of issue 348.
Proposed resolution (April, 2005):
This issue is resolved by the resolution of issue 348.
[Voted into the WP at the September, 2008 meeting.]
The specification for the alignof operator (5.3.6 [expr.alignof]) does not forbid function types as operands, although it probably should.
Proposed resolution (March, 2008):
The issue, as described, is incorrect. The requirement in 5.3.6 [expr.alignof] is for “a complete object type,” so a function type is already forbidden. However, the existing text does have a problem in this requirement in that it does not allow a reference type, as anticipated by paragraph 3. Consequently, the proposal is to change 5.3.6 [expr.alignof] paragraph 1 as indicated:
An alignof expression yields the alignment requirement of its operand type. The operand shall be a type-id representing a complete object type or a reference to a complete object type.
[Voted into WP at April, 2007 meeting.]
5.4 [expr.cast] paragraph 6 says,
The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type”. The destination type of a cast using the cast notation can be “pointer to incomplete class type”. In such cases, even if there is a inheritance relationship between the source and destination classes, whether the static_cast or reinterpret_cast interpretation is used is unspecified.
The wording seems to allow the following:
casting from void pointer to incomplete type
struct A; struct B; void *v; A *a = (A*)v; // allowed to choose reinterpret_cast
variant application of static or reinterpret casting
B *b = (B*)a; // compiler can choose static_cast here A *aa = (A*)b; // compiler can choose reinterpret_cast here assert(aa == a); // might not hold
ability to somehow choose static_cast
It's not entirely clear how a compiler can
choose static_cast as 5.4 [expr.cast] paragraph 6
seems to allow. I believe the intent of 5.4 [expr.cast]
paragraph 6 is to force the use of reinterpret_cast when
either are incomplete class types and static_cast iff the
compiler knows both types and there is a non-ambiguous
hierarchy-traversal between that cast (or maybe not, core issue 242 talks about this). I cannot see any
other interpretation because it isn't intuitive, every compiler I've
tried agrees with me, and neither standard pointer conversions
(4.10 [conv.ptr] paragraph 3) nor static_cast
(5.2.9 [expr.static.cast] paragraph 5) talk about incomplete
class types. If the committee agrees with me, I would like to see
Proposed resolution (April, 2006):
Change 5.4 [expr.cast] paragraph 6 as indicated:
The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type.” The destination type of a cast using the cast notation can be “pointer to incomplete class type.” In such cases, even if there is a inheritance relationship between the source and destination classes, whether the static_cast or reinterpret_cast interpretation is used is unspecified. If both the operand and destination types are class types and one or both are incomplete, it is unspecified whether the static_cast or the reinterpret_cast interpretation is used, even if there is an inheritance relationship between the two classes. [Note: For example, if the classes were defined later in the translation unit, a multi-pass compiler would be permitted to interpret a cast between pointers to the classes as if the class types were complete at that point. —end note]
[Voted into WP at October 2005 meeting.]
5.5 [expr.mptr.oper] paragraph 5 contains the following example:
struct S { mutable int i; }; const S cs; int S::* pm = &S::i; // pm refers to mutable member S::i cs.*pm = 88; // ill-formed: cs is a const object
The const object cs is not explicitly initialized, and class S does not have a user-declared default constructor. This makes the code ill-formed as per 8.5 [dcl.init] paragraph 9.
Proposed resolution (April, 2005):
Change the example in 5.5 [expr.mptr.oper] paragraph 5 to read as follows:
struct S { S() : i(0) { } mutable int i; }; void f() { const S cs; int S::* pm = &S::i; // pm refers to mutable member S::i cs.*pm = 88; // ill-formed: cs is a const object }
[Voted into the WP at the September, 2008 meeting as part of paper N2757.]
The current Standard leaves it implementation-defined whether integer division rounds the result toward 0 or toward negative infinity and thus whether the result of % may be negative. C99, apparently reflecting (nearly?) unanimous hardware practice, has adopted the rule that integer division rounds toward 0, thus requiring that the result of -1 % 5 be -1. Should the C++ Standard follow suit?
On a related note, does INT_MIN % -1 invoke undefined behavior? The % operator is defined in terms of the / operator, and INT_MIN / -1 overflows, which by 5 [expr] paragraph 5 causes undefined behavior; however, that is not the “result” of the % operation, so it's not clear. The wording of 5.6 [expr.mul] paragraph 4 appears to allow % to cause undefined behavior only when the second operand is 0.
Proposed resolution (August, 2008):
Change 5.6 [expr.mul] paragraph 4 as follows:
The binary / operator yields the quotient, and the binary % operator yields the remainder from the division of the first expression by the second. If the second operand of / or % is zero the behavior is undefined; otherwise (a/b)*b + a%b is equal to a. If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined. [Footnote: According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rules defined in the ISO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero. —end footnote]. For integral operands, the / operator yields the algebraic quotient with any fractional part discarded; [Footnote: This is often called “truncation towards zero.” —end footnote] if the quotient a/b is representable in the type of the result, (a/b)*b + a%b is equal to a.
[Drafting note: see C99 6.5.5 paragraph 6.]
[Voted into the WP at the June, 2008 meeting.]
The actual semantics of arithmetic comparison — e.g., whether 1 < 2 yields true or false — appear not to be specified anywhere in the Standard. The C Standard has a general statement that
Each of the operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.
There is no corresponding statement in the C++ Standard.
Proposed resolution (February, 2008):
Append the following paragraph to the end of 5.9 [expr.rel]:
If both operands (after conversions) are of arithmetic type, each of the operators shall yield true if the specified relation is true and false if it is false.
Append the following paragraph to the end of 5.10 [expr.eq]:
Each of the operators shall yield true if the specified relation is true and false if it is false.
[Voted into WP at October 2005 meeting.]
The problem occurs when the value of the operator is determined to be an rvalue, the selected argument is an lvalue, the type is a class type and a non-const member is invoked on the modifiable rvalue result.
struct B { int v; B (int v) : v(v) { } void inc () { ++ v; } }; struct D : B { D (int v) : B(v) { } }; B b1(42); (0 ? B(13) : b1).inc(); assert(b1.v == 42);
The types of the second and third operands are the same and one is an rvalue. Nothing changes until p6 where an lvalue to rvalue conversion is performed on the third operand. 12.2 [class.temporary] states that an lvalue to rvalue conversion produces a temporary and there is nothing to remove it. It seems clear that the assertion must pass, yet most implementations fail.
There seems to be a defect in p3 b2 b1. First, the conditions to get here and pass the test.
If E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater cv-qualification than, the cv-qualification of T1.
If both E1 and E2 are lvalues, passing the conditions here also passes the conditions for p3 b1. Thus, at least one is an rvalue. The case of two rvalues is not interesting and the action is covered by the case when E1 is an rvalue.
(0 ? D(13) : b1).inc(); assert(b1.v == 42);
E1 is changed to an rvalue of type T2 that still refers to the original source class object (or the appropriate subobject thereof). [Note: that is, no copy is made. ]
Having changed the rvalue to base type, we are back to the above case where an lvalue to rvalue conversion is required on the third operand at p6. Again, most implementations fail.
The remaining case, E1 an lvalue and E2 an rvalue, is the defect.
D d1(42); (0 ? B(13) : d1).inc(); assert(d1.v == 42);
The above quote states that an lvalue of type T1 is changed to an rvalue of type T2 without creating a temporary. This is in contradiction to everything else in the standard about lvalue to rvalue conversions. Most implementations pass in spite of the defect.
The usual accessible and unambiguous is missing from the base class.
There seems to be two possible solutions. Following other temporary creations would produce a temporary rvalue of type T1 and change it to an rvalue of type T2. Keeping the no copy aspect of this bullet intact would change the lvalue of type T1 to an lvalue of type T2. In this case the lvalue to rvalue conversion would happen in p6 as usual.
Suggested wording for p3 b2 b1
The base part:
If E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or an accessible and unambiguous base class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater cv-qualification than, the cv-qualification of T1. If the conversion is applied:
The same type temporary version:
If E1 is an lvalue, an lvalue to rvalue conversion is applied. The resulting or original rvalue is changed to an rvalue of type T2 that refers to the same class object (or the appropriate subobject thereof). [Note: that is, no copy is made in changing the type of the rvalue. ]
The never copy version:
The lvalue(rvalue) E1 is changed to an lvalue(rvalue) of type T2 that refers to the original class object (or the appropriate subobject thereof). [Note: that is, no copy is made. ]
The test case was posted to clc++m and results for implementations were reported.
#include <cassert> struct B { int v; B (int v) : v(v) { } void inc () { ++ v; } }; struct D : B { D (int v) : B(v) { } }; int main () { B b1(42); D d1(42); (0 ? B(13) : b1).inc(); assert(b1.v == 42); (0 ? D(13) : b1).inc(); assert(b1.v == 42); (0 ? B(13) : d1).inc(); assert(d1.v == 42); } // CbuilderX(EDG301) FFF Rob Williscroft // ICC-8.0 FFF Alexander Stippler // COMO-4.301 FFF Alexander Stippler // BCC-5.4 FFP Rob Williscroft // BCC32-5.5 FFP John Potter // BCC32-5.65 FFP Rob Williscroft // VC-6.0 FFP Stephen Howe // VC-7.0 FFP Ben Hutchings // VC-7.1 FFP Stephen Howe // OpenWatcom-1.1 FFP Stephen Howe // Sun C++-6.2 PFF Ron Natalie // GCC-3.2 PFP John Potter // GCC-3.3 PFP Alexander Stippler // GCC-2.95 PPP Ben Hutchings // GCC-3.4 PPP Florian Weimer
I see no defect with regards to lvalue to rvalue conversions; however, there seems to be disagreement about what it means by implementers. It may not be surprising because 5.16 and passing a POD struct to an ellipsis are the only places where an lvalue to rvalue conversion applies to a class type. Most lvalue to rvalue conversions are on basic types as operands of builtin operators.
Notes from the March 2004 meeting:
We decided all "?" operators that return a class rvalue should copy the second or third operand to a temporary. See issue 86.
Proposed resolution (October 2004):
Change 5.16 [expr.cond] paragraph 3 bullet 2 sub-bullet 1 as follows:
if E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class of, the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater cv-qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to an rvalue of type T2 that still refers to the original source class object (or the appropriate subobject thereof). [Note: that is, no copy is made. —end note] by copy-initializing a temporary of type T2 from E1 and using that temporary as the converted operand.
Change 5.16 [expr.cond] paragraph 6 bullet 1 as follows:
The second and third operands have the same type; the result is of that type. If the operands have class type, the result is an rvalue temporary of the result type, which is copy-initialized from either the second operand or the third operand depending on the value of the first operand.
Change 4.1 [conv.lval] paragraph 2 as follows:
The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue conversion occurs within the operand of sizeof (5.3.3 [expr.sizeof]) the value contained in the referenced object is not accessed, since that operator does not evaluate its operand. Otherwise, if the lvalue has a class type, the conversion copy-initializes a temporary of type T from the lvalue and the result of the conversion is an rvalue for the temporary. Otherwise, the value contained in the object indicated by the lvalue is the rvalue result.
[Note: this wording partially resolves issue 86. See also issue 462.]
[Voted into the WP at the June, 2008 meeting as paper N2634.]
I've seen some pieces of code recently that put complex expressions involving overload resolution inside sizeof operations in constant expressions in templates.
5.20 [expr.const] paragraph 1 implies that some kinds of nonconstant expressions are allowed inside a sizeof in a constant expression, but it's not clear that this was intended to extend all the way to things like overload resolution. Allowing such things has some hidden costs. For example, name mangling has to be able to represent all operators, including calls, and not just the operators that can appear in constant expressions.
template <int I> struct A {}; char xxx(int); char xxx(float); template <class T> A<sizeof(xxx((T)0))> f(T){} int main() { f(1); }
If complex expressions are indeed allowed, it should be because of an explicit committee decision rather than because of some looseness in this section of the standard.
Notes from the 4/02 meeting:
Any argument for restricting such expressions must involve a cost/benefit ratio: a restriction would be palatable only if it causes minimum hardship for users and allows a substantial reduction in implementation cost. If we propose a restriction, it must be one that library writers can live with.
Lots of these cases fail with current compilers, so there can't be a lot of existing code using them. We plan to find out what cases there are in libraries like Loki and Boost.
We noted that in many cases one can move the code into a class to get the same result. The implementation problem comes up when the expression-in-sizeof is in a template deduction context or part of a template signature. The problem cases are ones where an error causes deduction to fail, as opposed to contexts where an error causes a diagnostic. The latter contexts are easier to handle; however, there are situations where "fail deduction" may be the desired behavior.
Notes from the April 2003 meeting:
Here is a better example:
extern "C" int printf(const char *, ...); char f(int); int f(...); // Approach 1 -- overload resolution in template class // No problem template <class T> struct conv_int { static const bool value = (sizeof(f(T())) == 1); }; // Approach 2 -- overload resolution in type deduction // Difficult template <int I> struct A { static const int value = I; }; template <class T> bool conv_int2(A<sizeof(f(T()))> p) { return p.value == 1; } template<typename T> A<sizeof(f(T()))> make_A() { return A<sizeof(f(T()))>(); } int main() { printf("short: %d\n", conv_int<short>::value); printf("int *: %d\n", conv_int<int *>::value); printf("short: %d\n", conv_int2<short>(make_A<short>())); printf("int *: %d\n", conv_int2<int *>(make_A<int*>())); }
The core working group liked the idea of a restriction that says that expressions inside sizeof in template signature contexts must be otherwise valid as nontype template argument expressions (i.e., integer operations only, limited casts). This of course is subject to whether users can live with that restriction. This topic was brought up in full committee, but there was limited feedback from other groups.
It was also noted that if typeof (whatever it is called) is added, there may be a similar issue there.
Note (March, 2005):
Dave Abrahams (quoting a Usenet posting by Vladimir Marko): The decltype and auto proposal (revision 3: N1607) presents
template <class T,class U> decltype((*(T*)0)+(*(U*)0)) add(const T& t,const U& u);
as a valid declaration (if the proposal is accepted). If [the restrictions in the April, 2003 note] really applied to decltype, the declaration above would be invalid. AFAICT every non-trivial use of decltype in a template function declaration would be invalid. And for me this would render my favorite proposal useless.
I would propose to allow any kind of expression inside sizeof (and decltype) and explicitly add sizeof (and decltype) expressions involving template-parameters to non-deduced contexts (add a bullet to 14.8.2.4 [temp.deduct.partial] paragraph 4).
Jaakko Jarvi: Just reinforcing that this is important and hope for insights. The topic is discussed a bit on page 10 of the latest revision of the proposal (N1705). Here's a quote from the proposal:
However, it is crucial that no restrictions are placed on what kinds of expressions are allowed inside decltype, and therefore also inside sizeof. We suggest that issue 339 is resolved to require the compiler to fail deduction (apply the SFINAE principle), and not produce an error, for as large set of invalid expressions in operands of sizeof or decltype as is possible to comfortably implement. We wish that implementors aid in classifying the kinds of expressions that should produce errors, and the kinds that should lead to failure of deduction.
Notes from the April, 2007 meeting:
The CWG is pursuing a compromise proposal, to which the EWG has tentatively agreed, which would allow arbitrary expressions in the return types of function templates but which would restrict the expressions that participate in the function signature (and thus in overload resolution) to those that can be used as non-type template arguments. During deduction and overload resolution, these complex return types would be ignored; that is, there would be no substitution of the deduced template arguments into the return type at this point. If such a function were selected by overload resolution, however, a substitution failure in the return type would produce a diagnostic rather than a deduction failure.
This approach works when doing overload resolution in the context of a function call, but additional tricks (still being defined) are needed in other contexts such as friend function declaration matching and taking the address of a function, in which the return type does play a part.
Notes from the July, 2007 meeting:
The problem is whether arbitrary expressions (for example, ones that include overload resolution) are allowed in template deduction contexts, and, if so, which expression errors are SFINAE failures and which are hard errors.
This issue deals with arbitrary expressions inside sizeof in deduction contexts. That's a fringe case right now (most compilers don't accept them). decltype makes the problem worse, because the standard use case is one that involves overload resolution. Generalized constant expressions make it worse yet, because they allow overload resolution and class types to show up in any constant expression in a deduction context.
Why is this an issue? Why don't we just say everything is allowed and be done with it?
At the April, 2007 meeting, we were headed toward a solution that imposed a restriction on expressions in deduction contexts, but such a restriction seems to really hamper uses of constexpr functions. So we're now proposing that fully general expressions be allowed, and that most errors in such expressions be treated as SFINAE failures rather than errors.
One issue with writing Standard wording for that is how to define “most.” There's a continuum of errors, some errors being clearly SFINAE failures, and some clearly “real” errors, with lots of unclear cases in between. We decided it's easier to write the definition by listing the errors that are not treated as SFINAE failures, and the list we came up with is as follows:
Everything else produces a SFINAE failure rather than a hard error.
There was broad consensus that this felt like a good solution, but that feeling was mixed with trepidation on several fronts:
We will be producing wording for the Working Draft for the October, 2007 meeting.
(See also issue 657.)
[Voted into WP at October 2003 meeting.]
According to 16.1 [cpp.cond] paragraph 1, the if-group
#if "Hello, world"
is well-formed, since it is an integral constant expression. Since that may not be obvious, here is why:
5.20 [expr.const] paragraph 1 says that an integral constant expression may involve literals (2.13 [lex.literal]); "Hello, world" is a literal. It restricts operators to not use certain type conversions; this expression does not use type conversions. It further disallows functions, class objects, pointers, ... - this expression is none of those, since it is an array.
However, 16.1 [cpp.cond] paragraph 6 does not explain what to do with this if-group, since the expression evaluates neither to false(zero) nor true(non-zero).
Proposed resolution (October 2002):
Change the beginning of the second sentence of 5.20 [expr.const] paragraph 1 which currently reads
An integral constant-expression can involve only literals (2.13 [lex.literal]), ...to say
An integral constant-expression can involve only literals of arithmetic types (2.13 [lex.literal], 3.9.1 [basic.fundamental]), ...
[Voted into WP at the October, 2006 meeting.]
The following translation unit appears to be well-formed.
int x[true?throw 4:5];
According to 5.20 [expr.const], this appears to be an integral constant expression: it is a conditional expression, involves only literals, and no assignment, increment, decrement, function-call, or comma operators. However, if this is well-formed, the standard gives no meaning to this declaration, since the array bound (8.3.4 [dcl.array] paragraph 1) cannot be computed.
I believe the defect is that throw expressions should also be banned from constant expressions.
Notes from October 2002 meeting:
We should also check on new and delete.
Notes from the April, 2005 meeting:
Although it could be argued that all three of these operators potentially involve function calls — throw to std::terminate, new and delete to the corresponding allocation and deallocation functions — and thus would already be excluded from constant expressions, this reasoning was considered to be too subtle to allow closing the issue with no change. A modification that explicitly clarifies the status of these operators will be drafted.
Proposed resolution (October, 2005):
Change the last sentence of 5.20 [expr.const] as indicated:
In particular, except in sizeof expressions, functions, class objects, pointers, or references shall not be used, and assignment, increment, decrement, function-call function call (including new-expressions and delete-expressions), or comma operators, or throw-expressions shall not be used.
Note: this sentence is also changed by the resolution of issue 530.
[Voted into WP at April 2005 meeting.]
I'm looking at 5.20 [expr.const]. I see:
An integral constant-expression can involve only ... const variables or static data members of integral or enumeration types initialized with constant expressions ...
Shouldn't that be "const non-volatile"?
It seems weird to say that:
const volatile int i = 3; int j[i];is valid.
Steve Adamczyk: See issue 76, which made the similar change to 7.1.6.1 [dcl.type.cv] paragraph 2, and probably should have changed this one as well.
Proposed resolution (October, 2004):
Change the first sentence in the second part of 5.20 [expr.const] paragraph 1 as follows:
An integral constant-expression can involve only literals of arithmetic types (2.13 [lex.literal], 3.9.1 [basic.fundamental]), enumerators, non-volatile const variables or static data members of integral or enumeration types initialized with constant expressions (8.5 [dcl.init]), non-type template parameters of integral or enumeration types, and sizeof expressions.
[Voted into the WP at the April, 2007 meeting as part of paper J16/07-0095 = WG21 N2235.]
Consider:
template <int* p> struct S { static const int I = 3; }; int i; int a[S<&i>::I];
Clearly this should be valid, but a pedantic reading of 5.20 [expr.const] would suggest that this is invalid because “&i” is not permitted in integral constant expressions.
Proposed resolution (October, 2005):
Change the last sentence of 5.20 [expr.const] paragraph 1 as indicated:
In particular, except in non-type template-arguments or sizeof expressions, functions, class objects, pointers, or references shall not be used, and assignment, increment, decrement, function-call, or comma operators shall not be used.
(Note: the same text is changed by the resolution of issue 367.)
Notes from April, 2006 meeting:
The proposed resolution could potentially be read as saying that the prohibited operations and operators would be permitted in integral constant expressions that are non-type template-arguments. John Spicer is investigating an alternate approach, to say that expressions in non-type template arguments are not part of the expression in which the template-id appears (in contrast to the operand of sizeof, which is part of the containing expression).
Additional note (May, 2008):
This issue is resolved by the rewrite of
[Voted into the WP at the September, 2008 meeting (resolution in paper N2757).]
The expressions that are excluded from being constant expressions in 5.20 [expr.const] paragraph 2 does not address an example like the following:
void f() {
int a;
constexpr int* p = &a; // should be ill-formed, currently isn't
}
Suggested resolution:
Add the following bullet to the list in 5.20 [expr.const] paragraph 2:
an id-expression that refers to a variable with automatic storage duration unless a permitted lvalue-to-rvalue conversion is applied (see above)
Proposed resolution (June, 2008):
Change 3.6.2 [basic.start.init] paragraph 1 as follows:
Objects with static storage duration (3.7.1 [basic.stc.static]) or thread storage duration (3.7.2) shall be zero-initialized (8.5 [dcl.init]) before any other initialization takes place. A reference with static or thread storage duration and an object of trivial or literal type with static or thread storage duration can be initialized with a constant expression (5.20 [expr.const]); this is called constant initialization. Constant initialization is performed:Together, zero-initialization and constant initialization...
if an object of trivial or literal type with static or thread storage duration is initialized with a constant expression (5.20 [expr.const]), or
if a reference with static or thread storage duration is initialized with a constant expression that is not an lvalue designating an object with thread or automatic storage duration.
Add the following in 5.20 [expr.const] paragraph 2:
an lvalue-to-rvalue conversion (4.1) unless it is applied to...
an array-to-pointer conversion (4.2 [conv.array]) that is applied to an lvalue that designates an object with thread or automatic storage duration
a unary operator & (5.3.1 [expr.unary.op]) that is applied to an lvalue that designates an object with thread or automatic storage duration
an id-expression that refers to a variable or data member of reference type;
...
(Note: the change to 3.6.2 [basic.start.init] paragraph 1 needs to be reconciled with the conflicting change in issue 688.)
[Voted into the WP at the June, 2008 meeting.]
According to 6.6 [stmt.jump] paragraph 2,
On exit from a scope (however accomplished), destructors (12.4 [class.dtor]) are called for all constructed objects with automatic storage duration (3.7.3 [basic.stc.auto]) (named objects or temporaries) that are declared in that scope, in the reverse order of their declaration.
This wording is problematic for temporaries and for parameters. First, temporaries are not "declared," so this requirement does not apply to them, in spite of the assertion in the quoted text that it does.
Second, although the parameters of a function are declared in the called function, they are constructed and destroyed in the calling context, and the order of evaluation of the arguments is unspecified (cf 5.2.2 [expr.call] paragraphs 4 and 8). The order of destruction of the parameters might, therefore, be different from the reverse order of their declaration.
Notes from 04/01 meeting:
Any resolution of this issue should be careful not to introduce requirements that are redundant or in conflict with those of other parts of the IS. This is especially true in light of the pending issues with respect to the destruction of temporaries (see issues 86, 124, 199, and 201). If possible, the wording of a resolution should simply reference the relevant sections.
It was also noted that the temporary for a return value is also destroyed "out of order."
Note that issue 378 picks a nit with the wording of this same paragraph.
Proposed Resolution (November, 2006):
Change 6.6 [stmt.jump] paragraph 2 as follows:
On exit from a scope (however accomplished), destructors (12.4 [class.dtor]) are called for all constructed objects with automatic storage duration (3.7.3 [basic.stc.auto]) (named objects or temporaries) that are declared in that scope, in the reverse order of their declaration. variables with automatic storage duration (3.7.3 [basic.stc.auto]) that have been constructed in that scope are destroyed in the reverse order of their construction. [Note: For temporaries, see 12.2 [class.temporary]. —end note] Transfer out of a loop...
Paragraph 6.6 [stmt.jump] paragraph 2 of the standard says:
On exit from a scope (however accomplished), destructors (12.4 [class.dtor]) are called for all constructed objects with automatic storage duration (3.7.3 [basic.stc.auto]) (named objects or temporaries) that are declared in that scope.
It refers to objects "that are declared" but the text in parenthesis also mentions temporaries, which cannot be declared. I think that text should be removed.
This is related to issue 276.
Proposed Resolution (November, 2006):
This issue is resolved by the resolution of issue 276.
[Moved to DR at October 2002 meeting.]
There is currently no restriction on the use of the inline specifier in friend declarations. That would mean that the following usage is permitted:
struct A { void f(); }; struct B { friend inline void A::f(); }; void A::f(){}
I believe this should be disallowed because a friend declaration in one class should not be able to change attributes of a member function of another class.
More generally, I think that the inline attribute should only be permitted in friend declarations that are definitions.
Notes from the 04/01 meeting:
The consensus agreed with the suggested resolution. This outcome would be similar to the resolution of issue 136.
Proposed resolution (10/01):
Add to the end of 7.1.2 [dcl.fct.spec] paragraph 3:
If the inline specifier is used in a friend declaration, that declaration shall be a definition or the function shall have previously been declared inline.
[Voted into WP at October 2005 meeting.]
Steve Clamage: Consider this sequence of declarations:
void foo() { ... } inline void foo();The non-inline definition of foo precedes the inline declaration. It seems to me this code should be ill-formed, but I could not find anything in the standard to cover the situation.
Bjarne Stroustrup: Neither could I, so I looked in the ARM, which addressed this case (apparently for member function only) in some detail in 7.1.2 (pp103-104).
The ARM allows declaring a function inline after its initial declaration, as long as it has not been called.
Steve Clamage: If the above code is valid, how about this:
void foo() { ... } // define foo void bar() { foo(); } // use foo inline void foo(); // declare foo inline
Bjarne Stroustrup: ... and [the ARM] disallows declaring a function inline after it has been called.
This may still be a good resolution.
Steve Clamage: But the situation in the ARM is the reverse: Declare a function inline, and define it later (with no intervening call). That's a long-standing rule in C++, and allows you to write member function definitions outside the class.
In my example, the compiler could reasonably process the entire function as out-of-line, and not discover the inline declaration until it was too late to save the information necessary for inline generation. The equivalent of another compiler pass would be needed to handle this situation.
Bjarne Stroustrup: I see, and I think your argument it conclusive.
Steve Clamage: I'd like to open a core issue on this point, and I recommend wording along the lines of: "A function defined without an inline specifier shall not be followed by a declaration having an inline specifier."
I'd still like to allow the common idiom
class T { int f(); }; inline int T::f() { ... }
Martin Sebor: Since the inline keyword is just a hint to the compiler, I don't see any harm in allowing the construct. Your hypothetical compiler can simply ignore the inline on the second declaration. On the other hand, I feel that adding another special rule will unnecessarily complicate the language.
Steve Clamage: The inline specifier is more than a hint. You can have multiple definitions of inline functions, but only one definition of a function not declared inline. In particular, suppose the above example were in a header file, and included multiple times in a program.
Proposed resolution (October, 2004):
Add the indicated words to 7.1.2 [dcl.fct.spec] paragraph 4:
An inline function shall be defined in every translation unit in which it is used and shall have exactly the same definition in every case (3.2 [basic.def.odr]). [Note: a call to the inline function may be encountered before its definition appears in the translation unit. —end note] If the definition of a function appears in a translation unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is declared inline in one translation unit...
[Voted into WP at March 2004 meeting.]
BTW, I noticed that the following note in 7.1.1 [dcl.stc] paragraph 2 doesn't seem to have made it onto the issues list or into the TR:
[Note: hence, the auto specifier is almost always redundant and not often used; one use of auto is to distinguish a declaration-statement from an expression-statement (stmt.ambig) explicitly. --- end note]
I thought that this was well known to be incorrect, because using auto does not disambiguate this. Writing:
auto int f();is still a declaration of a function f, just now with an error since the function's return type may not use an auto storage class specifier. I suppose an error is an improvement over a silent ambiguity going the wrong way, but it's still not a solution for the user who wants to express the other in a compilable way.
Proposed resolution: Replace that note with the following note:
[Note: hence, the auto specifier is always redundant and not often used. --- end note]
John Spicer: I support the proposed change, but I think the disambiguation case is not the one that you describe. An example of the supposed disambiguation is:
int i; int j; int main() { int(i); // declares i, not reference to ::i auto int(j); // declares j, not reference to ::j }
cfront would take "int(i)" as a cast of ::i, so the auto would force what it would otherwise treat as a statement to be considered a declaration (cfront 3.0 warned that this would change in the future).
In a conforming compiler the auto is always redundant (as you say) because anything that could be considered a valid declaration should be treated as one.
Proposed resolution (April 2003):
Replace 7.1.1 [dcl.stc] paragraph 2
[Note: hence, the auto specifier is almost always redundant and not often used; one use of auto is to distinguish a declaration-statement from an expression-statement (6.8 [stmt.ambig]) explicitly. --- end note]with
[Note: hence, the auto specifier is always redundant and not often used. One use of auto is to distinguish a declaration-statement from an expression-statement explicitly rather than relying on the disambiguation rules (6.8 [stmt.ambig]), which may aid readers. --- end note]
[Voted into WP at April, 2007 meeting.]
Are string literals from default arguments used in extern inlines supposed to have the same addresses across all translation units?
void f(const char* = "s") inline g() { f(); }
Must the "s" strings be the same in all copies of the inline function?
Steve Adamczyk: The totality of the standard's wisdom on this topic is (7.1.2 [dcl.fct.spec] paragraph 4):
A string literal in an extern inline function is the same object in different translation units.
I'd hazard a guess that a literal in a default argument expression is not "in" the extern inline function (it doesn't appear in the tokens of the function), and therefore it need not be the same in different translation units.
I don't know that users would expect such strings to have the same address, and an equally valid (and incompatible) expectation would be that the same string literal would be used for every expansion of a given default argument in a single translation unit.
Notes from April 2003 meeting:
The core working group feels that the address of a string literal should be guaranteed to be the same only if it actually appears textually within the body of the inline function. So a string in a default argument expression in a block extern declaration inside the body of a function would be the same in all instances of the function. On the other hand, a string in a default argument expression in the header of the function (i.e., outside of the body) would not be the same.
Proposed resolution (April 2003):
Change the last sentence and add the note to the end of 7.1.2 [dcl.fct.spec] paragraph 4:
A string literal in the body of an extern inline function is the same object in different translation units. [Note: A string literal that is encountered only in the context of a function call (in the default argument expression of the called function), is not “in” the extern inline function.]
Notes from October 2003 meeting:
We discussed ctor-initializer lists and decided that they are also part of the body. We've asked Clark Nelson to work on syntax changes to give us a syntax term for the body of a function so we can refer to it here. See also issue 452, which could use this term.
(October, 2005: moved to “review” status in concert with issue 452. With that resolution, the wording above needs no further changes.)
Proposed resolution (April, 2006):
Change the last sentence and add the note to the end of 7.1.2 [dcl.fct.spec] paragraph 4:
A string literal in the body of an extern inline function is the same object in different translation units. [Note: A string literal appearing in a default argument expression is not considered to be “in the body” of an inline function merely by virtue of the expression’s use in a function call from that inline function. —end note]
[Voted into WP at the October, 2006 meeting.]
I couldn't find wording that makes it invalid to say friend virtual... The closest seems to be 7.1.2 [dcl.fct.spec] paragraph 5, which says:
The virtual specifier shall only be used in declarations of nonstatic class member functions that appear within a member-specification of a class definition; see 10.3 [class.virtual].
I don't think that excludes a friend declaration (which is a valid member-specification by 9.2 [class.mem]).
John Spicer: I agree that virtual should not be allowed on friend declarations. I think the wording in 7.1.2 [dcl.fct.spec] is intended to be the declaration of a function within its class, although I think the wording should be improved to make it clearer.
Proposed resolution (October, 2005):
Change 7.1.2 [dcl.fct.spec] paragraphs 5-6 as indicated:
The virtual specifier shall only be used only in declarations the initial declaration of a non-static class member functions that appear within a member-specification of a class definition function; see
10.3 [class.virtual] .The explicit specifier shall be used only in declarations the declaration of constructors a constructor within a its class definition; see 12.3.1 [class.conv.ctor].
[Voted into WP at March 2004 meeting.]
I wonder if perhaps the core issue 56 change in 7.1.3 [dcl.typedef] paragraph 2 wasn't quite careful enough. The intent was to remove the allowance for:
struct S { typedef int I; typedef int I; };
but I think it also disallows the following:
class B { typedef struct A {} A; void f(struct B::A*p); };
See also issue 407.
Proposed resolution (October 2003):
At the end of 7.1.3 [dcl.typedef] paragraph 2, add the following:
In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope that is not also a typedef-name to refer to the type to which it already refers. [Example:struct S { typedef struct A {} A; // OK typedef struct B B; // OK typedef A A; // error };]
[Voted into the WP at the September, 2008 meeting.]
According to 7.1.5 [dcl.constexpr] paragraph 5,
If the instantiated template specialization of a constexpr function template would fail to satisfy the requirements for a constexpr function, the constexpr specifier is ignored and the specialization is not a constexpr function.
One would expect to see a similar provision for an instantiated constructor template (because the requirements for a constexpr function [paragraph 3] are different from the requirements for a constexpr constructor [paragraph 4]), but there is none; constexpr constructor templates are not mentioned.
Suggested resolution:
Change the wording of 7.1.5 [dcl.constexpr] paragraph 5 as indicated:
If the instantiated template specialization of a constexpr function template would fail to satisfy the requirements for a constexpr function or constexpr constructor, as appropriate to the function template, the constexpr specifier is ignored and the specialization is not a constexpr function or constexpr constructor.
Proposed resolution (June, 2008):
[Drafting note: This resolution goes beyond the problem described in the issue discussion, which is one aspect of the general failure of the existing wording to deal consistently with the distinctions between constexpr functions and constexpr constructors. The wording below attempts to rectify that problem systematically.]
Change 7.1.5 [dcl.constexpr] paragraph 2 as follows:
A constexpr specifier used in a function declaration the declaration of a function that is not a constructor declares that function to be a constexpr function. Similarly, a constexpr specifier used in a constructor declaration declares that constructor to be a constexpr constructor. Constexpr functions and constexpr constructors are implicitly inline (7.1.2 [dcl.fct.spec]). A constexpr function shall not be virtual (10.3).
Change 7.1.5 [dcl.constexpr] paragraph 3 as follows:
The definition of a constexpr function shall satisfy the following constraints:
it shall not be virtual (10.3 [class.virtual])
its return type shall be a literal type
each of its parameter types shall be a literal type
its function-body shall be a compound-statement of the form
{ return expression ; }
where expression is a potential constant expression (5.20 [expr.const])
every implicit conversion used in converting expression to the function return type (8.5 [dcl.init]) shall be one of those allowed in a constant expression (5.20 [expr.const]).
[Example:...
Change 7.1.5 [dcl.constexpr] paragraph 4 as follows:
The definition of a constexpr constructor shall satisfy the following constraints:
each of its parameter types shall be a literal type
its function-body shall not be a function-try-block
the compound-statement of its function-body shall be empty
every non-static data member and base class sub-object shall be initialized (12.6.2 [class.base.init])
every constructor involved in initializing non-static data members and base class sub-objects invoked by a mem-initializer shall be a constexpr constructor invoked with potential constant expression arguments, if any.
every constructor argument and full-expression in a mem-initializer shall be a potential constant expression
every implicit conversion used in converting a constructor argument to the corresponding parameter type and converting a full-expression to the corresponding member type shall be one of those allowed in a constant expression.
A trivial copy constructor is also a constexpr constructor. [Example: ...
Change 7.1.5 [dcl.constexpr] paragraph 5 as follows:
If the instantiated template specialization of a constexpr function template would fail to satisfy the requirements for a constexpr function or constexpr constructor, the constexpr specifier is ignored and the specialization is not a constexpr function.
Change 7.1.5 [dcl.constexpr] paragraph 6 as follows:
A constexpr specifier used in for a non-static member function definition that is not a constructor declares that member function to be const (9.3.1 [class.mfct.non-static]). [Note: ...
[Voted into the WP at the September, 2008 meeting.]
The current wording of 7.1.5 [dcl.constexpr] paragraph 7 seems not quite correct. It reads,
A constexpr specifier used in an object declaration declares the object as const. Such an object shall be initialized, and every expression that appears in its initializer (8.5 [dcl.init]) shall be a constant expression.
The phrase “every expression” is intended to cover multiple arguments to a constexpr constructor and multiple expressions in an aggregate initializer. However, it could be read (incorrectly) as saying that non-constant expressions cannot appear as subexpressions in such initializers, even in places where they do not render the full-expression non-constant (i.e., as unevaluated operands and in the unselected branches of &&, ||, and ?:). Perhaps this problem could be remedied by replacing “every expression” with “every full-expression?”
Proposed resolution (June, 2008):
Change 7.1.5 [dcl.constexpr] paragraph 7 as follows:
A constexpr specifier used in an object declaration declares the object as const. Such an object shall be initialized, and every expression that appears in its initializer (8.5) initialized. If it is initialized by a constructor call, the constructor shall be a constexpr constructor and every argument to the constructor shall be a constant expression. Otherwise, every full-expression that appears in its initializer shall be a constant expression. Every implicit conversion used...
[Voted into WP at April 2003 meeting.]
Although 14.1 [temp.param] paragraph 3 contains an assertion that
A type-parameter defines its identifier to be a type-name (if declared with class or typename)
the grammar in 7.1.6.2 [dcl.type.simple] paragraph 1 says that a type-name is either a class-name, an enum-name, or a typedef-name. The identifier in a template type-parameter is none of those. One possibility might be to equate the identifier with a typedef-name instead of directly with a type-name, which would have the advantage of not requiring parallel treatment of the two in situations where they are treated the same (e.g., in elaborated-type-specifiers, see issue 245). See also issue 215.
Proposed resolution (Clark Nelson, March 2002):
In 14.1 [temp.param] paragraph 3, change "A type-parameter defines its identifier to be a type-name" to "A type-parameter defines its identifier to be a typedef-name"
In 7.1.6.3 [dcl.type.elab] paragraph 2, change "If the identifier resolves to a typedef-name or a template type-parameter" to "If the identifier resolves to a typedef-name".
This has been consolidated with the edits for some other issues. See N1376=02-0034.
[Voted into WP at the October, 2006 meeting.]
7.1.6.2 [dcl.type.simple] paragraph 3 reads,
It is implementation-defined whether bit-fields and objects of char type are represented as signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be signed; it is redundant with other integral types.
The last sentence in that quote is misleading w.r.t. bit-fields. The first sentence in that quote is correct but incomplete.
Proposed fix: change the two sentences to read:
It is implementation-defined whether objects of char type are represented as signed or unsigned quantities. The signed specifier forces char objects signed; it is redundant with other integral types except when declaring bit-fields (9.6 [class.bit]).
Proposed resolution (October, 2005):
Change 7.1.6.2 [dcl.type.simple] paragraph 3 as indicated:
When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in any order. [Note: It is implementation-defined whether bit-fields and objects of char type and certain bit-fields (9.6 [class.bit]) are represented as signed or unsigned quantities. The signed specifier forces bit-fields and char objects and bit-fields to be signed; it is redundant with other integral types in other contexts. —end note]
[Voted into the WP at the September, 2008 meeting.]
The second bullet of 7.1.6.2 [dcl.type.simple] paragraph 4 reads,
- otherwise, if e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses around e are ignored), decltype(e) is the return type of that function;
The reference to “that function” is imprecise; it is not the actual function called at runtime but the statically chosen function (ignoring covariant return types in virtual functions).
Also, the examples in this paragraph have errors:
The declaration of struct A should end with a semicolon.
The lines of the form decltype(...); are ill-formed; they need a declarator.
Proposed Resolution (October, 2007):
Change 7.1.6.2 [dcl.type.simple] paragraph 4 as follows:
The type denoted by decltype(e) is defined as follows:
if e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype(e) is the type of the entity named by e. If there is no such entity, or if e names a set of overloaded functions, the program is ill-formed;
otherwise, if e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses around e are ignored), decltype(e) is the return type of that the statically chosen function;
otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;
otherwise, decltype(e) is the type of e.
The operand of the decltype specifier is an unevaluated operand (clause 5 [expr]).
[Example:
const int&& foo(); int i; struct A { double x; }; const A* a = new A(); decltype(foo()) x1; // type is const int&& decltype(i) x2; // type is int decltype(a->x) x3; // type is double decltype((a->x)) x4; // type is const double&—end example]
[Voted into the WP at the February, 2008 meeting as paper J16/08-0056 = WG21 N2546.]
We've found an interesting parsing ambiguity with the new meaning of auto. Consider:
typedef int T; void f() { auto T = 42; // Valid or not? }
The question here is whether T should be a type specifier or a storage class? 7.1.6.4 [dcl.spec.auto] paragraph 1 says,
The auto type-specifier has two meanings depending on the context of its use. In a decl-specifier-seq that contains at least one type-specifier (in addition to auto) that is not a cv-qualifier, the auto type-specifier specifies that the object named in the declaration has automatic storage duration.
In this case, T is a type-specifier, so the declaration is ill-formed: there is no declarator-id. Many, however, would like to see auto work “just like int,” i.e., forcing T to be redeclared in the inner scope. Concerns cited included hijacking of the name in templates and inline function bodies over the course of time if a program revision introduces a type with that name in the surrounding context. Although it was pointed out that enclosing the name in parentheses in the inner declaration would prevent any such problems, this was viewed as unacceptably ugly.
Notes from the April, 2007 meeting:
The CWG wanted to avoid a rule like, “if auto can be a type-specifier, it is” (similar to the existing “if it can be a declaration, it is” rule) because of the lookahead and backtracking difficulties such an approach would pose for certain kinds of parsing techniques. It was noted that the difficult lookahead cases all involve parentheses, which would not be a problem if only the “=” form of initializer were permitted in auto declarations; only very limited lookahead is required in that case. It was also pointed out that the “if it can be a type-specifier, it is” approach results in a quiet change of meaning for cases like
typedef int T; int n = 3; void f() { auto T(n); }
This currently declares n to be an int variable in the inner scope but would, under the full lookahead approach, declare T to be a variable, quitely changing uses of n inside f() to refer to the outer variable.
The consensus of the CWG was to pursue the change to require the “=” form of initializer for auto.
Notes from the July, 2007 meeting:
See paper J16/07-0197 = WG21 N2337. There was no consensus among the CWG for either of the approaches recommended in the paper; additional input and direction is required.
[Moved to DR at October 2002 meeting.]
According to 7.2 [dcl.enum] paragraph 5, the underlying type of an enum is an unspecified integral type, which could potentially be unsigned int. The promotion rules in 4.5 [conv.prom] paragraph 2 say that such an enumeration value used in an expression will be promoted to unsigned int. This means that a conforming implementation could give the value false for the following code:
enum { zero }; -1 < zero; // might be falseThis is counterintuitive. Perhaps the description of the underlying type of an enumeration should say that an unsigned underlying type can be used only if the values of the enumerators cannot be represented in the corresponding signed type. This approach would be consistent with the treatment of integral promotion of bitfields (4.5 [conv.prom] paragraph 3).
On a related note, 7.2 [dcl.enum] paragraph 5 says,
the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned int.
This specification does not allow for an enumeration like
enum { a = -1, b = UINT_MAX };
Since each enumerator can fit in an int or unsigned int, the underlying type is required to be no larger than int, even though there is no such type that can represent all the enumerators.
Proposed resolution (04/01; obsolete, see below):
Change 7.2 [dcl.enum] paragraph 5 as follows:
It is implementation-defined which integral type is used as the underlying type for an enumeration except that the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned int neither int nor unsigned int can represent all the enumerator values. Furthermore, the underlying type shall not be an unsigned type if the corresponding signed type can represent all the enumerator values.
See also issue 58.
Notes from 04/01 meeting:
It was noted that 4.5 [conv.prom] promotes unsigned types smaller than int to (signed) int. The signedness chosen by an implementation for small underlying types is therefore unobservable, so the last sentence of the proposed resolution above should apply only to int and larger types. This observation also prompted discussion of an alternative approach to resolving the issue, in which the bmin and bmax of the enumeration would determine the promoted type rather than the underlying type.
Proposed resolution (10/01):
Change 4.5 [conv.prom] paragraph 2 from
An rvalue of type wchar_t (3.9.1 [basic.fundamental]) or an enumeration type (7.2 [dcl.enum]) can be converted to an rvalue of the first of the following types that can represent all the values of its underlying type: int, unsigned int, long, or unsigned long.to
An rvalue of type wchar_t (3.9.1 [basic.fundamental]) can be converted to an rvalue of the first of the following types that can represent all the values of its underlying type: int, unsigned int, long, or unsigned long. An rvalue of an enumeration type (7.2 [dcl.enum]) can be converted to an rvalue of the first of the following types that can represent all the values of the enumeration (i.e., the values in the range bmin to bmax as described in 7.2 [dcl.enum]): int, unsigned int, long, or unsigned long.
[Voted into WP at April 2003 meeting.]
7.2 [dcl.enum] defines the underlying type of an enumeration as an integral type "that can represent all the enumerator values defined in the enumeration".
What does the standard say about this code:
enum E { a = LONG_MIN, b = ULONG_MAX };
?
I think this should be ill-formed.
Proposed resolution:
In 7.2 [dcl.enum] paragraph 5 after
The underlying type of an enumeration is an integral type that can represent all the enumerator values defined in the enumeration.insert
If no integral type can represent all the enumerator values, the enumeration is ill-formed.
[Voted into WP at April, 2006 meeting.]
The C language (since C99), and some C++ compilers, accept:
enum { FOO, };
as syntactically valid. It would be useful
for machine generated code
for minimising changes when editing
to allow a distinction between the final item being intended as an ordinary item or as a limit:
enum { red, green, blue, num_colours }; // note no comma enum { fred, jim, sheila, }; // last is not special
This proposed change is to permit a trailing comma in enum by adding:
enum identifieropt { enumerator-list , }
as an alternative definition for the enum-specifier nonterminal
in
Proposed resolution (October, 2005):
Change the grammar in 7.2 [dcl.enum] paragraph 1 as indicated:
enum-specifier:enum identifieropt { enumerator-listopt }
enum identifieropt { enumerator-list , }
[Voted into the WP at the September, 2008 meeting.]
The current specification of scoped enumerations does not appear to forbid an example like the following, even though the enumerator e cannot be used:
enum class { e };
This might be covered by 7 [dcl.dcl] paragraph 3,
In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause 9 [class]) or enumeration (7.2 [dcl.enum]), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-type-specifier with a class-key (9.1 [class.name]), or an enum-specifier. In these cases and whenever a class-specifier or enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax). In such cases, and except for the declaration of an unnamed bit-field (9.6 [class.bit]), the decl-specifier-seq shall introduce one or more names into the program, or shall redeclare a name introduced by a previous declaration.
which, when combined with paragraph 2,
A declaration occurs in a scope (3.3 [basic.scope]); the scope rules are summarized in 3.4 [basic.lookup]. A declaration that declares a function or defines a class, namespace, template, or function also has one or more scopes nested within it. These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances in clause 7 [dcl.dcl] about components in, of, or contained by a declaration or subcomponent thereof refer only to those components of the declaration that are not nested within scopes nested within the declaration.
appears to rule out the similar class definition,
struct { int m; };
However, a scoped enumeration is not listed in paragraph 2 among the constructs containing a nested scope (although 3.3.8 [basic.scope.enum] does describe “enumeration scope”); furthermore, an enumerator-definition is not formally a “nested declaration.” If unusable scoped enumeration definitions are to be banned, these shortcomings in 7 [dcl.dcl] paragraph 2 must be addressed. (A note in 7.2 [dcl.enum] mentioning that unnamed scoped enumerations are not allowed would also be helpful.)
Notes from the February, 2008 meeting:
The consensus was to require that the identifier be present in an enum-specifier unless the enum-key is enum.
Proposed resolution (June, 2008):
Change 7.2 [dcl.enum] paragraph 2 as follows:
...The enum-keys enum class and enum struct are semantically equivalent; an enumeration type declared with one of these is a scoped enumeration, and its enumerators are scoped enumerators. The optional identifier shall not be omitted in the declaration of a scoped enumeration. The type-specifier-seq of an enum-base...
[Voted into the WP at the October, 2006 meeting as part of paper J16/06-0188 = WG21 N2118.]
The resolution of issue 106 specifies that an attempt to create a type “reference to cv1 T,” where T is a typedef or template parameter of the type “reference to cv2 S,” actually creates the type “reference to cv12 S,” where cv12 is the union of the two sets of cv-qualifiers.
One objection that has been raised to this resolution is that it is inconsistent with the treatment of cv-qualification and references specified in 8.3.2 [dcl.ref] paragraph 1, which says that cv-qualifiers applied to a typedef or template argument that is a reference type are ignored. For example:
typedef int& intref; const intref r1; // reference to int const intref& r2; // reference to const int
In fact, however, these two declarations are quite different. In the declaration of r1, const applies to a “top-level” reference, while in the declaration of t2, it occurs under a reference. In general, cv-qualifiers that appear under a reference are preserved, even if the type appears in a context in which top-level cv-qualification is removed, for example, in determining the type of a function from parameter types (8.3.5 [dcl.fct] paragraph 3) and in template argument deduction (14.8.2.1 [temp.deduct.call] paragraph 2).
Another objection to the resolution is that type composition gives different results in a single declaration than it does when separated into two declarations. For example:
template <class T> struct X { typedef T const T_const; typedef T_const& type1; typedef T const& type2; }; X<int&>::type1 t1; // int& X<int&>::type2 t2; // int const&
The initial motivation for the propagation of cv-qualification during reference-to-reference collapse was to prevent inadvertent loss of cv-qualifiers in contexts in which it could make a difference. For example, if the resolution were changed to discard, rather than propagate, embedded cv-qualification, overload resolution could surprisingly select a non-const version of a member function:
struct X { void g(); void g() const; }; template <typename T> struct S { static void f(const T& t) { t.g(); // const or non-const??? } }; X x; void q() { S<X>::f(x); // calls X::g() const S<X&>::f(x); // calls X::g() }
Another potentially-surprising outcome of dropping embedded cv-qualifiers would be:
template <typename T> struct A { void f(T&); // mutating version void f(const T&); // non-mutating version }; A<int&> ai; // Ill-formed: A<int&> declares f(int&) twice
On the other hand, those who would like to see the resolution changed to discard embedded cv-qualifiers observe that these examples are too simple to be representative of real-world code. In general, it is unrealistic to expect that a template written with non-reference type parameters in mind will automatically work correctly with reference type parameters as a result of applying the issue 106 resolution. Instead, template metaprogramming allows the template author to choose explicitly whether cv-qualifiers are propagated or dropped, according to the intended use of the template, and it is more important to respect the reasonable intuition that a declaration involving a template parameter will not change the type that the parameter represents.
As a sample of real-world code, tr1::tuple was examined. In both cases — the current resolution of issue 106 and one in which embedded cv-qualifiers were dropped — some metaprogramming was required to implement the intended interface, although the version reflecting the revised resolution was somewhat simpler.
Notes from the October, 2005 meeting:
The consensus of the CWG was that the resolution of issue 106 should be revised not to propagate embedded cv-qualification.
Note (February, 2006):
The wording included in the rvalue-reference paper, J16/06-0022 = WG21 N1952, incorporates changes intended to implement the October, 2005 consensus of the CWG.
[Voted into WP at March 2004 meeting.]
Issue 1:
The working paper is not clear about how the typename/template keywords interact with using-declarations:
template<class T> struct A { typedef int X; }; template<class T> void f() { typename A<T>::X a; // OK using typename A<T>::X; // OK typename X b; // ill-formed; X must be qualified X c; // is this OK? }When the rules for typename and the similar use of template were decided, we chose to require that they be used at every reference. The way to avoid typename at every use is to declare a typedef; then the typedef name itself is known to be a type. For using-declarations, we decided that they do not introduce new declarations but rather are aliases for existing declarations, like symbolic links. This makes it unclear whether the declaration "X c;" above should be well-formed, because there is no new name declared so there is no declaration with a "this is a type" attribute. (The same problem would occur with the template keyword when a member template of a dependent class is used). I think these are the main options:
The core WG already resolved this issue according to (1), but the wording does not seem to have been added to the standard. New wording needs to be drafted.
Issue 2:
Either way, one more point needs clarification. If the first option is adopted:
template<class T> struct A { struct X { }; }; template<class T> void g() { using typename A<T>::X; X c; // if this is OK, then X by itself is a type int X; // is this OK? }When "g" is instantiated, the two declarations of X are compatible (7.3.3 [namespace.udecl] paragraph 10). But there is no way to know this when the definition of "g" is compiled. I think this case should be ill-formed under the first option. (It cannot happen under the second option.) If the second option is adopted:
template<class T> struct A { struct X { }; }; template<class T> void g() { using A<T>::X; int X; // is this OK? }Again, the instantiation would work but there is no way to know that in the template definition. I think this case should be ill-formed under the second option. (It would already be ill-formed under the first option.)
From John Spicer:
The "not a new declaration" decision is more of a guiding principle than a hard and fast rule. For example, a name introduced in a using-declaration can have different access than the original declaration.Tentative Resolution:Like symbolic links, a using-declaration can be viewed as a declaration that declares an alias to another name, much like a typedef.
In my opinion, "X c;" is already well-formed. Why would we permit typename to be used in a using-declaration if not to permit this precise usage?
In my opinion, all that needs to be done is to clarify that the "typeness" or "templateness" attribute of the name referenced in the using-declaration is attached to the alias created by the using-declaration. This is solution #1.
The rules for multiple declarations with the same name in the same scope should treat a using-declaration which names a type as a typedef, just as a typedef of a class name is treated as a class declaration. This needs drafting work. Also see Core issue 36.
Rationale (04/99): Any semantics associated with the typename keyword in using-declarations should be considered an extension.
Notes from the April 2003 meeting:
This was reopened because we are now considering extensions again. We agreed that it is desirable for the typename to be "sticky" on a using-declaration, i.e., references to the name introduced by the using-declaration are known to be type names without the use of the typename keyword (which can't be specified on an unqualified name anyway, as of now). The related issue with the template keyword already has a separate issue 109.
Issue 2 deals with the "struct hack." There is an example in 7.3.3 [namespace.udecl] paragraph 10 that shows a use of using-declarations to import two names that coexist because of the "struct hack." After some deliberation, we decided that the template-dependent using-declaration case is different enough that we did not have to support the "struct hack" in that case. A name introduced in such a case is like a typedef, and no other hidden type can be accessed through an elaborated type specifier.
Proposed resolution (April 2003, revised October 2003):
Add a new paragraph to the bottom of 7.3.3 [namespace.udecl]:
If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2 [temp.dep]), the name introduced by the using-declaration is treated as a typedef-name (7.1.3 [dcl.typedef]).
[Voted into WP at April 2003 meeting.]
According to 7.3.3 [namespace.udecl] paragraph 12,
When a using-declaration brings names from a base class into a derived class scope, member functions in the derived class override and/or hide member functions with the same name and parameter types in a base class (rather than conflicting).
Note that this description says nothing about the cv-qualification of the hiding and hidden member functions. This means, for instance, that a non-const member function in the derived class hides a const member function with the same name and parameter types instead of overloading it in the derived class scope. For example,
struct A { virtual int f() const; virtual int f(); }; struct B: A { B(); int f(); using A::f; }; const B cb; int i = cb.f(); // ill-formed: A::f() const hidden in B
The same terminology is used in 10.3 [class.virtual] paragraph 2:
If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name and same parameter list as Base::vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides Base::vf.
Notes on the 04/01 meeting:
The hiding and overriding should be on the basis of the function signature, which includes any cv-qualification on the function.
Proposed resolution (04/02):
In 7.3.3 [namespace.udecl] paragraph 12 change:
When a using-declaration brings names from a base class into a derived class scope, member functions in the derived class override and/or hide member functions with the same name and parameter types in a base class (rather than conflicting).to read:
When a using-declaration brings names from a base class into a derived class scope, member functions and member function templates in the derived class override and/or hide member functions and member function templates with the same name, parameter-type-list (8.3.5 [dcl.fct]), and cv-qualification in a base class (rather than conflicting).
In 10.3 [class.virtual] paragraph 2 change:
If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name and same parameter list as Base::vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides Base::vf.to read:
If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name, parameter-type-list (8.3.5 [dcl.fct]), and cv-qualification as Base::vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides Base::vf.
See issue 140 for the definition of parameter-type-list.
[Voted into WP at April 2005 meeting.]
Can a using-declaration be used to import a namespace?
namespace my_namespace{ namespace my_namespace2 { int function_of_my_name_space(){ return 2;} } } int main (){ using ::my_namespace::my_namespace2; return my_namespace2::function_of_my_name_space(); }
Several popular compilers give an error on this, but there doesn't seem to be anything in 7.3.3 [namespace.udecl] that prohibits it. It should be noted that the user can get the same effect by using a namespace alias:
namespace my_namespace2 = ::my_namespace::my_namespace2;
Notes from the March 2004 meeting:
We agree that it should be an error.
Proposed resolution (October, 2004):
Add the following as a new paragraph after 7.3.3 [namespace.udecl] paragraph 5:
A using-declaration shall not name a namespace;
[Moved to DR at 4/01 meeting.]
7.5 [dcl.link] paragraph 6 says the following:
extern "C" { static void f(int) {} static void f(float) {} };Can a function with internal linkage "have C linkage" at all (assuming that phrase means "has extern "C" linkage"), for how can a function be extern "C" if it's not extern? The function type can have extern "C" linkage — but I think that's independent of the linkage of the function name. It should be perfectly reasonable to say, in the example above, that extern "C" applies only to the types of f(int) and f(float), not to the function names, and that the rule in 7.5 [dcl.link] paragraph 6 doesn't apply.
Suggested resolution: The extern "C" linkage specification applies only to the type of functions with internal linkage, and therefore some of the rules that have to do with name overloading don't apply.
Proposed Resolution:
The intent is to distingush implicit linkage from explicit linkage for both name linkage and language (function type) linkage. (It might be more clear to use the terms name linkage and type linkage to distinguish these concepts. A function can have a name with one kind of linkage and a type with a different kind of linkage. The function itself has no linkage: it has no name, only the declaration has a name. This becomes more obvious when you consider function pointers.)
The tentatively agreed proposal is to apply implicit linkage to names declared in brace-enclosed linkage specifications and to non-top-level names declared in simple linkage specifications; and to apply explicit linkage to top-level names declared in simple linkage specifications.
The language linkage of any function type formed through a function declarator is that of the nearest enclosing linkage-specification. For purposes of determining whether the declaration of a namespace-scope name matches a previous declaration, the language linkage portion of the type of a function declaration (that is, the language linkage of the function itself, not its parameters, return type or exception specification) is ignored.
For a linkage-specification using braces, i.e.
extern string-literal { declaration-seqopt }the linkage of any declaration of a namespace-scope name (including local externs) which is not contained in a nested linkage-specification, is not declared to have no linkage (static), and does not match a previous declaration is given the linkage specified in the string-literal. The language linkage of the type of any function declaration of a namespace-scope name (including local externs) which is not contained in a nested linkage-specification and which is declared with function declarator syntax is the same as that of a matching previous declaration, if any, else is specified by string-literal.
For a linkage-specification without braces, i.e.
extern string-literal declaration
the linkage of the names declared in the top-level declarators of declaration is specified by string-literal; if this conflicts with the linkage of any matching previous declarations, the program is ill-formed. The language linkage of the type of any top-level function declarator is specified by string-literal; if this conflicts with the language linkage of the type of any matching previous function declarations, the program is ill-formed. The effect of the linkage-specification on other (non top-level) names declared in declaration is the same as that of the brace-enclosed form.
Bill Gibbons: In particular, these should be well-formed:
extern "C" void f(void (*fp)()); // parameter type is pointer to // function with C language linkage extern "C++" void g(void (*fp)()); // parameter type is pointer to // function with C++ language linkage extern "C++" { // well-formed: the linkage of "f" void f(void(*fp)()); // and the function type used in the } // parameter still "C" extern "C" { // well-formed: the linkage of "g" void g(void(*fp)()); // and the function type used in the } // parameter still "C++"
but these should not:
extern "C++" void f(void(*fp)()); // error - linkage of "f" does not // match previous declaration // (linkage of function type used in // parameter is still "C" and is not // by itself ill-formed) extern "C" void g(void(*fp)()); // error - linkage of "g" does not // match previous declaration // (linkage of function type used in // parameter is still "C++" and is not // by itself ill-formed)
That is, non-top-level declarators get their linkage from matching declarations, if any, else from the nearest enclosing linkage specification. (As already described, top-level declarators in a brace-enclosed linkage specification get the linkage from matching declarations, if any, else from the linkage specifcation; while top-level declarators in direct linkage specifications get their linkage from that specification.)
Mike Miller: This is a pretty significant change from the current specification, which treats the two forms of language linkage similarly for most purposes. I don't understand why it's desirable to expand the differences.
It seems very unintuitive to me that you could have a top-level declaration in an extern "C" block that would not receive "C" linkage.
In the current standard, the statement in 7.5 [dcl.link] paragraph 4 that
the specified language linkage applies to the function types of all function declarators, function names, and variable names introduced by the declaration(s)
applies to both forms. I would thus expect that in
extern "C" void f(void(*)()); extern "C++" { void f(void(*)()); } extern "C++" f(void(*)());
both "C++" declarations would be well-formed, declaring an overloaded version of f that takes a pointer to a "C++" function as a parameter. I wouldn't expect that either declaration would be a redeclaration (valid or invalid) of the "C" version of f.
Bill Gibbons: The potential difficulty is the matching process and the handling of deliberate overloading based on language linkage. In the above examples, how are these two declarations matched:
extern "C" void f(void (*fp1)()); extern "C++" { void f(void(*fp2)()); }
given that the linkage that is part of fp1 is "C" while the linkage (prior to the matching process) that is part of fp2 is "C++"?
The proposal is that the linkage which is part of the parameter type is not determined until after the match is attempted. This almost always correct because you can't overload "C" and "C++" functions; so if the function names match, it is likely that the declarations are supposed to be the same.
Mike Miller: This seems like more trouble than it's worth. This comparison of function types ignoring linkage specifications is, as far as I know, not found anywhere in the current standard. Why do we need to invent it?
Bill Gibbons: It is possible to construct pathological cases where this fails, e.g.
extern "C" typedef void (*PFC)(); // pointer to "C" linkage function void f(PFC); // parameter is pointer to "C" function void f(void (*)()); // matching declaration or overload based on // difference in linkage type?
It is reasonable to require explicit typedefs in this case so that in the above example the second function declaration gets its parameter type function linkage from the first function declaration.
(In fact, I think you can't get into this situation without having already used typedefs to declare different language linkage for the top-level and parameter linkages.)
For example, if the intent is to overload based on linkage a typedef is needed:
extern "C" typedef void (*PFC)(); // pointer to "C" linkage function void f(PFC); // parameter is pointer to "C" function typedef void (*PFCPP)(); // pointer to "C++" linkage function void f(PFCPP); // parameter is pointer to "C++" function
In this case the two function declarations refer to different functions.
Mike Miller: This seems pretty strange to me. I think it would be simpler to determine the type of the parameter based on the containing linkage specification (implicitly "C++") and require a typedef if the user wants to override the default behavior. For example:
extern "C" { typedef void (*PFC)(); // pointer to "C" function void f(void(*)()); // takes pointer to "C" function } void f(void(*)()); // new overload of "f", taking // pointer to "C++" function void f(PFC); // redeclare extern "C" version
Notes from 04/00 meeting:
The following changes were tentatively approved, but because they do not completely implement the proposal above the issue is being kept for the moment in "drafting" status.
Notes from 10/00 meeting:
After further discussion, the core language working group determined that the more extensive proposal described above is not needed and that the following changes are sufficient.
Proposed resolution (04/01):
Change the first sentence of 7.5 [dcl.link] paragraph 1 from
All function types, function names, and variable names have a language linkage.
to
All function types, function names with external linkage, and variable names with external linkage have a language linkage.
In a linkage-specification, the specified language linkage applies to the function types of all function declarators, function names, and variable names introduced by the declaration(s).
to
In a linkage-specification, the specified language linkage applies to the function types of all function declarators, function names with external linkage, and variable names with external linkage declared within the linkage-specification.
Add at the end of the final example on 7.5 [dcl.link] paragraph 4:
extern "C" { static void f4(); // the name of the function f4 has // internal linkage (not C language // linkage) and the function's type // has C language linkage } extern "C" void f5() { extern void f4(); // Okay -- name linkage (internal) // and function type linkage (C // language linkage) gotten from // previous declaration. } extern void f4(); // Okay -- name linkage (internal) // and function type linkage (C // language linkage) gotten from // previous declaration. void f6() { extern void f4(); // Okay -- name linkage (internal) // and function type linkage (C // language linkage) gotten from // previous declaration. }
Change 7.5 [dcl.link] paragraph 7 from
Except for functions with internal linkage, a function first declared in a linkage-specification behaves as a function with external linkage. [Example:
extern "C" double f(); static double f(); // erroris ill-formed (7.1.1 [dcl.stc]). ] The form of linkage-specification that contains a braced-enclosed declaration-seq does not affect whether the contained declarations are definitions or not (3.1 [basic.def]); the form of linkage-specification directly containing a single declaration is treated as an extern specifier (7.1.1 [dcl.stc]) for the purpose of determining whether the contained declaration is a definition. [Example:
extern "C" int i; // declaration extern "C" { int i; // definition }—end example] A linkage-specification directly containing a single declaration shall not specify a storage class. [Example:
extern "C" static void f(); // error—end example]
to
A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier (7.1.1 [dcl.stc]) for the purpose of determining the linkage of the declared name and whether it is a definition. Such a declaration shall not specify a storage class. [Example:extern "C" double f(); static double f(); // error extern "C" int i; // declaration extern "C" { int i; // definition } extern "C" static void g(); // error—end example]
[Moved to DR at October 2002 meeting. This was incorrectly marked as having DR status between 4/01 and 4/02. It was overlooked when issue 4 was moved to DR at the 4/01 meeting; this one should have been moved as well, because it's resolved by the changes there.]
Consider the following:
extern "C" void foo() { extern void bar(); bar(); }Does "bar()" have "C" language linkage?
The ARM is explicit and says
A linkage-specification for a function also applies to functions and objects declared within it.The DIS says
In a linkage-specification, the specified language linkage applies to the function types of all function declarators, function names, and variable names introduced by the declaration(s).Is the body of a function definition part of the declaration?
From Mike Miller:
Yes: from 7 [dcl.dcl] paragraph 1,
From Dag Brück:
Consider the following where extern "C" has been moved to a separate declaration:
extern "C" void foo(); void foo() { extern void bar(); bar(); }I think the ARM wording could possibly be interpreted such that bar() has "C" linkage in my example, but not the DIS wording.
As a side note, I have always wanted to think that placing extern "C" on a function definition or a separate declaration would produce identical programs.
Proposed Resolution (04/01):
See the proposed resolution for Core issue 4, which covers this case.
The ODR should also be checked to see whether it addresses name and type linkage.
[Voted into the WP at the September, 2008 meeting.]
The restrictions on declaring and/or defining classes inside type-specifier-seqs and type-ids are inconsistent throughout the Standard. This is probably due to the fact that nearly all of the sections that deal with them attempt to state the restriction afresh. There are three cases:
5.3.4 [expr.new], 6.4 [stmt.select], and 12.3.2 [class.conv.fct] prohibit “declarations” of classes and enumerations. That means that
while (struct C* p = 0) ;
is ill-formed unless a prior declaration of C has been seen. These appear to be cases that should have been fixed by issue 379, changing “class declaration” to “class definition,” but were overlooked.
5.1.2 [expr.prim.lambda], 7 [dcl.dcl], and 8.3.5 [dcl.fct] (late-specified return types) do not contain any restriction at all.
All the remaining cases prohibit “type definitions,” apparently referring to classes and enumerations.
Suggested resolution:
Add something like, “A class or enumeration shall not be defined in a type-specifier-seq or in a type-id,” to a single place in the Standard and remove all other mentions of that restriction (allowing declarations via elaborated-type-specifier).
Mike Miller:
An alias-declaration is just a different syntax for a typedef declaration, which allows definitions of a class in the type; I would expect the same to be true of an alias-declaration. I don't have any particularly strong attachment to allowing a class definition in an alias-declaration. My only concern is introducing an irregularity into what are currently exact-match semantics with typedefs.
There's a parallel restriction in many (but not all?) of these places on typedef declarations.
Jens Maurer:
Those are redundant, as typedef is not a type-specifier, and should be removed as well.
Proposed resolution (March, 2008):
Delete the indicated words from 5.2.7 [expr.dynamic.cast] paragraph 1:
...Types shall not be defined in a dynamic_cast....
Delete the indicated words from 5.2.8 [expr.typeid] paragraph 4:
...Types shall not be defined in the type-id....
Delete the indicated words from 5.2.9 [expr.static.cast] paragraph 1:
...Types shall not be defined in a static_cast....
Delete the indicated words from 5.2.10 [expr.reinterpret.cast] paragraph 1:
...Types shall not be defined in a reinterpret_cast....
Delete the indicated words from 5.2.11 [expr.const.cast] paragraph 1:
...Types shall not be defined in a const_cast....
Delete paragraph 5 of 5.3.3 [expr.sizeof]:
Types shall not be defined in a sizeof expression.
Delete paragraph 5 of 5.3.4 [expr.new]:
The type-specifier-seq shall not contain class declarations, or enumeration declarations.
Delete paragraph 4 of 5.3.6 [expr.alignof]:
A type shall not be defined in an alignof expression.
Delete paragraph 3 of 5.4 [expr.cast]:
Types shall not be defined in casts.
Delete the indicated words from 6.4 [stmt.select] paragraph 2:
...The type-specifier-seq shall not contain typedef and shall not declare a new class or enumeration....
Add the indicated words to 7.1.6 [dcl.type] paragraph 3:
At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor, destructor or conversion function. [Footnote: ... ] A type-specifier-seq shall not define a class or enumeration unless it appears in the type-id of an alias-declaration (7.1.3 [dcl.typedef]).
Delete the indicated words from 12.3.2 [class.conv.fct] paragraph 1:
...Classes, enumerations, and typedef-names shall not be declared in the type-specifier-seq....
Delete the indicated words from 15.3 [except.handle] paragraph 1:
...Types shall not be defined in an exception-declaration.
Delete paragraph 6 of 15.4 [except.spec]:
Types shall not be defined in exception-specifications.
[Drafting note: no changes are required to 5.1.2 [expr.prim.lambda], 7.1.3 [dcl.typedef], 7.6.2 [dcl.align], 7.2 [dcl.enum], 8.3.5 [dcl.fct], 14.1 [temp.param], or 14.2 [temp.names].]
[Moved to DR at 10/01 meeting.]
8.2 [dcl.ambig.res] paragraph 3 shows an example that includes <cstddef> with no using declarations or directives and refers to size_t without the std:: qualification.
Many references to size_t throughout the document omit the std:: namespace qualification.
This is a typical case. The use of std:: is inconsistent throughout the document.
In addition, the use of exception specifications should be examined for consistency.
(See also issue 282.)
Proposed resolution:
In 1.9 [intro.execution] paragraph 9, replace all two instances of "sig_atomic_t" by "std::sig_atomic_t".
In 3.1 [basic.def] paragraph 4, replace all three instances of "string" by "std::string" in the example and insert "#include <string>" at the beginning of the example code.
In 3.6.1 [basic.start.main] paragraph 4, replace
Calling the functionvoid exit(int);declared in <cstdlib>...
by
Calling the function std::exit(int) declared in <cstdlib>...
and also replace "exit" by "std::exit" in the last sentence of that paragraph.
In 3.6.1 [basic.start.main] first sentence of paragraph 5, replace "exit" by "std::exit".
In 3.6.2 [basic.start.init] paragraph 4, replace "terminate" by "std::terminate".
In 3.6.3 [basic.start.term] paragraph 1, replace "exit" by "std::exit" (see also issue 28).
In 3.6.3 [basic.start.term] paragraph 3, replace all three instances of "atexit" by "std::atexit" and both instances of "exit" by "std::exit" (see also issue 28).
In 3.6.3 [basic.start.term] paragraph 4, replace
Calling the functionvoid abort();declared in <cstdlib>...
by
Calling the function std::abort() declared in <cstdlib>...and "atexit" by "std::atexit" (see also issue 28).
In 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 1 third sentence, replace "size_t" by "std::size_t".
In 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 3, replace "new_handler" by "std::new_handler". Furthermore, replace "set_new_handler" by "std::set_new_handler" in the note.
In 3.7.4.1 [basic.stc.dynamic.allocation] paragraph 4, replace "type_info" by "std::type_info" in the note.
In 3.7.4.2 [basic.stc.dynamic.deallocation] paragraph 3, replace all four instances of "size_t" by "std::size_t".
In 3.8 [basic.life] paragraph 5, replace "malloc" by "std::malloc" in the example code and insert "#include <cstdlib>" at the beginning of the example code.
In 3.9 [basic.types] paragraph 2, replace "memcpy" by "std::memcpy" (the only instance in the footnote and both instances in the example) and replace "memmove" by "std::memmove" in the footnote (see also issue 43).
In 3.9 [basic.types] paragraph 3, replace "memcpy" by "std::memcpy", once in the normative text and once in the example (see also issue 43).
In 3.9.1 [basic.fundamental] paragraph 8 last sentence, replace "numeric_limits" by "std::numeric_limits".
In 5.2.7 [expr.dynamic.cast] paragraph 9 second sentence, replace "bad_cast" by "std::bad_cast".
In 5.2.8 [expr.typeid] paragraph 2, replace "type_info" by "std::type_info" and "bad_typeid" by "std::bad_typeid".
In 5.2.8 [expr.typeid] paragraph 3, replace "type_info" by "std::type_info".
In 5.2.8 [expr.typeid] paragraph 4, replace both instances of "type_info" by "std::type_info".
In 5.3.3 [expr.sizeof] paragraph 6, replace both instances of "size_t" by "std::size_t".
In 5.3.4 [expr.new] paragraph 11 last sentence, replace "size_t" by "std::size_t".
In 5.7 [expr.add] paragraph 6, replace both instances of "ptrdiff_t" by "std::ptrdiff_t".
In 5.7 [expr.add] paragraph 8, replace "ptrdiff_t" by "std::ptrdiff_t".
In 6.6 [stmt.jump] paragraph 2, replace "exit" by "std::exit" and "abort" by "std::abort" in the note.
In 8.2 [dcl.ambig.res] paragraph 3, replace "size_t" by "std::size_t" in the example.
In 8.4 [dcl.fct.def] paragraph 5, replace "printf" by "std::printf" in the note.
In 12.4 [class.dtor] paragraph 13, replace "size_t" by "std::size_t" in the example.
In 12.5 [class.free] paragraph 2, replace all four instances of "size_t" by "std::size_t" in the example.
In 12.5 [class.free] paragraph 6, replace both instances of "size_t" by "std::size_t" in the example.
In 12.5 [class.free] paragraph 7, replace all four instances of "size_t" by "std::size_t" in the two examples.
In 12.7 [class.cdtor] paragraph 4, replace "type_info" by "std::type_info".
In 13.6 [over.built] paragraph 13, replace all five instances of "ptrdiff_t" by "std::ptrdiff_t".
In 13.6 [over.built] paragraph 14, replace "ptrdiff_t" by "std::ptrdiff_t".
In 13.6 [over.built] paragraph 21, replace both instances of "ptrdiff_t" by "std::ptrdiff_t".
In 14.2 [temp.names] paragraph 4, replace both instances of "size_t" by "std::size_t" in the example. (The example is quoted in issue 96.)
In 14.3 [temp.arg] paragraph 1, replace "complex" by "std::complex", once in the example code and once in the comment.
In 14.7.3 [temp.expl.spec] paragraph 8, issue 24 has already corrected the example.
In 15.1 [except.throw] paragraph 6, replace "uncaught_exception" by "std::uncaught_exception".
In 15.1 [except.throw] paragraph 7, replace "terminate" by "std::terminate" and both instances of "unexpected" by "std::unexpected".
In 15.1 [except.throw] paragraph 8, replace "terminate" by "std::terminate".
In 15.2 [except.ctor] paragraph 3, replace "terminate" by "std::terminate".
In 15.3 [except.handle] paragraph 9, replace "terminate" by "std::terminate".
In 15.4 [except.spec] paragraph 8, replace "unexpected" by "std::unexpected".
In 15.4 [except.spec] paragraph 9, replace "unexpected" by "std::unexpected" and "terminate" by "std::terminate".
In 15.5 [except.special] paragraph 1, replace "terminate" by "std::terminate" and "unexpected" by "std::unexpected".
In the heading of 15.5.1 [except.terminate], replace "terminate" by "std::terminate".
In 15.5.1 [except.terminate] paragraph 1, footnote in the first bullet, replace "terminate" by "std::terminate". In the same paragraph, fifth bullet, replace "atexit" by "std::atexit". In the same paragraph, last bullet, replace "unexpected_handler" by "std::unexpected_handler".
In 15.5.1 [except.terminate] paragraph 2, replace
In such cases,void terminate();is called...
by
In such cases, std::terminate() is called...
and replace all three instances of "terminate" by "std::terminate".
In the heading of 15.5.2 [except.unexpected], replace "unexpected" by "std::unexpected".
In 15.5.2 [except.unexpected] paragraph 1, replace
...the functionvoid unexpected();is called...
by
...the function std::unexpected() is called....
In 15.5.2 [except.unexpected] paragraph 2, replace "unexpected" by "std::unexpected" and "terminate" by "std::terminate".
In 15.5.2 [except.unexpected] paragraph 3, replace "unexpected" by "std::unexpected".
In the heading of 15.5.3 [except.uncaught], replace "uncaught_exception" by "std::uncaught_exception".
In 15.5.3 [except.uncaught] paragraph 1, replace
The functionbool uncaught_exception()returns true...
by
The function std::uncaught_exception() returns true....
In the last sentence of the same paragraph, replace "uncaught_exception" by "std::uncaught_exception".
[Moved to DR at 10/01 meeting.]
Steve Clamage: Section 8.3.4 [dcl.array] paragraph 1 reads in part as follows:
Any type of the form "cv-qualifier-seq array of N T" is adjusted to "array of N cv-qualifier-seq T," and similarly for "array of unknown bound of T." [Example:The Note appears to contradict the sentence that precedes it.typedef int A[5], AA[2][3]; typedef const A CA; // type is "array of 5 const int" typedef const AA CAA; // type is "array of 2 array of 3 const int"—end example] [Note: an "array of N cv-qualifier-seq T" has cv-qualified type; such an array has internal linkage unless explicitly declared extern (7.1.6.1 [dcl.type.cv] ) and must be initialized as specified in 8.5 [dcl.init] . ]
Mike Miller: I disagree; all it says is that whether the qualification on the element type is direct ("const int x[5]") or indirect ("const A CA"), the array itself is qualified in the same way the elements are.
Steve Clamage: In addition, section 3.9.3 [basic.type.qualifier] paragraph 2 says:
A compound type (3.9.2 [basic.compound] ) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is compounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4 [dcl.array] )."The Note appears to contradict that section as well.
Mike Miller: Yes, but consider the last two sentences of 3.9.3 [basic.type.qualifier] paragraph 5:
Cv-qualifiers applied to an array type attach to the underlying element type, so the notation "cv T," where T is an array type, refers to an array whose elements are so-qualified. Such array types can be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying element types.I think this says essentially the same thing as 8.3.4 [dcl.array] paragraph 1 and its note: the qualification of an array is (bidirectionally) equivalent to the qualification of its members.
Mike Ball: I find this a very far reach. The text in 8.3.4 [dcl.array] is essentially that which is in the C standard (and is a change from early versions of C++). I don't see any justification at all for the bidirectional equivalence. It seems to me that the note is left over from the earlier version of the language.
Steve Clamage: Finally, the Note seems to say that the declaration
volatile char greet[6] = "Hello";gives "greet" internal linkage, which makes no sense.
Have I missed something, or should that Note be entirely removed?
Mike Miller: At least the wording in the note should be repaired not to indicate that volatile-qualification gives an array internal linkage. Also, depending on how the discussion goes, either the wording in 3.9.3 [basic.type.qualifier] paragraph 2 or in paragraph 5 needs to be amended to be consistent regarding whether an array type is considered qualified by the qualification of its element type.
Steve Adamczyk pointed out that the current state of affairs resulted from the need to handle reference binding consistently. The wording is intended to define the question, "Is an array type cv-qualified?" as being equivalent to the question, "Is the element type of the array cv-qualified?"
Proposed resolution (10/00):
Replace the portion of the note in 8.3.4 [dcl.array] paragraph 1 reading
such an array has internal linkage unless explicitly declared extern (7.1.6.1 [dcl.type.cv]) and must be initialized as specified in 8.5 [dcl.init].
with
see 3.9.3 [basic.type.qualifier].
[Moved to DR at 10/01 meeting.]
8.3.5 [dcl.fct] paragraph 3 says,
All declarations for a function with a given parameter list shall agree exactly both in the type of the value returned and in the number and type of parameters.It is not clear what this requirement means with respect to a pair of declarations like the following:
int f(const int); int f(int x) { ... }Do they violate this requirement? Is x const in the body of the function declaration?
Tom Plum: I think the FDIS quotation means that the pair of decls are valid. But it doesn't clearly answer whether x is const inside the function definition. As to intent, I know the intent was that if the function definition wants to specify that x is const, the const must appear specifically in the defining decl, not just on some decl elsewhere. But I can't prove that intent from the drafted words.
Mike Miller: I think the intent was something along the following lines:
Two function declarations denote the same entity if the names are the same and the function signatures are the same. (Two function declarations with C language linkage denote the same entity if the names are the same.) All declarations of a given function shall agree exactly both in the type of the value returned and in the number and type of parameters; the presence or absence of the ellipsis is considered part of the signature.(See 3.5 [basic.link] paragraph 9. That paragraph talks about names in different scopes and says that function references are the same if the "types are identical for purposes of overloading," i.e., the signatures are the same. See also 7.5 [dcl.link] paragraph 6 regarding C language linkage, where only the name is required to be the same for declarations in different namespaces to denote the same function.)
According to this paragraph, the type of a parameter is determined by considering its decl-specifier-seq and declarator and then applying the array-to-pointer and function-to-pointer adjustments. The cv-qualifier and storage class adjustments are performed for the function type but not for the parameter types.
If my interpretation of the intent of the second sentence of the paragraph is correct, the two declarations in the example violate that restriction — the parameter types are not the same, even though the function types are. Since there's no dispensation mentioned for "no diagnostic required," an implementation presumably must issue a diagnostic in this case. (I think "no diagnostic required" should be stated if the declarations occur in different translation units — unless there's a blanket statement to that effect that I have forgotten?)
(I'd also note in passing that, if my interpretation is correct,
void f(int); void f(register int) { }is also an invalid pair of declarations.)
Proposed resolution (10/00):
In 1.3 [intro.defs] “signature,” change "the types of its parameters" to "its parameter-type-list (8.3.5 [dcl.fct])".
In the third bullet of 3.5 [basic.link] paragraph 9 change "the function types are identical for the purposes of overloading" to "the parameter-type-lists of the functions (8.3.5 [dcl.fct]) are identical."
In the sub-bullets of the third bullet of 5.2.5 [expr.ref] paragraph 4, change all four occurrences of "function of (parameter type list)" to "function of parameter-type-list."
In 8.3.5 [dcl.fct] paragraph 3, change
All declarations for a function with a given parameter list shall agree exactly both in the type of the value returned and in the number and type of parameters; the presence or absence of the ellipsis is considered part of the function type.to
All declarations for a function shall agree exactly in both the return type and the parameter-type-list.
In 8.3.5 [dcl.fct] paragraph 3, change
The resulting list of transformed parameter types is the function's parameter type list.to
The resulting list of transformed parameter types and the presence or absence of the ellipsis is the function's parameter-type-list.
In 8.3.5 [dcl.fct] paragraph 4, change "the parameter type list" to "the parameter-type-list."
In the second bullet of 13.1 [over.load] paragraph 2, change all occurrences of "parameter types" to "parameter-type-list."
In 13.3 [over.match] paragraph 1, change "the types of the parameters" to "the parameter-type-list."
In the last sub-bullet of the third bullet of 13.3.1.2 [over.match.oper] paragraph 3, change "parameter type list" to "parameter-type-list."
Note, 7 Sep 2001:
Editorial changes while putting in issue 147 brought up the fact that injected-class-name is not a syntax term and therefore perhaps shouldn't be written with hyphens. The same can be said of parameter-type-list.
[Voted into WP at April 2003 meeting.]
The interaction of default arguments and ellipsis is not clearly spelled out in the current wording of the Standard. 8.3.6 [dcl.fct.default] paragraph 4 says,
In a given function declaration, all parameters subsequent to a parameter with a default argument shall have default arguments supplied in this or previous declarations.
Strictly speaking, ellipsis isn't a parameter, but this could be clearer. Also, in 8.3.5 [dcl.fct] paragraph 2,
If the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or greater than the number of parameters specified.
This could be interpreted to refer to the number of arguments after the addition of default arguments to the argument list given in the call expression, but again it could be clearer.
Notes from 04/01 meeting:
The consensus opinion was that an ellipsis is not a parameter and that default arguments should be permitted preceding an ellipsis.
Proposed Resolution (4/02):
Change the following sentence in 8.3.5 [dcl.fct] paragraph 2 from
If the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or greater than the number of parameters specified.
to
If the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or greater than the number of parameters that do not have a default argument.
As noted in the defect, section 8.3.6 [dcl.fct.default] is correct but could be clearer.
In 8.3.6 [dcl.fct.default], add the following as the first line of the example in paragraph 4.
void g(int = 0, ...); // okay, ellipsis is not a parameter so it can follow // a parameter with a default argument
[Moved to DR at October 2002 meeting.]
This concerns the inconsistent treatment of cv qualifiers on reference types and function types. The problem originated with GCC bug report c++/2810. The bug report is available at http://gcc.gnu.org/cgi-bin/gnatsweb.pl?cmd=view&pr=2810&database=gcc
8.3.2 [dcl.ref] describes references. Of interest is the statement (my emphasis)
Cv-qualified references are ill-formed except when the cv-qualifiers are introduced through the use of a typedef or of a template type argument, in which case the cv-qualifiers are ignored.
Though it is strange to ignore 'volatile' here, that is not the point of this defect report. 8.3.5 [dcl.fct] describes function types. Paragraph 4 states,
In fact, if at any time in the determination of a type a cv-qualified function type is formed, the program is ill-formed.
No allowance for typedefs or template type parameters is made here, which is inconsistent with the equivalent reference case.
The GCC bug report was template code which attempted to do,
template <typename T> void foo (T const &); void baz (); ... foo (baz);
in the instantiation of foo, T is `void ()' and an attempt is made to const qualify that, which is ill-formed. This is a surprise.
Suggested resolution:
Replace the quoted sentence from paragraph 4 in 8.3.5 [dcl.fct] with
cv-qualified functions are ill-formed, except when the cv-qualifiers are introduced through the use of a typedef or of a template type argument, in which case the cv-qualifiers are ignored.
Adjust the example following to reflect this.
Proposed resolution (10/01):
In 8.3.5 [dcl.fct] paragraph 4, replace
The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of the function type, i.e., it does not create a cv-qualified function type. In fact, if at any time in the determination of a type a cv-qualified function type is formed, the program is ill-formed. [Example:bytypedef void F(); struct S { const F f; // ill-formed };-- end example]
The effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of the function type. In the latter case, the cv-qualifiers are ignored. [Example:typedef void F(); struct S { const F f; // ok; equivalent to void f(); };-- end example]
Strike the last bulleted item in 14.8.2 [temp.deduct] paragraph 2, which reads
Attempting to create a cv-qualified function type.
Nathan Sidwell comments (18 Dec 2001 ): The proposed resolution simply states attempts to add cv qualification on top of a function type are ignored. There is no mention of whether the function type was introduced via a typedef or template type parameter. This would appear to allow
void (const *fptr) ();but, that is not permitted by the grammar. This is inconsistent with the wording of adding cv qualifiers to a reference type, which does mention typedefs and template parameters, even though
int &const ref;is also not allowed by the grammar.
Is this difference intentional? It seems needlessly confusing.
Notes from 4/02 meeting:
Yes, the difference is intentional. There is no way to add cv-qualifiers other than those cases.
Notes from April 2003 meeting:
Nathan Sidwell pointed out that some libraries use the inability to add const to a type T as a way of testing that T is a function type. He will get back to us if he has a proposal for a change.
[Voted into the WP at the September, 2008 meeting as part of paper N2757.]
The wording added to 8.3.5 [dcl.fct] for declarators with late-specified return types says,
In a declaration T D where D has the form
D1 ( parameter-declaration-clause ) cv-qualifier-seqopt ref-qualifieropt exception-specificationopt -> type-id
and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T,” T shall be the single type-specifier auto and the derived-declarator-type-list shall be empty.
These restrictions were intended to ensure that the return type of the function is exactly the specified type-id following the ->, not modified by declarator operators and cv-qualification.
Unfortunately, the requirement for an empty derived-declarator-type-list does not achieve this goal but instead forbids declarations like
auto (*fp)() -> int; // pointer to function returning int
while allowing declarations like
auto *f() -> int; // function returning pointer to int
The reason for this is that, according to the grammar in 8 [dcl.decl] paragraph 4, the declarator *f() -> int is parsed as a ptr-operator applied to the direct-declarator f() -> int; that is, the declarator D1 seen in 8.3.5 [dcl.fct] is just f, and the derived-declarator-type-list is thus empty.
By contrast, the declarator (*fp)() -> int is parsed as the direct-declarator (*fp) followed by the parameter-declaration-clause, etc. In this case, D1 in 8.3.5 [dcl.fct] is (*fp) and the derived-declarator-type-list is “pointer to,” i.e., not empty.
My personal view is that there is no reason to forbid the (*fp)() -> int form, and that doing so is problematic. For example, this restriction would require users desiring the late-specified return type syntax to write function parameters as function types and rely on parameter type transformations rather than writing them as pointer-to-function types, as they will actually turn out to be:
void f(auto (*fp)() -> int); // ill-formed void f(auto fp() -> int); // OK (but icky)
It may be helpful in deciding whether to allow this form to consider the example of a function returning a pointer to a function. With the current restriction, only one of the three plausible forms is allowed:
auto (*f())() -> int; // Disallowed auto f() -> int (*)(); // Allowed auto f() -> auto (*)() -> int; // DisallowedSuggested resolution:
Delete the words “and the derived-declarator-type-list shall be empty” from 8.3.5 [dcl.fct] paragraph 2.
Add a new paragraph following 8 [dcl.decl] paragraph 4:
A ptr-operator shall not be applied, directly or indirectly, to a function declarator with a late-specified return type (8.3.5 [dcl.fct]).
Proposed resolution (June, 2008):
Change the grammar in 8 [dcl.decl] paragraph 4 as follows:
Change the grammar in 8.1 [dcl.name] paragraph 1 as follows:
Change 8.3.5 [dcl.fct] paragraph 2 as follows:
... T shall be the single type-specifier auto and the derived-declarator-type-list shall be empty. Then the type...
Change all occurrences of direct-new-declarator in 5.3.4 [expr.new] to noptr-new-declarator. These changes appear in the grammar in paragraph 1 and in the text of paragraphs 6-8, as follows:
...
new-declarator:
ptr-operator new-declaratoropt
direct-noptr-new-declarator
direct-noptr-new-declarator:
[ expression ]
...
direct-noptr-new-declarator [ constant-expression ]
When the allocated object is an array (that is, the direct-noptr-new-declarator syntax is used or the new-type-id or type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array. [Note: both new int and new int[10] have type int* and the type of new int[i][10] is int (*)[10] —end note]
Every constant-expression in a direct-noptr-new-declarator shall be an integral constant expression (5.20 [expr.const]) and evaluate to a strictly positive value. The expression in a direct-noptr-new-declarator shall be of integral type, enumeration type, or a class type for which a single non-explicit conversion function to integral or enumeration type exists (12.3 [class.conv]). If the expression is of class type, the expression is converted by calling that conversion function, and the result of the conversion is used in place of the original expression. If the value of the expression is negative, the behavior is undefined. [Example: given the definition int n = 42, new float[n][5] is well-formed (because n is the expression of a direct-noptr-new-declarator), but new float[5][n] is ill-formed (because n is not a constant expression). If n is negative, the effect of new float[n][5] is undefined. —end example]
When the value of the expression in a direct-noptr-new-declarator is zero, the allocation function is called to allocate an array with no elements.
[Moved to DR at 10/01 meeting.]
8.3.6 [dcl.fct.default] paragraph 4 says,
For non-template functions, default arguments can be added in later declarations of a function in the same scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declarations in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa.It is unclear how this wording applies to friend function declarations. For example,
void f(int, int, int=0); // #1 class C { friend void f(int, int=0, int); // #2 }; void f(int=0, int, int); // #3Does the declaration at #2 acquire the default argument from #1, and does the one at #3 acquire the default arguments from #2?
There are several related questions involved with this issue:
Mike Miller: 8.3.6 [dcl.fct.default] paragraph 4 is speaking about the lexical location of the declaration... The friend declaration occurs in a different declarative region from the declaration at #1, so I would read [this paragraph] as saying that it starts out with a clean slate of default arguments.
Bill Gibbons: Yes. It occurs in a different region, although it declares a name in the same region (i.e. a redeclaration). This is the same as with local externs and is intended to work the same way. We decided that local extern declarations cannot add (beyond the enclosing block) new default arguments, and the same should apply to friend declarations.
John Spicer: The question is whether [this paragraph] does (or should) mean declarations that appear in the same lexical scope or declarations that declare names in the same scope. In my opinion, it really needs to be the latter. It seems somewhat paradoxical to say that a friend declaration declares a function in namespace scope yet the declaration in the class still has its own attributes. To make that work I think you'd have to make friends more like block externs that really do introduce a name into the scope in which the declaration is contained.
Bill Gibbons: In the absence of a declaration visible in class scope to which they could be attached, default arguments on friend declarations do not make sense. [They should be] ill-formed, to prevent surprises.
John Spicer: It is important that the following case work correctly:
class X { friend void f(X x, int i = 1){} }; int main() { X x; f(x); }
In other words, a function first declared in a friend declaration must be permitted to have default arguments and those default arguments must be usable when the function is found by argument dependent lookup. The reason that this is important is that it is common practice to define functions in friend declarations in templates, and that definition is the only place where the default arguments can be specified.
John Spicer: We want to avoid instantiation side effects. IMO, the way to do this would be to prohibit a friend declaration from providing default arguments if a declaration of that function is already visible. Once a function has had a default specified in a friend declaration it should not be possible to add defaults in another declaration be it a friend or normal declaration.
Mike Miller: The position that seems most reasonable to me is to allow default arguments in friend declarations to be used in Koenig lookup, but to say that they are completely unrelated to default arguments in declarations in the surrounding scope; and to forbid use of a default argument in a call if more than one declaration in the overload set has such a default, as in the proposed resolution for issue 1.
Notes from 10/99 meeting:
Four possible outcomes were identified:
The core group eliminated the first and fourth options from consideration, but split fairly evenly between the remaining two.
A straw poll of the full committee yielded the following results (given as number favoring/could live with/"over my dead body"):
Additional discussion is recorded in the "Record of Discussion" for the meeting, J16/99-0036 = WG21 N1212. See also paper J16/00-0040 = WG21 N1263.
Proposed resolution (10/00):
In 8.3.6 [dcl.fct.default], add following paragraph 4:
If a friend declaration specifies a default argument expression, that declaration must be a definition and shall be the only declaration of the function or function template in the translation unit.
[Moved to DR at 4/01 meeting.]
The description of copy-initialization in 8.5 [dcl.init] paragraph 14 says:
struct A { A(A&); }; struct B : A { }; struct C { operator B&(); }; C c; const A a = c; // allowed?
The temporary created with the conversion function is an lvalue of type B. If the temporary must have the cv-qualifiers of the destination type (i.e. const) then the copy-constructor for A cannot be called to create the object of type A from the lvalue of type const B. If the temporary has the cv-qualifiers of the result type of the conversion function, then the copy-constructor for A can be called to create the object of type A from the lvalue of type const B. This last outcome seems more appropriate.
Steve Adamczyk:
Because of late changes to this area, the relevant text is now the third sub-bullet of the fourth bullet of 8.5 [dcl.init] paragraph 14:
Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that can convert from the source type to the destination type or (when a conversion function is used) to a derived class thereof are enumerated... The function selected is called with the initializer expression as its argument; if the function is a constructor, the call initializes a temporary of the destination type. The result of the call (which is the temporary for the constructor case) is then used to direct-initialize, according to the rules above, the object that is the destination of the copy-initialization.
The issue still remains whether the wording should refer to "the cv-unqualified version of the destination type." I think it should.
Notes from 10/00 meeting:
The original example does not illustrate the remaining problem. The following example does:
struct C { }; C c; struct A { A(const A&); A(const C&); }; const volatile A a = c; // Okay
Proposed Resolution (04/01):
In 8.5 [dcl.init], paragraph 14, bullet 4, sub-bullet 3, change
if the function is a constructor, the call initializes a temporary of the destination type.
to
if the function is a constructor, the call initializes a temporary of the cv-unqualified version of the destination type.
Paragraph 9 of 8.5 [dcl.init] says:
If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for an object, the object and its subobjects, if any, have an indeterminate initial value; if the object or any of its subobjects are of const-qualified type, the program is ill-formed.It should be made clear that this paragraph does not apply to static objects.
Proposed resolution (10/00): In 8.5 [dcl.init] paragraph 9, replace
Otherwise, if no initializer is specified for an object..."with
Otherwise, if no initializer is specified for a non-static object...
[Moved to DR at 4/02 meeting.]
Is the temporary created during copy-initialization of a class object treated as an lvalue or an rvalue? That is, is the following example well-formed or not?
struct B { }; struct A { A(A&); // not const A(const B&); }; B b; A a = b;
According to 8.5 [dcl.init] paragraph 14, the initialization of a is performed in two steps. First, a temporary of type A is created using A::A(const B&). Second, the resulting temporary is used to direct-initialize a using A::A(A&).
The second step requires binding a reference to non-const to the temporary resulting from the first step. However, 8.5.3 [dcl.init.ref] paragraph 5 requires that such a reference be bound only to lvalues.
It is not clear from 3.10 [basic.lval] whether the temporary created in the process of copy-initialization should be treated as an lvalue or an rvalue. If it is an lvalue, the example is well-formed, otherwise it is ill-formed.
Proposed resolution (04/01):
In 8.5 [dcl.init] paragraph 14, insert the following after "the call initializes a temporary of the destination type":
The temporary is an rvalue.
In 15.1 [except.throw] paragraph 3, replace
The temporary is used to initialize the variable...
with
The temporary is an lvalue and is used to initialize the variable...
(See also issue 84.)
[Moved to DR at 10/01 meeting.]
The intent of 8.5 [dcl.init] paragraph 5 is that pointers that are zero-initialized will contain a null pointer value. Unfortunately, the wording used,
...set to the value of 0 (zero) converted to T
does not match the requirements for creating a null pointer value given in 4.10 [conv.ptr] paragraph 1:
A null pointer constant is an integral constant expression (5.20 [expr.const]) rvalue of integer type that evaluates to zero. A null pointer constant can be converted to a pointer type; the result is the null pointer value of that type...
The problem is that the "value of 0" in the description of zero-initialization is not specified to be an integral constant expression. Nonconstant expressions can also have the value 0, and converting a nonconst 0 to pointer type need not result in a null pointer value.
Proposed resolution (04/01):
In 8.5 [dcl.init] paragraph 5, change
...set to the value 0 (zero) converted to T;
to
...set to the value 0 (zero), taken as an integral constant expression, converted to T; [footnote: as specified in 4.10 [conv.ptr], converting an integral constant expression whose value is 0 to a pointer type results in a null pointer value.]
[Moved to DR at October 2002 meeting.]
We've been looking at implementing value-initialization. At one point, some years back, I remember Bjarne saying that something like X() in an expression should produce an X object with the same value one would get if one created a static X object, i.e., the uninitialized members would be zero-initialized because the whole object is initialized at program startup, before the constructor is called.
The formulation for default-initialization that made it into TC1 (in 8.5 [dcl.init]) is written a little differently (see issue 178), but I had always assumed that it would still be a valid implementation to zero the whole object and then call the default constructor for the troublesome "non-POD but no user-written constructor" cases.
That almost works correctly, but I found a problem case:
struct A { A(); ~A(); }; struct B { // B is a non-POD with no user-written constructor. // It has a nontrivial generated constructor. const int i; A a; }; int main () { // Value-initializing a "B" doesn't call the default constructor for // "B"; it value-initializes the members of B. Therefore it shouldn't // cause an error on generation of the default constructor for the // following: new B(); }
If the definition of the B::B() constructor is generated, an error is issued because the const member "i" is not initialized. But the definition of value-initialization doesn't require calling the constructor, and therefore it doesn't require generating it, and therefore the error shouldn't be detected.
So this is a case where zero-initializing and then calling the constructor is not equivalent to value-initializing, because one case generates an error and the other doesn't.
This is sort of unfortunate, because one doesn't want to generate all the required initializations at the point where the "()" initialization occurs. One would like those initializations to be packaged in a function, and the default constructor is pretty much the function one wants.
I see several implementation choices:
Personally, I find option 1 the least objectionable.
Proposed resolution (10/01):
Add the indicated wording to the third-to-last sentence of 3.2 [basic.def.odr] pararaph 2:
A default constructor for a class is used by default initialization or value initialization as specified in 8.5 [dcl.init].
Add a footnote to the indicated bullet in 8.5 [dcl.init] paragraph 5:
Add the indicated wording to the first sentence of 12.1 [class.ctor] paragraph 7:
An implicitly-declared default constructor for a class is implicitly defined when it is used (3.2 [basic.def.odr]) to create an object of its class type (1.8 [intro.object]).
[Voted into the WP at the September, 2008 meeting (resolution in paper N2762).]
The definition of default initialization (8.5 [dcl.init] paragraph 5) is:
if T is a non-POD class type (clause 9 [class]), the default constructor for T is called (and the initialization is ill-formed if T has no accessible default constructor);
if T is an array type, each element is default-initialized;
otherwise, the object is zero-initialized.
However, default initialization is invoked only for non-POD class types and arrays thereof (5.3.4 [expr.new] paragraph 15 for new-expressions, 8.5 [dcl.init] paragraph 10 for top-level objects, and 12.6.2 [class.base.init] paragraph 4 for member and base class subobjects — but see issue 510). Consequently, all cases that invoke default initialization are handled by the first two bullets; the third bullet can never be reached. Its presence is misleading, so it should be removed.
Notes from the September, 2008 meeting:
The approach adopted in the resolution in paper N2762 was different from the suggestion above: it changes the definition of default initialization to include POD types and changes the third bullet to specify that “no initialization is performed.”
[Voted into the WP at the September, 2008 meeting (resolution in paper N2762).]
The wording resulting from the resolution of issue 302 does not quite implement the intent of the issue. The revised wording of 3.2 [basic.def.odr] paragraph 2 is:
A default constructor for a class is used by default initialization or value initialization as specified in 8.5 [dcl.init].
This sounds as if 8.5 [dcl.init] specifies how and under what circumstances value initialization uses a default constructor (which was, in fact, the case for default initialization in the original wording). However, the normative text there makes it plain that value initialization does not call the default constructor (the permission granted to implementations to call the default constructor for value initialization is in a non-normative footnote).
The example that occasioned this observation raises an additional question. Consider:
struct POD { const int x; }; POD data = POD();
According to the (revised) resolution of issue 302, this code is ill-formed because the implicitly-declared default constructor will be implicitly defined as a result of being used by value initialization (12.1 [class.ctor] paragraph 7), and the implicitly-defined constructor fails to initialize a const-qualified member (12.6.2 [class.base.init] paragraph 4). This seems unfortunate, because the (trivial) default constructor of a POD class is otherwise not used — default initialization applies only to non-PODs — and it is not actually needed in value initialization. Perhaps value initialization should be defined to “use” the default constructor only for non-POD classes? If so, both of these problems would be resolved by rewording the above-referenced sentence of 3.2 [basic.def.odr] paragraph 2 as:
A default constructor for a non-POD class is used by default initialization or value initialization as specified in (8.5 [dcl.init]).
Notes from the April, 2006 meeting:
The approach favored by the CWG was to leave 3.2 [basic.def.odr] unchanged and to add normative wording to 8.5 [dcl.init] indicating that it is unspecified whether the default constructor is called.
Notes from the October, 2006 meeting:
The CWG now prefers that it should not be left unspecified whether programs of this sort are well- or ill-formed; instead, the Standard should require that the default constructor be defined in such cases. Three possibilities of implementing this decision were discussed:
Change 3.2 [basic.def.odr] to state flatly that the default constructor is used by value initialization (removing the implication that 8.5 [dcl.init] determines the conditions under which it is used).
Change 8.5 [dcl.init] to specify that non-union class objects with no user-declared constructor are value-initialized by first zero-initializing the object and then calling the (implicitly-defined) default constructor, replacing the current specification of value-initializing each of its sub-objects.
Add a normative statement to 8.5 [dcl.init] that value-initialization causes the implicitly-declared default constructor to be implicitly defined, even if it is not called.
Proposed resolution (June, 2008):
Change the second bullet of the value-initialization definition in 8.5 [dcl.init] paragraph 5 as follows:
if T is a non-union class type without a user-provided constructor, then every non-static data member and base-class component of T is value-initialized; [Footnote: Value-initialization for such a class object may be implemented by zero-initializing the object and then calling the default constructor. —end footnote] the object is zero-initialized and the implicitly-defined default constructor is called;
Notes from the September, 2008 meeting:
The resolution supplied in paper N2762 differs from the June, 2008 proposed resolution in that the implicitly-declared default constructor is only called (and thus defined) if it is non-trivial, making the struct POD example above well-formed.
[Voted into the WP at the April, 2007 meeting as part of paper J16/07-0099 = WG21 N2239.]
A recent GCC bug report ( http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11633) asks about the validity of
int count = 23; int foo[] = { count++, count++, count++ };is this undefined or unspecified or something else? I can find nothing in 8.5.1 [dcl.init.aggr] that indicates whether the components of an initializer-list are evaluated in order or not, or whether they have sequence points between them.
6.7.8/23 of the C99 std has this to say
The order in which any side effects occur among the initialization list expressions is unspecified.I think similar wording is needed in 8.5.1 [dcl.init.aggr]
Steve Adamczyk: I believe the standard is clear that each initializer expression in the above is a full-expression (1.9 [intro.execution]/12-13; see also issue 392) and therefore there is a sequence point after each expression (1.9 [intro.execution]/16). I agree that the standard does not seem to dictate the order in which the expressions are evaluated, and perhaps it should. Does anyone know of a compiler that would not evaluate the expressions left to right?
Mike Simons: Actually there is one, that does not do left to right: gcc/C++. None of the post increment operations take effect until after the statement finishes. So in the sample code gcc stores 23 into all positions in the array. The commercial vendor C++ compilers for AIX, Solaris, Tru64, HPUX (parisc and ia64), and Windows, all do sequence points at each ',' in the initializer list.
[Voted into WP at April, 2007 meeting.]
The current wording of 8.5.1 [dcl.init.aggr] paragraph 8 requires that
An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list {}.
This is overly constraining. There is no reason that the following should be ill-formed:
struct S { }; S s; S arr[1] = { s };
Mike Miller: The wording of 8.5.1 [dcl.init.aggr] paragraph 8 is unclear. “An aggregate member” would most naturally mean “a member of an aggregate.” In context, however, I think it must mean “a member [of an aggregate] that is an aggregate”, that is, a subaggregate. Members of aggregates need not themselves be aggregates (cf paragraph 13 and 12.6.1 [class.expl.init]); it cannot be the case that an object of an empty class with a user-declared constructor must be initialized with {} when it is a member of an aggregate. This wording should be clarified, regardless of the decision on Nathan's point.
Proposed resolution (October, 2005):
This issue is resolved by the resolution of issue 413.
[Voted into the WP at the June, 2008 meeting as part of paper N2672.]
C (both C90 and C99) appear to allow a declaration of the form
struct S { int i; } s = { { 5 } };
in which the initializer of a scalar member of an aggregate can itself be brace-enclosed. The relevant wording from the C99 Standard is found in 6.7.8 paragraph 11:
The initializer for a scalar shall be a single expression, optionally enclosed in braces.
and paragraph 16:
Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list of initializers for the elements or named members.
The “list of initializers” in paragraph 16 must be a recursive reference to paragraph 11 (that's the only place that describes how an initialized item gets its value from the initializer expression), which would thus make the “brace-enclosed” part of paragraph 11 apply to each of the initializers in the list in paragraph 16 as well.
This appears to be an incompatibility between C and C++: 8.5.1 [dcl.init.aggr] paragraph 11 says,
If the initializer-list begins with a left brace, then the succeeding comma-separated list of initializer-clauses initializes the members of a subaggregate....
which clearly leaves the impression that only a subaggregate may be initialized by a brace-enclosed initializer-clause.
Either the specification in 8.5.1 [dcl.init.aggr] should be changed to allow a brace-enclosed initializer of a scalar member of an aggregate, as in C, or this incompatibility should be listed in Appendix C [diff].
Notes from the July, 2007 meeting:
It was noted that implementations differ in their handling of this construct; however, the issue is long-standing and fairly obscure.
Notes from the October, 2007 meeting:
The initializer-list proposal will resolve this issue when it is adopted.
[Voted into WP at October 2005 meeting.]
There is a place in the Standard where overload resolution is implied but the way that a set of candidate functions is to be formed is omitted. See below.
According to the Standard, when initializing a reference to a non-volatile const class type (cv1 T1) with an rvalue expression (cv2 T2) where cv1 T1 is reference compatible with cv2 T2, the implementation shall proceed in one of the following ways (except when initializing the implicit object parameter of a copy constructor) 8.5.3 [dcl.init.ref] paragraph 5 bullet 2 sub-bullet 1:
While the first case is quite obvious, the second one is a bit unclear as it says "a constructor is called to copy the entire rvalue object into the temporary" without specifying how the temporary is created -- by direct-initialization or by copy-initialization? As stated in DR 152, this can make a difference when the copy constructor is declared as explicit. How should the set of candidate functions be formed? The most appropriate guess is that it shall proceed as per 13.3.1.3 [over.match.ctor].
Another detail worth of note is that in the draft version of the Standard as of 2 December 1996 the second bullet read:
J. Stephen Adamczyk replied that the reason for changing "a copy constructor" to "a constructor" was to allow for member template converting constructors.
However, the new wording is somewhat in conflict with the footnote #93 that says that when initializing the implicit object parameter of a copy constructor an implementation must eventually choose the first alternative (binding without copying) to avoid infinite recursion. This seems to suggest that a copy constructor is always used for initializing the temporary of type "cv1 T2".
Furthermore, now that the set of candidate functions is not limited to only the copy constructors of T2, there might be some unpleasant consequences. Consider a rather contrived sample below:
int * pi = ::new(std::nothrow) int; const std::auto_ptr<int> & ri = std::auto_ptr<int>(pi);
In this example the initialization of the temporary of type '<TT>const std::auto_ptr<int>' (to which 'ri' is meant to be subsequently bound) doesn't fail, as it would had the approach with copy constructors been retained, instead, a yet another temporary gets created as the well-known sequence:
std::auto_ptr<int>::operator std::auto_ptr_ref<int>() std::auto_ptr<int>(std::auto_ptr_ref<int>)
is called (assuming, of course, that the set of candidate functions is formed as per 13.3.1.3 [over.match.ctor]). The second temporary is transient and gets destroyed at the end of the initialization. I doubt that this is the way that the committee wanted this kind of reference binding to go.
Besides, even if the approach restricting the set of candidates to copy constructors is restored, it is still not clear how the initialization of the temporary (to which the reference is intended to be bound) is to be performed -- using direct-initialization or copy-initialization.
Another place in the Standard that would benefit from a similar clarification is the creation of an exception object, which is delineated in 15.1 [except.throw].
David Abrahams (February 2004): It appears, looking at core 291, that there may be a need to tighten up 8.5.3 [dcl.init.ref]/5.
Please see the attached example file, which demonstrates "move semantics" in C++98. Many compilers fail to compile test 10 because of the way 8.5.3/5 is interpreted. My problem with that interpretation is that test 20:
typedef X const XC; sink2(XC(X()));does compile. In other words, it *is* possible to construct the const temporary from the rvalue. IMO, that is the proper test.
8.5.3/5 doesn't demand that a "copy constructor" is used to copy the temporary, only that a constructor is used "to copy the temporary". I hope that when the language is tightened up to specify direct (or copy initialization), that it also unambiguously allows the enclosed test to compile. Not only is it, I believe, within the scope of reasonable interpretation of the current standard, but it's an incredibly important piece of functionality for library writers and users alike.
#include <iostream> #include <cassert> template <class T, class X> struct enable_if_same { }; template <class X> struct enable_if_same<X, X> { typedef char type; }; struct X { static int cnt; // count the number of Xs X() : id(++cnt) , owner(true) { std::cout << "X() #" << id << std::endl; } // non-const lvalue - copy ctor X(X& rhs) : id(++cnt) , owner(true) { std::cout << "copy #" << id << " <- #" << rhs.id << std::endl; } // const lvalue - T will be deduced as X const template <class T> X(T& rhs, typename enable_if_same<X const,T>::type = 0) : id(++cnt) , owner(true) { std::cout << "copy #" << id << " <- #" << rhs.id << " (const)" << std::endl; } ~X() { std::cout << "destroy #" << id << (owner?"":" (EMPTY)") << std::endl; } private: // Move stuff struct ref { ref(X*p) : p(p) {} X* p; }; public: // Move stuff operator ref() { return ref(this); } // non-const rvalue X(ref rhs) : id(++cnt) , owner(rhs.p->owner) { std::cout << "MOVE #" << id << " <== #" << rhs.p->id << std::endl; rhs.p->owner = false; assert(owner); } private: // Data members int id; bool owner; }; int X::cnt; X source() { return X(); } X const csource() { return X(); } void sink(X) { std::cout << "in rvalue sink" << std::endl; } void sink2(X&) { std::cout << "in non-const lvalue sink2" << std::endl; } void sink2(X const&) { std::cout << "in const lvalue sink2" << std::endl; } void sink3(X&) { std::cout << "in non-const lvalue sink3" << std::endl; } template <class T> void tsink(T) { std::cout << "in templated rvalue sink" << std::endl; } int main() { std::cout << " ------ test 1, direct init from rvalue ------- " << std::endl; #ifdef __GNUC__ // GCC having trouble parsing the extra parens X z2((0, X() )); #else X z2((X())); #endif std::cout << " ------ test 2, copy init from rvalue ------- " << std::endl; X z4 = X(); std::cout << " ------ test 3, copy init from lvalue ------- " << std::endl; X z5 = z4; std::cout << " ------ test 4, direct init from lvalue ------- " << std::endl; X z6(z4); std::cout << " ------ test 5, construct const ------- " << std::endl; X const z7; std::cout << " ------ test 6, copy init from lvalue ------- " << std::endl; X z8 = z7; std::cout << " ------ test 7, direct init from lvalue ------- " << std::endl; X z9(z7); std::cout << " ------ test 8, pass rvalue by-value ------- " << std::endl; sink(source()); std::cout << " ------ test 9, pass const rvalue by-value ------- " << std::endl; sink(csource()); std::cout << " ------ test 10, pass rvalue by overloaded reference ------- " << std::endl; // This one fails in Comeau's strict mode due to 8.5.3/5. GCC 3.3.1 passes it. sink2(source()); std::cout << " ------ test 11, pass const rvalue by overloaded reference ------- " << std::endl; sink2(csource()); #if 0 // These two correctly fail to compile, just as desired std::cout << " ------ test 12, pass rvalue by non-const reference ------- " << std::endl; sink3(source()); std::cout << " ------ test 13, pass const rvalue by non-const reference ------- " << std::endl; sink3(csource()); #endif std::cout << " ------ test 14, pass lvalue by-value ------- " << std::endl; sink(z5); std::cout << " ------ test 15, pass const lvalue by-value ------- " << std::endl; sink(z7); std::cout << " ------ test 16, pass lvalue by-reference ------- " << std::endl; sink2(z4); std::cout << " ------ test 17, pass const lvalue by const reference ------- " << std::endl; sink2(z7); std::cout << " ------ test 18, pass const lvalue by-reference ------- " << std::endl; #if 0 // correctly fails to compile, just as desired sink3(z7); #endif std::cout << " ------ test 19, pass rvalue by value to template param ------- " << std::endl; tsink(source()); std::cout << " ------ test 20, direct initialize a const A with an A ------- " << std::endl; typedef X const XC; sink2(XC(X())); }
Proposed Resolution:
(As proposed by N1610 section 5, with editing.)
Change paragraph 5, second bullet, first sub-bullet, second sub-sub-bullet as follows:
A temporary of type "cv1 T2" [sic] is created, and a constructor is called to copy the entire rvalue object into the temporary via copy-initialization from the entire rvalue object. The reference is bound to the temporary or to a sub-object within the temporary.
The text immediately following that is changed as follows:
The constructor that would be used to make the copy shall be callable whether or not the copy is actually done. The constructor and any conversion function that would be used in the initialization shall be callable whether or not the temporary is actually created.
Note, however, that the way the core working group is leaning on issue 391 (i.e., requiring direct binding) would make this change unnecessary.
Proposed resolution (April, 2005):
This issue is resolved by the resolution of issue 391.
[Voted into WP at October 2005 meeting.]
After some email exchanges with Rani Sharoni, I've come up with the following proposal to allow reference binding to non-copyable rvalues in some cases. Rationale and some background appear afterwards.
---- proposal ----
Replace the section of 8.5.3 [dcl.init.ref] paragraph 5 that begins "If the initializer expression is an rvalue" with the following:
---- rationale ----
class nc { nc (nc const &); // private, nowhere defined public: nc (); nc const &by_ref () const { return *this; } }; void f () { void g (nc const &); g (nc()); // Ill-formed g (nc().by_ref()); // Ok - binds directly to rvalue }Forcing a direct binding in this way is possible wherever the lifetime of the reference does not extend beyond the containing full expression, since the reference returned by the member function remains valid for this long.
---- background ----
The proposal is based on a recent discussion in this group. I originally wanted to leave the implementation free to copy the rvalue if there was a callable copy constructor, and only have to bind directly if none was callable. Unfortunately, a traditional compiler can't always tell whether a function is callable or not, e.g. if the copy constructor is declared but not defined. Rani pointed this out in an example, and suggested that maybe trivial copy constructors should still be allowed (by extension, maybe wherever the compiler can determine callability). I've gone with this version because it's simpler, and I also figure the "as if" rule gives the compiler some freedom with POD types anyway.
Notes from April 2003 meeting:
We agreed generally with the proposal. We were unsure about the need for the restriction regarding long-lived references. We will check with the proposer about that.
Jason Merrill points out that the test case in issue 86 may be a case where we do not want to require direct binding.
Further information from Rani Sharoni (April 2003):
I wasn't aware about the latest suggestion of Raoul as it appears in core issue 391. In our discussions we tried to formulate a different proposal.
The rational, as we understood, behind the implementation freedom to make an extra copying (8.5.3/5/2/12) of the rvalue is to allow return values in registers which on some architectures are not addressable. The example that Raoul and I presented shows that this implementation freedom is not always possible since we can "force" the rvalue to be addressable using additional member function (by_ref). The example only works for short lived rvalues and this is probably why Raoul narrow the suggestion.
I had different rational which was related to the implementation of conditional operator in VC. It seems that when conditional operator is involved VC does use an extra copying when the lifetime of the temporary is extended:
struct A { /* ctor with side effect */}; void f(A& x) { A const& r = cond ? A(1) : x; // VC actually make an extra copy of // the rvalue A(1) }
I don't know what the consideration behind the VC implementation was (I saw open bug on this issue) but it convinced me to narrow the suggestion.
IMHO such limitation seems to be too strict because it might limit the optimizer since returning class rvalues in registers might be useful (although I'm not aware about any implementation that actually does it). My suggestion was to forbid the extra copying if the ctor is not viable (e.g. A::A(A&) ). In this case the implementation "freedom" doesn't exist (since the code might not compile) and only limits the programmer freedom (e.g. Move Constructors - http://www.cuj.com/experts/2102/alexandr.htm).
Core issue 291 is strongly related to the above issue and I personally prefer to see it resolved first. It seems that VC already supports the resolution I prefer.
Notes from October 2003 meeting:
We ended up feeling that this is just one of a number of cases of optimizations that are widely done by compilers and allowed but not required by the standard. We don't see any strong reason to require compilers to do this particular optimization.
Notes from the March 2004 meeting:
After discussing issue 450, we found ourselves reconsidering this, and we are now inclined to make a change to require the direct binding in all cases, with no restriction on long-lived references. Note that such a change would eliminate the need for a change for issue 291.
Proposed resolution (October, 2004):
Change 8.5.3 [dcl.init.ref] paragraph 5 bullet 2 sub-bullet 1 as follows:
If the initializer expression is an rvalue, with T2 a class type, and "cv1 T1" is reference-compatible with "cv2 T2", the reference is bound to the object represented by the rvalue (see 3.10 [basic.lval]) or to a sub-object within that object. in one of the following ways (the choice is implementation-defined):The constructor that would be used to make the copy shall be callable whether or not the copy is actually done. [Example:
- The reference is bound to the object represented by the rvalue (see 3.10 [basic.lval]) or to a sub-object within that object.
- A temporary of type "cv1 T2" [sic] is created, and a constructor is called to copy the entire rvalue object into the temporary. The reference is bound to the temporary or to a sub-object within the temporary.
struct A { }; struct B : public A { } b; extern B f(); const A& rca = f (); // Bound Either bound to the A sub-object of the B rvalue, // or the entire B object is copied and the reference // is bound to the A sub-object of the copy—end example]
[This resolution also resolves issue 291.]
[Voted into WP at October 2005 meeting.]
It's unclear whether the following is valid:
const int N = 10; const int M = 20; typedef int T; void f(T const (&x)[N][M]){} struct X { int i[10][20]; }; X g(); int main() { f(g().i); }
When you run this through 8.5.3 [dcl.init.ref], you sort of end up falling off the end of the standard's description of reference binding. The standard says in the final bullet of paragraph 5 that an array temporary should be created and copy-initialized from the rvalue array, which seems implausible.
I'm not sure what the right answer is. I think I'd be happy with allowing the binding in this case. We would have to introduce a special case like the one for class rvalues.
Notes from the March 2004 meeting:
g++ and EDG give an error. Microsoft (8.0 beta) and Sun accept the example. Our preference is to allow the direct binding (no copy). See the similar issue with class rvalues in issue 391.
Proposed resolution (October, 2004):
Insert a new bullet in 8.5.3 [dcl.init.ref] paragraph 5 bullet 2 before sub-bullet 2 (which begins, “Otherwise, a temporary of type ‘cv1 T1’ is created...”):
If the initializer expression is an rvalue, with T2 an array type, and “cv1 T1” is reference-compatible with “cv2 T2”, the reference is bound to the object represented by the rvalue (see 3.10 [basic.lval]).
Change 3.10 [basic.lval] paragraph 2 as follows:
An lvalue refers to an object or function. Some rvalue expressions — those of (possibly cv-qualified) class or array type or cv-qualified class type — also refer to objects.
[Moved to DR at 10/01 meeting.]
With class name injection, when a base class name is used in a derived class, the name found is the injected name in the base class, not the name of the class in the scope containing the base class. Consequently, if the base class name is not accessible (e.g., because is is in a private base class), the base class name cannot be used unless a qualified name is used to name the class in the class or namespace of which it is a member.
Without class name injection the following example is valid. With class name injection, A is inaccessible in class C.
class A { }; class B: private A { }; class C: public B { A* p; // error: A inaccessible };
At the least, the standard should be more explicit that this is, in fact, ill-formed.
(See paper J16/99-0010 = WG21 N1187.)
Proposed resolution (04/01):
Add to the end of 11.1 [class.access.spec] paragraph 3:
[Note: In a derived class, the lookup of a base class name will find the injected-class-name instead of the name of the base class in the scope in which it was declared. The injected-class-name might be less accessible than the name of the base class in the scope in which it was declared.] [Example:
class A { }; class B : private A { }; class C : public B { A* p; // error: injected-class-name A is inaccessible ::A* q; // OK };—end example]
[Moved to DR at October 2002 meeting.]
I think that the definition of a POD class in the current version of the Standard is overly permissive in that it allows for POD classes for which a user-defined operator function operator& may be defined. Given that the idea behind POD classes was to achieve compatibility with C structs and unions, this makes 'Plain old' structs and unions behave not quite as one would expect them to.
In the C language, if x and y are variables of struct or union type S that has a member m, the following expression are allowed: &x, x.m, x = y. While the C++ standard guarantees that if x and y are objects of a POD class type S, the expressions x.m, x = y will have the same effect as they would in C, it is still possible for the expression &x to be interpreted differently, subject to the programmer supplying an appropriate version of a user-defined operator function operator& either as a member function or as a non-member function.
This may result in surprising effects. Consider:
// POD_bomb is a POD-struct. It has no non-static non-public data members, // no virtual functions, no base classes, no constructors, no user-defined // destructor, no user-defined copy assignment operator, no non-static data // members of type pointer to member, reference, non-POD-struct, or // non-POD-union. struct POD_bomb { int m_value1; int m_value2; int operator&() { return m_value1++; } int operator&() const { return m_value1 + m_value2; } };
3.9 [basic.types] paragraph 2 states:
For any complete POD object type T, whether or not the object holds a valid value of type T, the underlying bytes (1.7 [intro.memory]) making up the object can be copied into an array of char or unsigned char [footnote: By using, for example, the library functions (17.6.1.2 [headers]) memcpy or memmove]. If the content of the array of char or unsigned char is copied back into the object, the object shall subsequently hold its original value. [Example:#define N sizeof(T) char buf[N]; T obj; // obj initialized to its original value memcpy(buf, &obj, N); // between these two calls to memcpy, // obj might be modified memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type // holds its original value—end example]
Now, supposing that the complete POD object type T in the example above is POD_bomb, and we cannot any more count on the assertions made in the comments to the example. Given a standard conforming implementation, the code will not even compile. And I see no legal way of copying the contents of an object of a complete object type POD_bomb into an array of char or unsigned char with memcpy or memmove without making use of the unary & operator. Except, of course, by means of an ugly construct like:
struct POD_without_ampersand { POD_bomb a_bomb; } obj; #define N sizeof(POD_bomb) char buf[N]; memcpy(buf, &obj, N); memcpy(&obj, buf, N);
The fact that the definition of a POD class allows for POD classes for which a user-defined operator& is defined, may also present major obstacles to implementers of the offsetof macro from <cstddef>
18.2 [support.types] paragraph 5 says:
The macro offsetof accepts a restricted set of type arguments in this International Standard. type shall be a POD structure or a POD union (clause 9 [class]). The result of applying the offsetof macro to a field that is a static data member or a function is undefined."
Consider a well-formed C++ program below:
#include <cstddef> #include <iostream> struct POD_bomb { int m_value1; int m_value2; int operator&() { return m_value1++; } int operator&() const { return m_value1 + m_value2; } }; // POD_struct is a yet another example of a POD-struct. struct POD_struct { POD_bomb m_nonstatic_bomb1; POD_bomb m_nonstatic_bomb2; }; int main() { std::cout << "offset of m_nonstatic_bomb2: " << offsetof(POD_struct, m_nonstatic_bomb2) << '\n'; return 0; }
See Jens Maurer's paper 01-0038=N1324 for an analysis of this issue.
Notes from 10/01 meeting:
A consensus was forming around the idea of disallowing operator& in POD classes when it was noticed that it is permitted to declare global-scope operator& functions, which cause the same problems. After more discussion, it was decided that such functions should not be prohibited in POD classes, and implementors should simply be required to "get the right answer" in constructs such as offsetof and va_start that are conventionally implemented using macros that use the "&" operator. It was noted that one can cast the original operand to char & to de-type it, after which one can use the built-in "&" safely.
Proposed resolution:
[Footnote: Note that offsetof is required to work as specified even if unary operator& is overloaded for any of the types involved.]
[Footnote: Note that va_start is required to work as specified even if unary operator& is overloaded for the type of parmN.]
[Moved to DR at October 2002 meeting.]
Although 8.3 [dcl.meaning] requires that a declaration of a qualified-id refer to a member of the specified namespace or class and that the member not have been introduced by a using-declaration, it applies only to names declared in a declarator. It is not clear whether there is existing wording enforcing the same restriction for qualified-ids in class-specifiers and elaborated-type-specifiers or whether additional wording is required. Once such wording is found/created, the proposed resolution of issue 275 must be modified accordingly.
Notes from 10/01 meeting:
The sentiment was that this should be required on class definitions, but not on elaborated type specifiers in general (which are references, not declarations). We should also make sure we consider explicit instantiations, explicit specializations, and friend declarations.
Proposed resolution (10/01):
Add after the end of 9.1 [class.name] paragraph 3:
When a nested-name-specifier is specified in a class-head or in an elaborated-type-specifier, the resulting qualified name shall refer to a previously declared member of the class or namespace to which the nested-name-specifier refers, and the member shall not have been introduced by a using-declaration in the scope of the class or namespace nominated by the nested-name-specifier.
[Voted into WP at April, 2007 meeting.]
In 9 [class] paragraph 4, the first sentence says "A structure is a class definition defined with the class-key struct". As far as I know, there is no such thing as a structure in C++; it certainly isn't listed as one of the possible compound types in 3.9.2 [basic.compound]. And defining structures opens the question of whether a forward declaration is a structure or not. The parallel here with union (which follows immediately) suggests that structures and classes are really different things, since the same wording is used, and classes and unions do have some real differences, which manifest themselves outside of the definition. It also suggests that since one can't forward declare union with class and vice versa, the same should hold for struct and class -- I believe that the intent was that one could use struct and class interchangeably in forward declaration.
Suggested resolution:
I suggest something like the following:
If a class is defined with the class-key class, its members and base classes are private by default. If a class is defined with the class-key struct, its members and base classes are public by default. If a class is defined with the class-key union, its members are public by default, and it holds only one data member at a time. Such classes are called unions, and obey a number of additional restrictions, see 9.5 [class.union].
Proposed resolution (April, 2006):
This issue is resolved by the resolution of issue 538.
[Voted into WP at March 2004 meeting.]
The ARM used the term "class declaration" to refer to what would usually be termed the definition of the class. The standard now often uses "class definition", but there are some surviving uses of "class declaration" with the old meaning. They should be found and changed.
Proposed resolution (April 2003):
Replace in 3.1 [basic.def] paragraph 2
A declaration is a definition unless it declares a function without specifying the function's body (8.4 [dcl.fct.def]), it contains the extern specifier (7.1.1 [dcl.stc]) or a linkage-specification [Footnote: Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a definition. --- end footnote] (7.5 [dcl.link]) and neither an initializer nor a function-body, it declares a static data member in a class declaration definition (9.4 [class.static]), it is a class name declaration (9.1 [class.name]), or it is a typedef declaration (7.1.3 [dcl.typedef]), a using-declaration (7.3.3 [namespace.udecl]), or a using-directive (7.3.4 [namespace.udir]).
Replace in 7.1.2 [dcl.fct.spec] paragraphs 5 and 6
The virtual specifier shall only be used in declarations of nonstatic class member functions that appear within a member-specification of a class declaration definition; see 10.3 [class.virtual].
The explicit specifier shall be used only in declarations of constructors within a class declaration definition; see 12.3.1 [class.conv.ctor].
Replace in 7.1.3 [dcl.typedef] paragraph 4
A typedef-name that names a class is a class-name (9.1 [class.name]). If a typedef-name is used following the class-key in an elaborated-type-specifier (7.1.6.3 [dcl.type.elab]) or in the class-head of a class declaration definition (9 [class]), or is used as the identifier in the declarator for a constructor or destructor declaration (12.1 [class.ctor], 12.4 [class.dtor]), the program is ill-formed.
Replace in 7.3.1.2 [namespace.memdef] paragraph 3
The name of the friend is not found by simple name lookup until a matching declaration is provided in that namespace scope (either before or after the class declaration definition granting friendship).
Replace in 8.3.2 [dcl.ref] paragraph 4
There shall be no references to references, no arrays of references, and no pointers to references. The declaration of a reference shall contain an initializer (8.5.3 [dcl.init.ref]) except when the declaration contains an explicit extern specifier (7.1.1 [dcl.stc]), is a class member (9.2 [class.mem]) declaration within a class declaration definition, or is the declaration of a parameter or a return type (8.3.5 [dcl.fct]); see 3.1 [basic.def].
Replace in 8.5.3 [dcl.init.ref] paragraph 3
The initializer can be omitted for a reference only in a parameter declaration (8.3.5 [dcl.fct]), in the declaration of a function return type, in the declaration of a class member within its class declaration definition (9.2 [class.mem]), and where the extern specifier is explicitly used.
Replace in 9.1 [class.name] paragraph 2
A class definition declaration introduces the class name into the scope where it is defined declared and hides any class, object, function, or other declaration of that name in an enclosing scope (3.3 [basic.scope]). If a class name is declared in a scope where an object, function, or enumerator of the same name is also declared, then when both declarations are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4 [basic.lookup.elab]).
Replace in 9.4 [class.static] paragraph 4
Static members obey the usual class member access rules (clause 11 [class.access]). When used in the declaration of a class member, the static specifier shall only be used in the member declarations that appear within the member-specification of the class declaration definition.
Replace in 9.7 [class.nest] paragraph 1
A class can be defined declared within another class. A class defined declared within another is called a nested class. The name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class. Except by using explicit pointers, references, and object names, declarations in a nested class can use only type names, static members, and enumerators from the enclosing class.
Replace in 9.8 [class.local] paragraph 1
A class can be defined declared within a function definition; such a class is called a local class. The name of a local class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same access to names outside the function as does the enclosing function. Declarations in a local class can use only type names, static variables, extern variables and functions, and enumerators from the enclosing scope.
Replace in 10 [class.derived] paragraph 1
... The class-name in a base-specifier shall not be an incompletely defined class (clause 9 [class]); this class is called a direct base class for the class being declared defined. During the lookup for a base class name, non-type names are ignored (3.3.10 [basic.scope.hiding]). If the name found is not a class-name, the program is ill-formed. A class B is a base class of a class D if it is a direct base class of D or a direct base class of one of D's base classes. A class is an indirect base class of another if it is a base class but not a direct base class. A class is said to be (directly or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 [class.access] for the meaning of access-specifier.] Unless redefined redeclared in the derived class, members of a base class are also considered to be members of the derived class. The base class members are said to be inherited by the derived class. Inherited members can be referred to in expressions in the same manner as other members of the derived class, unless their names are hidden or ambiguous (10.2 [class.member.lookup]). [Note: the scope resolution operator :: (5.1.1 [expr.prim.general]) can be used to refer to a direct or indirect base member explicitly. This allows access to a name that has been redefined redeclared in the derived class. A derived class can itself serve as a base class subject to access control; see 11.2 [class.access.base]. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous base class (4.10 [conv.ptr]). An lvalue of a derived class type can be bound to a reference to an accessible unambiguous base class (8.5.3 [dcl.init.ref]).]
Replace in 10.1 [class.mi] paragraph 5
For another example,for an object c of class type C, a single subobject of type V is shared by every base subobject of c that is declared to have has a virtual base class of type V.class V { /* ... */ }; class A : virtual public V { /* ... */ }; class B : virtual public V { /* ... */ }; class C : public A, public B { /* ... */ };
Replace in the example in 10.2 [class.member.lookup] paragraph 6 (the whole paragraph was turned into a note by the resolution of core issue 39)
The names defined declared in V and the left hand instance of W are hidden by those in B, but the names defined declared in the right hand instance of W are not hidden at all.
Replace in 10.4 [class.abstract] paragraph 2
... A virtual function is specified pure by using a pure-specifier (9.2 [class.mem]) in the function declaration in the class declaration definition. ...
Replace in the footnote at the end of 11.2 [class.access.base] paragraph 1
[Footnote: As specified previously in clause 11 [class.access], private members of a base class remain inaccessible even to derived classes unless friend declarations within the base class declaration definition are used to grant access explicitly.]
Replace in _N3225_.11.3 [class.access.dcl] paragraph 1
The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in the derived class declaration definition. Such mention is called an access declaration. ...
Replace in the example in 13.4 [over.over] paragraph 5
The initialization of pfe is ill-formed because no f() with type int(...) has been defined declared, and not because of any ambiguity.
Replace in C.1.6 [diff.dcl] paragraph 1
Rationale: Storage class specifiers don't have any meaning when associated with a type. In C++, class members can be defined declared with the static storage class specifier. Allowing storage class specifiers on type declarations could render the code confusing for users.
Replace in C.1.8 [diff.class] paragraph 3
In C++, a typedef name may not be redefined redeclared in a class declaration definition after being used in the declaration that definitionDrafting notes:
The resolution of core issue 45 (DR) deletes 11.7 [class.access.nest] paragraph 2.
The following occurrences of "class declaration" are not changed:
[Voted into WP at March 2004 meeting.]
The standard (9 [class] par. 4) says that "A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-defined copy assignment operator and no user-defined destructor."
Note that it says 'user-defined', not 'user-declared'. Is it the intent that if e.g. a copy assignment operator is declared but not defined, this does not (per se) prevent the class to be a POD-struct?
Proposed resolution (April 2003):
Replace in 9 [class] paragraph 4
A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-defined declared copy assignment operator and no user-defined declared destructor. Similarly, a POD-union is an aggregate union that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-defined declared copy assignment operator and no user-defined declared destructor.
Drafting note: The changes are shown relative to TC1, incorporating the changes from the resolution of core issue 148.
[Voted into WP at April, 2007 meeting.]
The proposal says that value is true if "T is an empty class (10)". Clause 10 doesn't define an empty class, although it has a note that says a base class may "be of zero size (clause 9)" 9/3 says "Complete objects and member subobjects of class type shall have nonzero size." This has a footnote, which says "Base class subobjects are not so constrained."
The standard uses the term "empty class" in two places (8.5.1 [dcl.init.aggr]), but neither of those places defines it. It's also listed in the index, which refers to the page that opens clause 9, i.e. the nonzero size stuff cited above.
So, what's the definition of "empty class" that determines whether the predicate is_empty is true?
The one place where it's used is 8.5.1 [dcl.init.aggr] paragraph 8, which says (roughly paraphrased) that an aggregate initializer for an empty class must be "{}", and when such an initializer is used for an aggregate that is not an empty class the members are default-initialized. In this context it's pretty clear what's meant. In the type traits proposal it's not as clear, and it was probably intended to have a different meaning. The boost implementation, after it eliminates non-class types, determines whether the trait is true by comparing the size of a class derived from T to the size of an otherwise-identical class that is not derived from T.
Howard Hinnant: is_empty was created to find out whether a type could be derived from and have the empty base class optimization successfully applied. It was created in part to support compressed_pair which attempts to optimize away the space for one of its members in an attempt to reduce spatial overhead. An example use is:
template <class T, class Compare = std::less<T> > class SortedVec { public: ... private: T* data_; compressed_pair<Compare, size_type> comp_; Compare& comp() {return comp_.first();} const Compare& comp() const {return comp_.first();} size_type& sz() {return comp_.second();} size_type sz() const {return comp_.second();} };
Here the compare function is optimized away via the empty base optimization if Compare turns out to be an "empty" class. If Compare turns out to be a non-empty class, or a function pointer, the space is not optimized away. is_empty is key to making this work.
This work built on Nathan's article: http://www.cantrip.org/emptyopt.html.
Clark Nelson: I've been looking at issue 413, and I've reached the conclusion that there are two different kinds of empty class. A class containing only one or more anonymous bit-field members is empty for purposes of aggregate initialization, but not (necessarily) empty for purposes of empty base-class optimization.
Of course we need to add a definition of emptiness for purposes of aggregate initialization. Beyond that, there are a couple of questions:
Notes from the October, 2005 meeting:
There are only two places in the Standard where the phrase “empty class” appears, both in 8.5.1 [dcl.init.aggr] paragraph 8. Because it is not clear whether the definition of “empty for initialization purposes” is suitable for use in defining the is_empty predicate, it would be better just to avoid using the phrase in the language clauses. The requirements of 8.5.1 [dcl.init.aggr] paragraph 8 appear to be redundant; paragraph 6 says that an initializer-list must have no more initializers than the number of elements to initialize, so an empty class already requires an empty initializer-list, and using an empty initializer-list with a non-empty class is covered adequately by paragraph 7's description of the handling of an initializer-list with fewer initializers than the number of members to initialize.
Proposed resolution (October, 2005):
Change
Static data members and anonymous bit fields are not considered members of the class for purposes of aggregate initialization. [Example:
struct A { int i; static int s; int j; int :17; int k; } a = { 1 , 2 , 3 };Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer 3 initializes a.k and not the padding before it. —end example]
Delete 8.5.1 [dcl.init.aggr] paragraph 8:
An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list {}. [Example:
struct S { }; struct A { S s; int i; } a = { { } , 3 };—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an empty class, then each member of the aggregate shall be initialized with a value of the form T() (5.2.3 [expr.type.conv]), where T represents the type of the uninitialized member.
This resolution also resolves issue 491.
Additional note (October, 2005):
Deleting 8.5.1 [dcl.init.aggr] paragraph 8 altogether may not be a good idea. It would appear that, in its absence, the initializer elision rules of paragraph 11 would allow the initializer for a in the preceding example to be written { 3 } (because the empty-class member s would consume no initializers from the list).
Proposed resolution (October, 2006):
(Drafting note: this resolution also cleans up incorrect references to syntactic non-terminals in the nearby paragraphs.)
Change 8.5.1 [dcl.init.aggr] paragraph 4 as indicated:
An array of unknown size initialized with a brace-enclosed initializer-list containing n initializers initializer-clauses, where n shall be greater than zero... An empty initializer list {} shall not be used as the initializer initializer-clause for an array of unknown bound.
Change
Static data members and anonymous bit fields are not considered members of the class for purposes of aggregate initialization. [Example:
struct A { int i; static int s; int j; int :17; int k; } a = { 1 , 2 , 3 };Here, the second initializer 2 initializes a.j and not the static data member A::s, and the third initializer 3 initializes a.k and not the anonymous bit field before it. —end example]
Change 8.5.1 [dcl.init.aggr] paragraph 6 as indicated:
An initializer-list is ill-formed if the number of initializers initializer-clauses exceeds the number of members...
Change 8.5.1 [dcl.init.aggr] paragraph 7 as indicated:
If there are fewer initializers initializer-clauses in the list than there are members...
Replace 8.5.1 [dcl.init.aggr] paragraph 8:
An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list {}. [Example:
struct S { }; struct A { S s; int i; } a = { { } , 3 };—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an empty class, then each member of the aggregate shall be initialized with a value of the form T() (5.2.3 [expr.type.conv]), where T represents the type of the uninitialized member.
with:
If an aggregate class C contains a subaggregate member m that has no members for purposes of aggregate initialization, the initializer-clause for m shall not be omitted from an initializer-list for an object of type C unless the initializer-clauses for all members of C following m are also omitted. [Example:
struct S { } s; struct A { S s1; int i1; S s2; int i2; S s3; int i3; } a = { { }, // Required initialization 0, s, // Required initialization 0 }; // Initialization not required for A::s3 because A::i3 is also not initialized—end example]
Change 8.5.1 [dcl.init.aggr] paragraph 10 as indicated:
When initializing a multi-dimensional array, the initializers initializer-clauses initialize the elements...
Change 8.5.1 [dcl.init.aggr] paragraph 11 as indicated:
Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the succeeding comma-separated list of initializers initializer-clauses initializes the members of a subaggregate; it is erroneous for there to be more initializers initializer-clauses than members. If, however, the initializer-list for a subaggregate does not begin with a left brace, then only enough initializers initializer-clauses from the list are taken to initialize the members of the subaggregate; any remaining initializers initializer-clauses are left to initialize the next member of the aggregate of which the current subaggregate is a member. [Example:...
Change 8.5.1 [dcl.init.aggr] paragraph 12 as indicated:
All implicit type conversions (clause 4 [conv]) are considered when initializing the aggregate member with an initializer from an initializer-list assignment-expression. If the initializer assignment-expression can initialize a member, the member is initialized. Otherwise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer assignment-expression is considered for the initialization of the first member of the subaggregate. [Note: As specified above, brace elision cannot apply to subaggregates with no members for purposes of aggregate initialization; an initializer-clause for the entire subobject is required. —end note] [Example:... Braces are elided around the initializer initializer-clause for b.a1.i...
Change 8.5.1 [dcl.init.aggr] paragraph 15 as indicated:
When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer initializer-clause for the first member of the union...
Change 8.5.1 [dcl.init.aggr] paragraph 16 as indicated:
[Note: as As described above, the braces around the initializer initializer-clause for a union member can be omitted if the union is a member of another aggregate. —end note]
(Note: this resolution also resolves issue 491.)
[Voted into WP at April, 2007 meeting.]
There are several problems with the terms defined in 9 [class] paragraph 4:
A structure is a class defined with the class-key struct; its members and base classes (clause 10 [class.derived]) are public by default (clause 11 [class.access]). A union is a class defined with the class-key union; its members are public by default and it holds only one data member at a time (9.5 [class.union]). [Note: aggregates of class type are described in 8.5.1 [dcl.init.aggr]. —end note] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. Similarly, a POD-union is an aggregate union that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. A POD class is a class that is either a POD-struct or a POD-union.
Although the term structure is defined here, it is used only infrequently throughout the Standard, often apparently inadvertently and consequently incorrectly:
5.2.5 [expr.ref] paragraph 4: the use is in a note and is arguably correct and helpful.
9.2 [class.mem] paragraph 11: the term is used (three times) in an example. There appears to be no reason to use it instead of “class,” but its use is not problematic.
17.3 [definitions] “iostream class templates:” the traits argument to the iostream class templates is (presumably unintentionally) constrained to be a structure, i.e., to use the struct keyword and not the class keyword in its definition.
B [implimits] paragraph 2: the minimum number of declarator operators is given for structures and unions but not for classes defined using the class keyword.
B [implimits] paragraph 2: class, structure, and union are used as disjoint terms in describing nesting levels. (The nonexistent nonterminal struct-declaration-list is used, as well.)
There does not appear to be a reason for defining the term structure. The one reference where it is arguably useful, in the note in 5.2.5 [expr.ref], could be rewritten as something like, “'class objects' may be defined using the class, struct, or union class-keys; see clause 9 [class].”
Based on its usage later in the paragraph and elsewhere, “POD-struct” appears to be intended to exclude unions. However, the definition of “aggregate class” in 8.5.1 [dcl.init.aggr] paragraph 1 includes unions. Furthermore, the name itself is confusing, leading to the question of whether it was intended that only classes defined using struct could be POD-structs or if class-classes are included. The definition should probably be rewritten as, “A POD-struct is an aggregate class defined with the class-key struct or the class-key class that has no...
In most references outside clause 9 [class], POD-struct and POD-union are mentioned together and treated identically. These references should be changed to refer to the unified term, “POD class.”
Noted in passing: 18.2 [support.types] paragraph 4 refers to the undefined terms “POD structure” and (unhyphenated) “POD union;” the pair should be replaced by a single reference to “POD class.”
Proposed resolution (April, 2006):
Change 9 [class] paragraph 4 as indicated:
A structure is a class defined with the class-key struct; its members and base classes (clause 10 [class.derived]) are public by default (clause 11 [class.access]). A union is a class defined with the class-key union; its members are public by default and it holds only one data member at a time (9.5 [class.union]). [Note: aggregates of class type are described in 8.5.1 [dcl.init.aggr]. —end note] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. Similarly, a POD-union is an aggregate union that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. A POD class is a class that is either a POD-struct or a POD-union. A POD class is an aggregate class that has no non-static data members of non-POD type (or array of such a type) or reference, and has no user-declared copy assignment operator and no user-declared destructor. A POD-struct is a POD class defined with the class-key struct or the class-key class. A POD-union is a POD class defined with the class-key union.
Change 11.2 [class.access.base] paragraph 2 as indicated:
In the absence of an access-specifier for a base class, public is assumed when the derived class is declared defined with the class-key struct and private is assumed when the class is declared defined with the class-key class. [Example:...
Delete the note in 5.2.5 [expr.ref] paragraph 4:
[Note: “class objects” can be structures (9.2 [class.mem]) and unions (9.5 [class.union]). Classes are discussed in clause 9 [class]. —end note]
Change the commentary in the example in 9.2 [class.mem] paragraph 11 as indicated:
...an integer, and two pointers to similar structures objects of the same type. Once this definition...
...the count member of the structure object to which sp points; s.left refers to the left subtree pointer of the structure object s; and...
Change 17.3 [definitions] “iostream class templates” as indicated:
...the argument traits is a structure class which defines additional characteristics...
Change 18.6 [support.dynamic] paragraph 4 as indicated:
If type is not a POD structure or a POD union POD class (clause 9), the results are undefined.
Change the third bullet of B [implimits] paragraph 2 as indicated:
Pointer, array, and function declarators (in any combination) modifying an a class, arithmetic, structure, union, or incomplete type in a declaration [256].
Change the nineteenth bullet of B [implimits] paragraph 2 as indicated:
Data members in a single class, structure, or union [16 384].
Change the twenty-first bullet of B [implimits] paragraph 2 as indicated:
Levels of nested class, structure, or union definitions in a single struct-declaration-list member-specification [256].
Change C.5 [diff.library] paragraph 6 as indicated:
The C++ Standard library provides 2 standard structures structs from the C library, as shown in Table 126.
Change the last sentence of 3.9 [basic.types] paragraph 10 as indicated:
Scalar types, POD-struct types, POD-union types POD classes (clause 9 [class]), arrays of such types and cv-qualified versions of these types (3.9.3 [basic.type.qualifier]) are collectively called POD types.
Drafting note: Do not change 3.9 [basic.types] paragraph 11, because it's a note and the definition of “layout-compatible” is separate for POD-struct and POD-union in 9.2 [class.mem].
(This resolution also resolves issue 327.)
[Voted into the WP at the July, 2007 meeting as part of paper J16/07-0202 = WG21 N2342.]
A POD struct (9 [class] paragraph 4) is “an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types), or reference, and that has no user-defined copy assignment operator and no user-defined destructor.” Meanwhile, an aggregate class (8.5.1 [dcl.init.aggr] paragraph 1) must have “no user-declared constructors, no private or protecte non-static data members, no base classes, and no virtual functions.”
This is too strict. The whole reason we define the notion of POD is for the layout compatibility guarantees in 9.2 [class.mem] paragraphs 14-17 and the byte-for-byte copying guarantees of 3.9 [basic.types] paragraph 2. None of those guarantees should be affected by the presence of ordinary constructors, any more than they're affected by the presence of any other member function. It’s silly for the standard to make layout and memcpy guarantees for this class:
struct A { int n; };
but not for this one:
struct B { int n; B(n_) : n(n_) { } };
With either A or B, it ought to be possible to save an array of those objects to disk with a single call to Unix’s write(2) system call or the equivalent. At present the standard says that it’s legal for A but not B, and there isn’t any good reason for that distinction.
Suggested resolution:
The following doesn’t fix all problems (in particular it still doesn’t let us treat pair<int, int> as a POD), but at least it goes a long way toward fixing the problem: in 8.5.1 [dcl.init.aggr] paragraph 1, change “no user-declared constructors” to “no nontrivial default constructor and no user-declared copy constructor.”
(Yes, I’m aware that this proposed change would also allow brace initialization for some types that don't currently allow it. I consider this to be a feature, not a bug.)
Mike Miller: I agree that something needs to be done about “POD,” but I’m not sure that this is it. My own take is that “POD” is used for too many different things — things that are related but not identical — and the concept should be split. The current definition is useful, as is, for issues regarding initialization and lifetime. For example, I wouldn’t want to relax the prohibition of jumping over a constructor call in 6.7 [stmt.dcl] (which is currently phrased in terms of POD types). On the other hand, I agree that the presence of a user-declared constructor says nothing about layout and bitwise copying. This needs (IMHO) a non-trivial amount of further study to determine how many categories we need (instead of just POD versus non-POD), which guarantees and prohibitions go with which category, the interaction of “memcpy initialization” (for want of a better term) with object lifetime, etc.
(See paper J16/06-0172 = WG21 N2102.)
Proposed resolution (April, 2007):
Adoption of the POD proposal (currently J16/07-0090 = WG21 N2230) will resolve this issue.
[Voted into WP at October 2004 meeting.]
We had a user complain that our compiler was allowing the following code:
struct B { struct S; }; struct D : B { }; struct D::S { };
We took one look at the code and made the reasonable (I would claim) assumption that this was indeed a bug in our compiler. Especially as we had just fixed a very similar issue with the definition of static data members.
Imagine our surprise when code like this showed up in Boost and that every other compiler we tested accepts this code. So is this indeed legal (it seems like it must be) and if so is there any justification for this beyond 3.4.3.1 [class.qual]?
John Spicer: The equivalent case for a member function is covered by the declarator rules in 8.3 [dcl.meaning] paragraph 1. The committee has previously run into cases where a restriction should apply to both classes and non-classes, but fails to do so because there is no equivalent of 8.3 [dcl.meaning] paragraph 1 for classes.
Given that, by the letter of the standard, I would say that this case is allowed.
Notes from October 2003 meeting:
We feel this case should get an error.
Proposed Resolution (October 2003):
Note that the change here interacts with issue 432.
Add the following as a new paragraph immediately following 3.3.2 [basic.scope.pdecl] paragraph 2:
The point of declaration for a class first declared by a class-specifier is immediately after the identifier or template-id (if any) in its class-head (Clause 9 [class]). The point of declaration for an enumeration is immediately after the identifier (if any) in its enum-specifier (7.2 [dcl.enum]).
Change point 1 of 3.3.7 [basic.scope.class] paragraph 1 to read:
The potential scope of a name declared in a class consists not only of the declarative region following the name's declarator point of declaration, but also of all function bodies, default arguments, and constructor ctor-initializers in that class (including such things in nested classes).
[Note that the preceding change duplicates one of the changes in the proposed resolution of issue 432.]
Change 14.7.2 [temp.explicit] paragraph 2 to read:
If the explicit instantiation is for a member function, a member class or a static data member of a class template specialization, the name of the class template specialization in the qualified-id for the member declarator name shall be a template-id.
Add the following as paragraph 5 of Clause 9 [class]:
If a class-head contains a nested-name-specifier, the class-specifier shall refer to a class that was previously declared directly in the class or namespace to which the nested-name-specifier refers (i.e., neither inherited nor introduced by a using-declaration), and the class-specifier shall appear in a namespace enclosing the previous declaration.
Delete 9.1 [class.name] paragraph 4 (this was added by issue 284):
When a nested-name-specifier is specified in a class-head or in an elaborated-type-specifier, the resulting qualified name shall refer to a previously declared member of the class or namespace to which the nested-name-specifier refers, and the member shall not have been introduced by a using-declaration in the scope of the class or namespace nominated by the nested-name-specifier.
[Voted into WP at March 2004 meeting.]
Is it legal to use an incomplete type (3.9 [basic.types] paragraph 6) as a class member, if no object of such class is ever created ?
And as a class template member, even if the template is instantiated, but no object of the instantiated class is created?
The consensus seems to be NO, but no wording was found in the standard which explicitly disallows it.
The problem seems to be that most of the restrictions on incomplete types are on their use in objects, but class members are not objects.
A possible resolution, if this is considered a defect, is to add to 3.2 [basic.def.odr] paragraph 4, (situations when T must be complete), the use of T as a member of a class or instantiated class template.
The thread on comp.std.c++ which brought up the issue was "Compiler differences: which is correct?", started 2001 11 30. <3c07c8fb$0$8507$ed9e5944@reading.news.pipex.net>
Proposed Resolution (April 2002, revised April 2003):
Change the first bullet of the note in 3.2 [basic.def.odr] paragraph 4 and add two new bullets following it, as follows:
Replace 9.2 [class.mem] paragraph 8 by:
Non-static (9.4 [class.static]) data members shall not have incomplete types. In particular, a class C shall not contain a non-static member of class C, but it can contain a pointer or reference to an object of class C.
See also 3.9 [basic.types] paragraph 6, which is relevant but not changed by the Proposed Resolution.
[Voted into WP at April 2005 meeting.]
I've encountered a C++ program in which a member function wants to declare that it may throw an object of its own class, e.g.:
class Foo { private: int val; public: Foo( int &initval ) { val = initval; }; void throwit() throw(Foo) { throw (*this); }; };
The compiler is complaining that Foo is an incomplete type, and can't be used in the exception specification.
My reading of the standard [basic.types] is inconclusive. Although it does state that the class declaration is considered complete when the closing brace is read, I believe it also intends that the member function declarations should not be semantically validated until the class has been completely declared.
If this isn't allowed, I don't know how else a member function could be declared to throw an object of its own class.
John Spicer: The type is considered complete within function bodies, but not in their declaration (see 9.2 [class.mem] paragraph 2).
Proposed Resolution:
Change 9.2 [class.mem] paragraph 2 as follows:
Within the class member-specification, the class is regarded as complete within function bodies, default arguments, exception-specifications, and constructor ctor-initializers (including such things in nested classes).
Rationale: Taken with 8.3.5 [dcl.fct] paragraph 6, the exception-specification is the only part of a function declaration/definition in which the class name cannot be used because of its putative incompleteness. There is no justification for singling out exception specifications this way; both in the function body and in a catch clause, the class type will be complete, so there is no harm in allowing the class name to be used in the exception-specification.
[Voted into WP at April, 2007 meeting.]
According to 9.2 [class.mem] paragraph 9, the name of a non-static data member can only be used with an object reference (explicit or implied by the this pointer of a non-static member function) or to form a pointer to member. This restriction applies even in the operand of sizeof, although the operand is not evaluated and thus no object is needed to perform the operation. Consequently, determining the size of a non-static class member often requires a circumlocution like
sizeof ((C*) 0)->m
instead of the simpler and more obvious (but incorrect)
sizeof (C::m)
The CWG considered this question as part of issue 198 and decided at that time to retain the restriction on consistency grounds: the rule was viewed as applying uniformly to expressions, and making an exception for sizeof would require introducing a special-purpose “wart.”
The issue has recently resurfaced, in part due to the fact that the restriction would also apply to the decltype operator. Like the unary & operator to form a pointer to member, sizeof and decltype need neither an lvalue nor an rvalue, requiring solely the declarative information of the named operand. One possible approach would be to define the concept of “unevaluated operand” or the like, exempt unevaluated operands from the requirement for an object reference in 9.2 [class.mem] paragraph 9, and then define the operands of these operators as “unevaluated.”
Proposed resolution (April, 2007):
The wording is given in paper J16/07-0113 = WG21 N2253.
[Voted into the WP at the July, 2007 meeting as part of paper J16/07-0202 = WG21 N2342.]
It should be made clear in 9.2 [class.mem] paragraph 15,
Two POD-struct (clause 9 [class]) types are layout-compatible if they have the same number of non-static data members, and corresponding non-static data members (in order) have layout-compatible types (3.9 [basic.types]).
that “corresponding... (in order)” refers to declaration order and not the order in which the members are laid out in memory.
However, this raises the point that, in cases where an access-specifier is involved, the declaration and layout order can be different (see paragraph 12). Thus, for two POD-struct classes A and B,
struct A { char c; int i; } struct B { char c; public: int i; };
a compiler could move B::i before B::c, but A::c must precede A::i. It does not seem reasonable that these two POD-structs would be considered layout-compatible, even though they satisfy the requirement that corresponding members in declaration order are layout-compatible.
One possibility would be to require that neither POD-struct have an access-specifier in order to be considered layout-compatible. (It's not sufficient to require that they have the same access-specifiers, because the compiler is not required to lay out the storage the same way for different classes.)
8.5.1 [dcl.init.aggr] paragraph 2 should also be clarified to make explicit that “increasing... member order” refers to declaration order.
Proposed resolution (April, 2007):
This issue will be resolved by the adoption of the POD proposal (currently J16/07-0090 = WG21 N2230). That paper does not propose a change to the wording of 8.5.1 [dcl.init.aggr] paragraph 2, but the CWG feels that the intent of that paragraph (that the initializers are used in declaration order) is clear enough not to require revision.
[Voted into WP at July, 2007 meeting.]
9.3.2 [class.this] paragraph 1, which specifies the meaning of the keyword 'this', seems to limit its usage to the *body* of non-static member functions. However 'this' is also usable in ctor-initializers which, according to the grammar in 8.4 [dcl.fct.def] par. 1, are not part of the body.
Proposed resolution: Changing the first part of 9.3.2 [class.this] par. 1 to:
In the body of a nonstatic (9.3) member function or in a ctor-initializer (12.6.2), the keyword this is a non-lvalue expression whose value is the address of the object for which the function is called.
NOTE: I'm talking of constructors as functions that are "called"; there have been discussions on c.l.c++.m as to whether constructors are "functions" and to whether this terminology is correct or not; I think it is both intuitive and in agreement with the standard wording.
Steve Adamczyk: See also issue 397, which is defining a new syntax term for the body of a function including the ctor-initializers.
Notes from the March 2004 meeting:
This will be resolved when issue 397 is resolved.
Proposed resolution (October, 2005):
Change 8.4 [dcl.fct.def] paragraph 1 as indicated:
Function definitions have the form
function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block
function-body:ctor-initializeropt compound-statement
function-try-block
An informal reference to the body of a function should be interpreted as a reference to the nonterminal function-body.
Change the definition of function-try-block in 15 [except] paragraph 1:
function-try-block:
try ctor-initializeropt function-body compound-statement handler-seq
Change 3.3.7 [basic.scope.class] paragraph 1, point 1, as indicated:
The potential scope of a name declared in a class consists not only of the declarative region following the name's point of declaration, but also of all function bodies, bodies and default arguments, and constructor ctor-initializers in that class (including such things in nested classes).
Change 3.3.7 [basic.scope.class] paragraph 1, point 5, as indicated:
The potential scope of a declaration that extends to or past the end of a class definition also extends to the regions defined by its member definitions, even if the members are defined lexically outside the class (this includes static data member definitions, nested class definitions, member function definitions (including the member function body and, for constructor functions (12.1 [class.ctor]), the ctor-initializer (12.6.2 [class.base.init] )) and any portion of the declarator part of such definitions which follows the identifier, including a parameter-declaration-clause and any default arguments (8.3.6 [dcl.fct.default]). [Example:...
Change footnote 32 in 3.4.1 [basic.lookup.unqual] paragraph 8 as indicated:
That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-clause, parameter-declaration-clause or in the function body, or in an expression of a mem-initializer in a constructor definition.
Change 5.1.1 [expr.prim.general] paragraph 3 as indicated:
...The keyword this shall be used only inside a non-static class member function body (9.3 [class.mfct]) or in a constructor mem-initializer (12.6.2 [class.base.init])...
Change 9.2 [class.mem] paragraph 2 as indicated:
...Within the class member-specification, the class is regarded as complete within function bodies, default arguments, and exception-specifications, and constructor ctor-initializers (including such things in nested classes)...
Change 9.2 [class.mem] paragraph 9 as indicated:
Each occurrence in an expression of the name of a non-static data member or non-static member function of a class shall be expressed as a class member access (5.2.5 [expr.ref]), except when it appears in the formation of a pointer to member (5.3.1 [expr.unary.op]), or or when it appears in the body of a non-static member function of its class or of a class derived from its class (9.3.1 [class.mfct.non-static]), or when it appears in a mem-initializer for a constructor for its class or for a class derived from its class (12.6.2 [class.base.init]).
Change the note in 9.3 [class.mfct] paragraph 5 as indicated:
[Note: a name used in a member function definition (that is, in the parameter-declaration-clause including the default arguments (8.3.6 [dcl.fct.default]), or or in the member function body, or, for a constructor function (12.1 [class.ctor]), in a mem-initializer expression (12.6.2 [class.base.init])) is looked up as described in 3.4 [basic.lookup]. —end note]
Change 9.3.1 [class.mfct.non-static] paragraph 1 as indicated:
...A non-static member function may also be called directly using the function call syntax (5.2.2 [expr.call], 13.3.1.1 [over.match.call]) from within the body of a member function of its class or of a class derived from its class.
- from within the body of a member function of its class or of a class derived from its class, or
- from a mem-initializer (12.6.2 [class.base.init]) for a constructor for its class or for a class derived from its class.
Change 9.3.1 [class.mfct.non-static] paragraph 3 as indicated:
When an id-expression (5.1.1 [expr.prim.general]) that is not part of a class member access syntax (5.2.5 [expr.ref]) and not used to form a pointer to member (5.3.1 [expr.unary.op]) is used in the body of a non-static member function of class X or used in the mem-initializer for a constructor of class X, if name lookup (3.4.1 [basic.lookup.unqual]) resolves the name in the id-expression to a non-static non-type member of class X or of a base class of X, the id-expression is transformed into a class member access expression (5.2.5 [expr.ref]) using (*this) (9.3.2 [class.this]) as the postfix-expression to the left of the . operator...
Change 12.1 [class.ctor] paragraph 7 as indicated:
...The implicitly-defined default constructor performs the set of initializations of the class that would be performed by a user-written default constructor for that class with an empty mem-initializer-list no ctor-initializer (12.6.2 [class.base.init]) and an empty function body compound-statement...
Change 12.6.2 [class.base.init] paragraph 4 as indicated:
...After the call to a constructor for class X has completed, if a member of X is neither specified in the constructor's mem-initializers, nor default-initialized, nor value-initialized, nor given a value during execution of the compound-statement of the body of the constructor, the member has indeterminate value.
Change the last bullet of 12.6.2 [class.base.init] paragraph 5 as indicated:
Finally, the body compound-statement of the constructor body is executed.
Change 15 [except] paragraph 4 as indicated:
A function-try-block associates a handler-seq with the ctor-initializer, if present, and the function-body compound-statement. An exception thrown during the execution of the initializer expressions in the ctor-initializer or during the execution of the function-body compound-statement transfers control to a handler in a function-try-block in the same way as an exception thrown during the execution of a try-block transfers control to other handlers. [Example:
int f(int); class C { int i; double d; public: C(int, double); }; C::C(int ii, double id) try : i(f(ii)), d(id) { // constructor function body statements } catch (...) { // handles exceptions thrown from the ctor-initializer // and from the constructor function body statements }—end example]
Change 15.2 [except.ctor] paragraph 2 as indicated:
When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3 [except.handle]); “nearest” means the handler for which the compound-statement, compound-statement or ctor-initializer, or function-body following the try keyword was most recently entered by the thread of control and not yet exited.
[Voted into WP at March 2004 meeting.]
The following test program is claimed to be a negative C++ test case for "Unnamed classes shall not contain static data members", c.f. ISO/IEC 14882 section 9.4.2 [class.static.data] paragraph 5.
struct B { typedef struct { static int i; // Is this legal C++ ? } A; }; int B::A::i = 47; // Is this legal C++ ?
We are not quite sure about what an "unnamed class" is. There is no exact definition in ISO/IEC 14882; the closest we can come to a hint is the wording of section 7.1.3 [dcl.typedef] paragraph 5, where it seems to be understood that a class-specifier with no identifier between "class" and "{" is unnamed. The identifier provided after "}" ( "A" in the test case above) is there for "linkage purposes" only.
To us, class B::A in the test program above seems "named" enough, and there is certainly a mechanism to provide the definition for B::A::i (in contrast to the note in section 9.4.2 [class.static.data] paragraph 5).
Our position is therefore that the above test program is indeed legal C++. Can you confirm or reject this claim?
Herb Sutter replied to the submitter as follows: Here are my notes based on a grep for "unnamed class" in the standard:
a named class (clause class), or an unnamed class defined in a typedef declaration in which the class has the typedef name for linkage purposes (7.1.3 [dcl.typedef]);Likewise in your example, you have an unnamed class defined in a typedef declaration.
So yes, an unnamed class is one where there is no identifier (class name) between the class-key and the {. This is also in harmony with the production for class-name in 9 [class] paragraph 1:
Notes from the October 2003 meeting:
We agree that the example is not valid; this is an unnamed class. We will add wording to define an unnamed class. The note in 9.4.2 [class.static.data] paragraph 5 should be corrected or deleted.
Proposed Resolution (October 2003):
At the end of clause 9 [class], paragraph 1, add the following:
A class-specifier where the class-head omits the optional identifier defines an unnamed class.
Delete the following from 9.4.2 [class.static.data] paragraph 5:
[ Note: this is because there is no mechanism to provide the definitions for such static data members. ]
[Voted into WP at the October, 2006 meeting.]
As a result of the resolution of core issue 48, the current C++ standard is not in sync with existing practice and with user expectations as far as definitions of static data members having const integral or const enumeration type are concerned. Basically what current implementations do is to require a definition only if the address of the constant is taken. Example:
void f() { std::string s; ... // current implementations don't require a definition if (s.find('a', 3) == std::string::npos) { ... }
To the letter of the standard, though, the above requires a definition of npos, since the expression std::string::npos is potentially evaluated. I think this problem would be easily solved with simple changes to 9.4.2 [class.static.data] paragraph 4, 9.4.2 [class.static.data] paragraph 5 and 3.2 [basic.def.odr] paragraph 3.
Suggested resolution:
Replace 9.4.2 [class.static.data] paragraph 4 with:
If a static data member is of const integral or const enumeration type, its declaration in the class definition can specify a constant-initializer which shall be [note1] an integral constant expression (5.19). In that case, the member can appear in integral constant expressions. No definition of the member is required, unless an lvalue expression that designates it is potentially evaluated and either used as operand to the built-in unary & operator [note 2] or directly bound to a reference.
If a definition exists, it shall be at namespace scope and shall not contain an initializer.
In 9.4.2 [class.static.data] paragraph 5 change
There shall be exactly one definition of a static data member that is used in a program; no diagnostic is required; see 3.2.
to
Except as allowed by 9.4.2 par. 4, there shall be exactly one definition of a static data member that is potentially evaluated (3.2) in a program; no diagnostic is required.
In 3.2 [basic.def.odr] paragraph 3 add, at the beginning:
Except for the omission allowed by 9.4.2, par. 4, ...
[note 1] Actually it shall be a "= followed by a constant-expression". This could probably be an editorial fix, rather than a separate DR.
[note 2] Note that this is the case when reinterpret_cast-ing to a reference, like in
struct X { static const int value = 0; }; const char & c = reinterpret_cast<const char&>(X::value);See 5.2.10 [expr.reinterpret.cast]/10
More information, in response to a question about why issue 48 does not resolve the problem:
The problem is that the issue was settled in a way that solves much less than it was supposed to solve; that's why I decided to file, so to speak, a DR on a DR.
I understand this may seem a little 'audacious' on my part, but please keep reading. Quoting from the text of DR 48 (emphasis mine):
Originally, all static data members still had to be defined outside the class whether they were used or not.
But that restriction was supposed to be lifted [...]
In particular, if an integral/enum const static data member is initialized within the class, and its address is never taken, we agreed that no namespace-scope definition was required.
The corresponding resolution doesn't reflect this intent, with the definition being still required in most situations anyway: it's enough that the constant appears outside a place where constants are required (ignoring the obvious cases of sizeof and typeid) and you have to provide a definition. For instance:
struct X { static const int c = 1; }; void f(int n) { if (n == X::c) // <-- potentially evaluated ... }
<start digression>
Most usages of non-enum BOOST_STATIC_COSTANTs, for instance, are (or were, last time I checked) non-conforming. If you recall, Paul Mensonides pointed out that the following template
// map_integral template<class T, T V> struct map_integral : identity<T> { static const T value = V; }; template<class T, T V> const T map_integral<T, V>::value;
whose main goal is to map the same couples (type, value) to the same storage, also solves the definition problem. In this usage it is an excellent hack (if your compiler is good enough), but IMHO still a hack on a language defect.
<end digression>
What I propose is to solve the issue according to the original intent, which is also what users expect and all compilers that I know of already do. Or, in practice, we would have a rule that exists only as words in a standard document.
PS: I've sent a copy of this to Mr. Adamczyk to clarify an important doubt that occurred to me while writing this reply:
if no definition is provided for an integral static const data member is that member an object? Paragraph 1.8/1 seems to say no, and in fact it's difficult to think it is an object without assuming/pretending that a region of storage exists for it (an object *is* a region of storage according to the standard).
I would think that when no definition is required we have to assume that it could be a non-object. In that case there's nothing in 3.2 which says what 'used' means for such an entity and the current wording would thus be defective. Also, since the name of the member is an lvalue and 3.10/2 says an lvalue refers to an object we would have another problem.
OTOH the standard could pretend it is always an object (though the compiler can optimize it away) and in this case it should probably make a special case for it in 3.2/2.
Notes from the March 2004 meeting:
We sort of like this proposal, but we don't feel it has very high priority. We're not going to spend time discussing it, but if we get drafting for wording we'll review it.
Proposed resolution (October, 2005):
Change the first two sentences of 3.2 [basic.def.odr] paragraph 2 from:
An expression is potentially evaluated unless it appears where an integral constant expression is required (see 5.20 [expr.const]), is the operand of the sizeof operator (5.3.3 [expr.sizeof]), or is the operand of the typeid operator and the expression does not designate an lvalue of polymorphic class type (5.2.8 [expr.typeid]). An object or non-overloaded function is used if its name appears in a potentially-evaluated expression.
to
An expression that is the operand of the sizeof operator (5.3.3 [expr.sizeof]) is unevaluated, as is an expression that is the operand of the typeid operator if it is not an lvalue of a polymorphic class type (5.2.8 [expr.typeid]); all other expressions are potentially evaluated. An object or non-overloaded function whose name appears as a potentially-evaluated expression is used, unless it is an object that satisfies the requirements for appearing in an integral constant expression (5.20 [expr.const]) and the lvalue-to-rvalue conversion (4.1 [conv.lval]) is immediately applied.
Change the first sentence of 9.4.2 [class.static.data] paragraph 2 as indicated:
If a static data member is of const integral or const enumeration type, its declaration in the class definition can specify a constant-initializer which whose constant-expression shall be an integral constant expression (5.20 [expr.const]).
[Voted into WP at the October, 2006 meeting.]
Section 9.6 [class.bit] paragraph 4 needs to be more specific about the signedness of bit fields of enum type. How much leeway does an implementation have in choosing the signedness of a bit field? In particular, does the phrase "large enough to hold all the values of the enumeration" mean "the implementation decides on the signedness, and then we see whether all the values will fit in the bit field", or does it require the implementation to make the bit field signed or unsigned if that's what it takes to make it "large enough"?
(See also issue 172.)
Note (March, 2005): Clark Nelson observed that there is variation among implementations on this point.
Notes from April, 2005 meeting:
Although implementations enjoy a great deal of latitude in handling bit-fields, it was deemed more user-friendly to ensure that the example in paragraph 4 will work by requiring implementations to use an unsigned underlying type if the enumeration type has no negative values. (If the implementation is allowed to choose a signed representation for such bit-fields, the comparison against TRUE will be false.)
In addition, it was observed that there is an apparent circularity between 7.2 [dcl.enum] paragraph 7 and 9.6 [class.bit] paragraph 4 that should be resolved.
Proposed resolution (April, 2006):
Replace 7.2 [dcl.enum] paragraph 7, deleting the embedded footnote 85, with the following:
For an enumeration where emin is the smallest enumerator and emax is the largest, the values of the enumeration are the values in the range bmin to bmax, defined as follows: Let K be 1 for a two's complement representation and 0 for a one's complement or sign-magnitude representation. bmax is the smallest value greater than or equal to max(|emin|-K,|emax|) and equal to 2M-1, where M is a non-negative integer. bmin is zero if emin is non-negative and -(bmax+K) otherwise. The size of the smallest bit-field large enough to hold all the values of the enumeration type is max(M,1) if bmin is zero and M+1 otherwise. It is possible to define an enumeration that has values not defined by any of its enumerators.
Add the indicated text to the second sentence of 9.6 [class.bit] paragraph 4:
If the value of an enumerator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large enough to hold all the values of that enumeration type (7.2 [dcl.enum]), the original enumerator value and the value of the bit-field shall compare equal.
[Voted into WP at October 2004 meeting.]
It looks like the example on 9.6 [class.bit] paragraph 4 has both the enum and function contributing the identifier "f" for the same scope.
enum BOOL { f=0, t=1 }; struct A { BOOL b:1; }; A a; void f() { a.b = t; if (a.b == t) // shall yield true { /* ... */ } }
Proposed resolution:
Change the example at the end of 9.6 [class.bit]/4 from:
enum BOOL { f=0, t=1 }; struct A { BOOL b:1; }; A a; void f() { a.b = t; if (a.b == t) // shall yield true { /* ... */ } }
To:
enum BOOL { FALSE=0, TRUE=1 }; struct A { BOOL b:1; }; A a; void f() { a.b = TRUE; if (a.b == TRUE) // shall yield true { /* ... */ } }
[Voted into WP at April 2003 meeting.]
9.8 [class.local] paragraph 1 says,
Declarations in a local class can use only type names, static variables, extern variables and functions, and enumerators from the enclosing scope.The definition of when an object or function is "used" is found in 3.2 [basic.def.odr] paragraph 2 and essentially says that the operands of sizeof and non-polymorphic typeid operators are not used. (The resolution for issue 48 will add contexts in which integral constant expressions are required to the list of non-uses.)
This definition of "use" would presumably allow code like
void foo() { int i; struct S { int a[sizeof(i)]; }; };which is required for C compatibility.
However, the restrictions on nested classes in 9.7 [class.nest] paragraph 1 are very similar to those for local classes, and the example there explicitly states that a reference in a sizeof expression is a forbidden use (abbreviated for exposition):
class enclose { public: int x; class inner { void f(int i) { int a = sizeof(x); // error: refers to enclose::x } }; };
[As a personal note, I have seen real-world code that was exactly like this; it was hard to persuade the author that the required writearound, sizeof(((enclose*) 0)->x), was an improvement over sizeof(x). —wmm]
Similarly, 9.2 [class.mem] paragraph 9 would appear to prohibit examples like the following:
struct B { char x[10]; }; struct D: B { char y[sizeof(x)]; };
Suggested resolution: Add cross-references to 3.2 [basic.def.odr] following the word "use" in both 9.7 [class.nest] and 9.8 [class.local] , and change the example in 9.7 [class.nest] to indicate that a reference in a sizeof expression is permitted. In 9.2 [class.mem] paragraph 9, "referred to" should be changed to "used" with a cross_reference to 3.2 [basic.def.odr].
Notes from 10/01 meeting:
It was noted that the suggested resolution did not make the sizeof() example in 9.7 [class.nest] valid. Although the reference to the argument of sizeof() is not regarded as a use, the right syntax must be used nonetheless to reference a non-static member from the enclosing class. The use of the member name by itself is not valid. The consensus within the core working group was that nothing should be done about this case. It was later discovered that 9.4 [class.static] paragraph 3 states that
The definition of a static member shall not use directly the names of the nonstatic members of its class or of a base class of its class (including as operands of the sizeof operator). The definition of a static member may only refer to these members to form pointer to members (5.3.1 [expr.unary.op]) or with the class member access syntax (5.2.5 [expr.ref]).
This seems to reinforce the decision of the working group.
The use of "use" should still be cross-referenced. The statements in 9.7 [class.nest] and 9.8 [class.local] should also be rewritten to state the requirement positively rather than negatively as the list of "can't"s is already missing some cases such as template parameters.
Notes from the 4/02 meeting:
We backed away from "use" in the technical sense, because the requirements on the form of reference are the same whether or not the reference occurs inside a sizeof.
Proposed Resolution (revised October 2002):
In 9.2 [class.mem] paragraph 9, replace
Except when used to form a pointer to member (5.3.1 [expr.unary.op]), when used in the body of a nonstatic member function of its class or of a class derived from its class (9.3.1 [class.mfct.non-static]), or when used in a mem-initializer for a constructor for its class or for a class derived from its class (12.6.2 [class.base.init]), a nonstatic data or function member of a class shall only be referred to with the class member access syntax (5.2.5 [expr.ref]).
with the following paragraph
Each occurrence in an expression of the name of a nonstatic data member or nonstatic member function of a class shall be expressed as a class member access (5.2.5 [expr.ref]), except when it appears in the formation of a pointer to member (5.3.1 [expr.unary.op]), when it appears in the body of a nonstatic member function of its class or of a class derived from its class (9.3.1 [class.mfct.non-static]), or when it appears in a mem-initializer for a constructor for its class or for a class derived from its class (12.6.2 [class.base.init]).
In 9.7 [class.nest] paragraph 1, replace the last sentence,
Except by using explicit pointers, references, and object names, declarations in a nested class can use only type names, static members, and enumerators from the enclosing class.
with the following
[Note: In accordance with 9.2 [class.mem], except by using explicit pointers, references, and object names, declarations in a nested class shall not use nonstatic data members or nonstatic member functions from the enclosing class. This restriction applies in all constructs including the operands of the sizeof operator.]
In the example following 9.7 [class.nest] paragraph 1, change the comment on the first statement of function f to emphasize that sizeof(x) is an error. The example reads in full:
int x; int y; class enclose { public: int x; static int s; class inner { void f(int i) { int a = sizeof(x); // error: direct use of enclose::x even in sizeof x = i; // error: assign to enclose::x s = i; // OK: assign to enclose::s ::x = i; // OK: assign to global x y = i; // OK: assign to global y } void g(enclose* p, int i) { p->x = i; // OK: assign to enclose::x } }; }; inner* p = 0; // error: inner not in scope
[Voted into WP at the October, 2006 meeting.]
Issue 298, recently approved, affirms that cv-qualified class types can be used as nested-name-specifiers. Should the same be true for base-specifiers?
Rationale (April, 2005):
The resolution of issue 298 added new text to 9.1 [class.name] paragraph 5 making it clear that a typedef that names a cv-qualified class type is a class-name. Because the definition of base-specifier simply refers to class-name, it is already the case that cv-qualified class types are permitted as base-specifiers.
Additional notes (June, 2005):
It's not completely clear what it means to have a cv-qualified type as a base-specifier. The original proposed resolution for issue 298 said that “the cv-qualifiers are ignored,” but that wording is not in the resolution that was ultimately approved.
If the cv-qualifiers are not ignored, does that mean that the base-class subobject should be treated as always similarly cv-qualified, regardless of the cv-qualification of the derived-class lvalue used to access the base-class subobject? For instance:
typedef struct B { void f(); void f() const; int i; } const CB; struct D: CB { }; void g(D* dp) { dp->f(); // which B::f? dp->i = 3; // permitted? }
Proposed resolution (October, 2005):
Change 9.1 [class.name] paragraph 5 as indicated:
A typedef-name (7.1.3 [dcl.typedef]) that names a class type, or a cv-qualified version thereof, is also a class-name, but class-name. If a typedef-name that names a cv-qualified class type is used where a class-name is required, the cv-qualifiers are ignored. A typedef-name shall not be used as the identifier in a class-head.
Delete 7.1.3 [dcl.typedef] paragraph 8:
[Note: if the typedef-name is used where a class-name (or enum-name) is required, the program is ill-formed. For example,
typedef struct { S(); // error: requires a return type because S is // an ordinary member function, not a constructor } S;—end note]
[Voted into WP at April 2005 meeting.]
The ambiguity text in 10.2 [class.member.lookup] may not say what we intended. It makes the following example ill-formed:
struct A { int x(int); }; struct B: A { using A::x; float x(float); }; int f(B* b) { b->x(3); // ambiguous }This is a name lookup ambiguity because of 10.2 [class.member.lookup] paragraph 2:
... Each of these declarations that was introduced by a using-declaration is considered to be from each sub-object of C that is of the type containing the declaration designated by the using-declaration. If the resulting set of declarations are not all from sub-objects of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is an ambiguity and the program is ill-formed.This contradicts the text and example in paragraph 12 of 7.3.3 [namespace.udecl] .
Proposed Resolution (10/00):
Replace the two cited sentences from 10.2 [class.member.lookup] paragraph 2 with the following:
The resulting set of declarations shall all be from sub-objects of the same type, or there shall be a set of declarations from sub-objects of a single type that contains using-declarations for the declarations found in all other sub-object types. Furthermore, for nonstatic members, the resulting set of declarations shall all be from a single sub-object, or there shall be a set of declarations from a single sub-object that contains using-declarations for the declarations found in all other sub-objects. Otherwise, there is an ambiguity and the program is ill-formed.
Replace the examples in 10.2 [class.member.lookup] paragraph 3 with the following:
struct A { int x(int); static int y(int); }; struct V { int z(int); }; struct B: A, virtual V { using A::x; float x(float); using A::y; static float y(float); using V::z; float z(float); }; struct C: B, A, virtual V { }; void f(C* c) { c->x(3); // ambiguous -- more than one sub-object A c->y(3); // not ambiguous c->z(3); // not ambiguous }
Notes from 04/01 meeting:
The following example should be accepted but is rejected by the wording above:
struct A { static void f(); }; struct B1: virtual A { using A::f; }; struct B2: virtual A { using A::f; }; struct C: B1, B2 { }; void g() { C::f(); // OK, calls A::f() }
Notes from 10/01 meeting (Jason Merrill):
The example in the issues list:
struct A { int x(int); }; struct B: A { using A::x; float x(float); }; int f(B* b) { b->x(3); // ambiguous }Is broken under the existing wording:
... Each of these declarations that was introduced by a using-declaration is considered to be from each sub-object of C that is of the type containing the declaration designated by the using-declaration. If the resulting set of declarations are not all from sub-objects of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is an ambiguity and the program is ill-formed.Since the two x's are considered to be "from" different objects, looking up x produces a set including declarations "from" different objects, and the program is ill-formed. Clearly this is wrong. The problem with the existing wording is that it fails to consider lookup context.
The first proposed solution:
The resulting set of declarations shall all be from sub-objects of the same type, or there shall be a set of declarations from sub-objects of a single type that contains using-declarations for the declarations found in all other sub-object types. Furthermore, for nonstatic members, the resulting set of declarations shall all be from a single sub-object, or there shall be a set of declarations from a single sub-object that contains using-declarations for the declarations found in all other sub-objects. Otherwise, there is an ambiguity and the program is ill-formed.breaks this testcase:
struct A { static void f(); }; struct B1: virtual A { using A::f; }; struct B2: virtual A { using A::f; }; struct C: B1, B2 { }; void g() { C::f(); // OK, calls A::f() }because it considers the lookup context, but not the definition context; under this definition of "from", the two declarations found are the using-declarations, which are "from" B1 and B2.
The solution is to separate the notions of lookup and definition context. I have taken an algorithmic approach to describing the strategy.
Incidentally, the earlier proposal allows one base to have a superset of the declarations in another base; that was an extension, and my proposal does not do that. One algorithmic benefit of this limitation is to simplify the case of a virtual base being hidden along one arm and not another ("domination"); if we allowed supersets, we would need to remember which subobjects had which declarations, while under the following resolution we need only keep two lists, of subobjects and declarations.
Proposed resolution (October 2002):
Replace 10.2 [class.member.lookup] paragraph 2 with:
The following steps define the result of name lookup for a member name f in a class scope C.
The lookup set for f in C, called S(f,C), consists of two component sets: the declaration set, a set of members named f; and the subobject set, a set of subobjects where declarations of these members (possibly including using-declarations) were found. In the declaration set, using-declarations are replaced by the members they designate, and type declarations (including injected-class-names) are replaced by the types they designate. S(f,C) is calculated as follows.
If C contains a declaration of the name f, the declaration set contains every declaration of f in C (excluding bases), the subobject set contains C itself, and calculation is complete.
Otherwise, S(f,C) is initially empty. If C has base classes, calculate the lookup set for f in each direct base class subjobject Bi, and merge each such lookup set S(f,Bi) in turn into S(f,C).
The following steps define the result of merging lookup set S(f,Bi) into the intermediate S(f,C):
- If each of the subobject members of S(f,Bi) is a base class subobject of at least one of the subobject members of S(f,C), S(f,C) is unchanged and the merge is complete. Conversely, if each of the subobject members of S(f,C) is a base class subobject of at least one of the subobject members of S(f,Bi), the new S(f,C) is a copy of S(f,Bi).
- Otherwise, if the declaration sets of S(f,Bi) and S(f,C) differ, the merge is ambiguous: the new S(f,C) is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent merges, an invalid declaration set is considered different from any other.
- Otherwise, consider each declaration d in the set, where d is a member of class A. If d is a nonstatic member, compare the A base class subobjects of the subobject members of S(f,Bi) and S(f,C). If they do not match, the merge is ambiguous, as in the previous step. [Note: It is not necessary to remember which A subobject each member comes from, since using-declarations don't disambiguate. ]
- Otherwise, the new S(f,C) is a lookup set with the shared set of declarations and the union of the subobject sets.
The result of name lookup for f in C is the declaration set of S(f,C). If it is an invalid set, the program is ill-formed.
[Example:
struct A { int x; }; // S(x,A) = {{ A::x }, { A }} struct B { float x; }; // S(x,B) = {{ B::x }, { B }} struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C }} struct D: public virtual C { }; // S(x,D) = S(x,C) struct E: public virtual C { char x; }; // S(x,E) = {{ E::x }, { E }} struct F: public D, public E { }; // S(x,F) = S(x,E) int main() { F f; f.x = 0; // OK, lookup finds { E::x } }S(x,F) is unambiguous because the A and B base subobjects of D are also base subobjects of E, so S(x,D) is discarded in the first merge step. --end example]
Turn 10.2 [class.member.lookup] paragraphs 5 and 6 into notes.
Notes from October 2003 meeting:
Mike Miller raised some new issues in N1543, and we adjusted the proposed resolution as indicated in that paper.
Further information from Mike Miller (January 2004):
Unfortunately, I've become aware of a minor glitch in the proposed resolution for issue 39 in N1543, so I'd like to suggest a change that we can discuss in Sydney.
A brief review and background of the problem: the major change we agreed on in Kona was to remove detection of multiple-subobject ambiguity from class lookup (10.2 [class.member.lookup]) and instead handle it as part of the class member access expression. It was pointed out in Kona that 11.2 [class.access.base]/5 has this effect:
If a class member access operator, including an implicit "this->," is used to access a nonstatic data member or nonstatic member function, the reference is ill-formed if the left operand (considered as a pointer in the "." operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
After the meeting, however, I realized that this requirement is not sufficient to handle all the cases. Consider, for instance,
struct B { int i; }; struct I1: B { }; struct I2: B { }; struct D: I1, I2 { void f() { i = 0; // not ill-formed per 11.2p5 } };
Here, both the object expression ("this") and the naming class are "D", so the reference to "i" satisfies the requirement in 11.2 [class.access.base]/5, even though it involves a multiple-subobject ambiguity.
In order to address this problem, I proposed in N1543 to add a paragraph following 5.2.5 [expr.ref]/4:
If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of E1 cannot be unambiguously converted (10.2) to the class of which E2 is directly a member.
That's not quite right. It does diagnose the case above as written; however, it breaks the case where qualification is used to circumvent the ambiguity:
struct D2: I1, I2 { void f() { I2::i = 0; // ill-formed per proposal } };
In my proposed wording, the class of "this" can't be converted to "B" (the qualifier is ignored), so the access is ill-formed. Oops.
I think the following is a correct formulation, so the proposed resolution we discuss in Sydney should contain the following paragraph instead of the one in N1543:
If E2 is a nonstatic data member or a non-static member function, the program is ill-formed if the naming class (11.2) of E2 cannot be unambiguously converted (10.2) to the class of which E2 is directly a member.
This reformulation also has the advantage of pointing readers to 11.2 [class.access.base], where the the convertibility requirement from the class of E1 to the naming class is located and which might otherwise be overlooked.
Notes from the March 2004 meeting:
We discussed this further and agreed with these latest recommendations. Mike Miller has produced a paper N1626 that gives just the final collected set of changes.
(This resolution also resolves isssue 306.)
[Voted into WP at April 2005 meeting.]
Is the following well-formed?
struct A { struct B { }; }; struct C : public A, public A::B { B *p; };The lookup of B finds both the struct B in A and the injected B from the A::B base class. Are they the same thing? Does the standard say so?
What if a struct is found along one path and a typedef to that struct is found along another path? That should probably be valid, but does the standard say so?
This is resolved by issue 39
February 2004: Moved back to "Review" status because issue 39 was moved back to "Review".
[Voted into WP at March 2004 meeting.]
In clause 10.4 [class.abstract] paragraph 2, it reads:
A pure virtual function need be defined only if explicitly called with the qualified-id syntax (5.1.1 [expr.prim.general]).
This is IMHO incomplete. A dtor is a function (well, a "special member function", but this also makes it a function, right?) but it is called implicitly and thus without a qualified-id syntax. Another alternative is that the pure virtual function is called directly or indirectly from the ctor. Thus the above sentence which specifies when a pure virtual function need be defined ("...only if...") needs to be extended:
A pure virtual function need be defined only if explicitly called with the qualified-id syntax (5.1.1 [expr.prim.general]) or if implicitly called (12.4 [class.dtor] or 12.7 [class.cdtor]).
Proposed resolution:
Change 10.4 [class.abstract] paragraph 2 from
A pure virtual function need be defined only if explicitly called with the qualified-id syntax (5.1.1 [expr.prim.general]).
to
A pure virtual function need be defined only if explicitly called with, or as if with (12.4 [class.dtor]), the qualified-id syntax (5.1.1 [expr.prim.general]).
Note: 12.4 [class.dtor] paragraph 6 defines the "as if" cited.
[Moved to DR at 4/01 meeting.]
Consider the following example:
class A { class A1{}; static void func(A1, int); static void func(float, int); static const int garbconst = 3; public: template < class T, int i, void (*f)(T, int) > class int_temp {}; template<> class int_temp<A1, 5, func> { void func1() }; friend int_temp<A1, 5, func>::func1(); int_temp<A1, 5, func>* func2(); }; A::int_temp<A::A1, A::garbconst + 2, &A::func>* A::func2() {...}ISSUE 1:
In 11 [class.access] paragraph 5 we have:
A::int_temp A::A1 A::garbconst (part of an expression) A::func (after overloading is done)I suspect that member templates were not really considered when this was written, and that it might have been written rather differently if they had been. Note that access to the template arguments is only legal because the class has been declared a friend, which is probably not what most programmers would expect.
Rationale:
Not a defect. This behavior is as intended.
ISSUE 2:
Now consider void A::int_temp<A::A1, A::garbconst + 2, &A::func>::func1() {...} By my reading of 11.7 [class.access.nest] , the references to A::A1, A::garbconst and A::func are now illegal, and there is no way to define this function outside of the class. Is there any need to do anything about either of these Issues?
Proposed resolution (04/01):
The resolution for this issue is contained in the resolution for issue 45.
[Voted into WP at the October, 2006 meeting.]
The proposed resolution for issue 45 inserts the following sentence after 11 [class.access] paragraph 1:
A member of a class can also access all names as the class of which it is a member.
I don't think that this is correctly constructed English. I see two possibilities:
This is a typo, and the correct change is:
A member of a class can also access all names of the class of which it is a member.
The intent is something more like:
A member of a nested class can also access all names accessible by any other member of the class of which it is a member.
[Note: this was editorially corrected at the time defect resolutions were being incorporated into the Working Paper to read, “...can also access all the names declared in the class of which it is a member,” which is essentially the same as the preceding option 1.]
I would prefer to use the language proposed for 11.7 [class.access.nest]:
A nested class is a member and as such has the same access rights as any other member.
A second problem is with the text in 11.3 [class.friend] paragraph 2:
[Note: this means that access to private and protected names is also granted to member functions of the friend class (as if the functions were each friends) and to the static data member definitions of the friend class. This also means that private and protected type names from the class granting friendship can be used in the base-clause of a nested class of the friend class. However, the declarations of members of classes nested within the friend class cannot access the names of private and protected members from the class granting friendship. Also, because the base-clause of the friend class is not part of its member declarations, the base-clause of the friend class cannot access the names of the private and protected members from the class granting friendship. For example,class A { class B { }; friend class X; }; class X : A::B { // ill-formed: A::B cannot be accessed // in the base-clause for X A::B mx; // OK: A::B used to declare member of X class Y: A::B { // OK: A::B used to declare member of X A::B my; // ill-formed: A::B cannot be accessed // to declare members of nested class of X }; };—end note]
This seems to be an oversight. The proposed change to 11.7 [class.access.nest] paragraph 1 would appear to have eliminated the restrictions on nested class access. However, at least one compiler (gcc 3.4.3) doesn't appear to take my view, and continues with the restrictions on access by classes within a friend class, while implementing the rest of the resolution of issue 45.
Note (March, 2005):
Andreas Hommel: I think issue 45 requires an additional change in 9.7 [class.nest] paragraph 4:
Like a member function, a friend function (11.3 [class.friend]) defined within a nested class is in the lexical scope of that class; it obeys the same rules for name binding as a static member function of that class (9.4 [class.static]) and has no special access rights to members of an enclosing class.
I believe the “no special access rights” language should be removed.
Proposed resolution (October, 2005):
This issue is resolved by the resolution of issue 372.
[Moved to DR at 4/01 meeting.]
11.2 [class.access.base] paragraph 4 says:
A base class is said to be accessible if an invented public member of the base class is accessible. If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class.Given the above, is the following well-formed?
class D; class B { protected: int b1; friend void foo( D* pd ); }; class D : protected B { }; void foo( D* pd ) { if ( pd->b1 > 0 ); // Is 'b1' accessible? }Can you access the protected member b1 of B in foo? Can you convert a D* to a B* in foo?
1st interpretation:
A public member of B is accessible within foo (since foo is a friend), therefore foo can refer to b1 and convert a D* to a B*.
2nd interpretation:
B is a protected base class of D, and a public member of B is a protected member of D and can only be accessed within members of D and friends of D. Therefore foo cannot refer to b1 and cannot convert a D* to a B*.
(See J16/99-0042 = WG21 N1218.)
Proposed Resolution (04/01):
A base class B of N is accessible at R, if
- an invented public member of B would be a public member of N, or
- R occurs in a member or friend of class N, and an invented public member of B would be a private or protected member of N, or
- R occurs in a member or friend of a class P derived from N, and an invented public member of B would be a private or protected member of P, or
- there exists a class S such that B is a base class of S accessible at R and S is a base class of N accessible at R. [Example:
class B { public: int m; }; class S: private B { friend class N; }; class N: private S { void f() { B* p = this; // OK because class S satisfies the // fourth condition above: B is a base // class of N accessible in f() because // B is an accessible base class of S // and S is an accessible base class of N. } };—end example]
A base class is said to be accessible if an invented public member of the base class is accessible.
A member m is accessible at the point R when named in class N if
- m as a member of N is public, or
- m as a member of N is private, and R occurs in a member or friend of class N, or
- m as a member of N is protected, and R occurs in a member or friend of class N, or in a member or friend of a class P derived from N, where m as a member of P is private or protected, or
- there exists a base class B of N that is accessible at R, and m is accessible at R when named in class B. [Example:...
The resolution for issue 207 modifies this wording slightly.
[Moved to DR at 4/01 meeting.]
The text in 11.2 [class.access.base] paragraph 4 does not seem to handle the following cases:
class D; class B { private: int i; friend class D; }; class C : private B { }; class D : private C { void f() { B::i; //1: well-formed? i; //2: well-formed? } };The member i is not a member of D and cannot be accessed in the scope of D. What is the naming class of the member i on line //1 and line //2?
Proposed Resolution (04/01): The resolution for this issue is contained in the resolution for issue 9..
[Moved to DR at 10/01 meeting.]
Consider the following example:
class A { protected: static void f() {}; }; class B : A { public: using A::f; void g() { A::f(); } };
The standard says in 11.2 [class.access.base] paragraph 4 that the call to A::f is ill-formed:
A member m is accessible when named in class N if
- m as a member of N is public, or
- m as a member of N is private, and the reference occurs in a member or friend of class N, or
- m as a member of N is protected, and the reference occurs in a member or friend of class N, or in a member or friend of a class P derived from N, where m as a member of P is private or protected, or
- there exists a base class B of N that is accessible at the point of reference, and m is accessible when named in class B.
Here, m is A::f and N is A.
It seems clear to me that the third bullet should say "public, private or protected".
Steve Adamczyk:The words were written before using-declarations existed, and therefore didn't anticipate this case.
Proposed resolution (04/01):
Modify the third bullet of the third change ("A member m is accessible...") in the resolution of issue 9 to read "public, private, or protected" instead of "private or protected."
[Moved to DR at 4/02 meeting.]
The definition of "friend" in 11.3 [class.friend] says:
A friend of a class is a function or class that is not a member of the class but is permitted to use the private and protected member names from the class. ...A nested class, i.e. INNER in the example below, is a member of class OUTER. The sentence above states that it cannot be a friend. I think this is a mistake.
class OUTER { class INNER; friend class INNER; class INNER {}; };
Proposed resolution (04/01):
Change the first sentence of 11.3 [class.friend] as follows:
A friend of a class is a function or class that is not a member of the class but is allowed given permission to use the private and protected member names from the class. The name of a friend is not in the scope of the class, and the friend is not called with the member access operators (5.2.5 [expr.ref]) unless it is a member of another class. A class specifies its friends, if any, by way of friend declarations. Such declarations give special access rights to the friends, but they do not make the nominated friends members of the befriending class.
[Voted into WP at the October, 2006 meeting.]
I don't know the reason for this distinction, but it seems to be surprising that Base::A is legal and D is illegal in this example:
class D; class Base { class A; class B; friend class D; }; class Base::B { }; class Base::A : public Base::B // OK because of issue 45 { }; class D : public Base::B // illegal because of 11.4p4 { };
Shouldn't this be consistent (either way)?
Notes from the April, 2005 meeting:
In discussing issue 372, the CWG decided that access in the base-specifiers of a class should be the same as for its members, and that resolution will apply to friend declarations, as well.
Proposed resolution (October, 2005):
This issue is resolved by the resolution of issue 372.
[Voted into WP at October 2004 meeting.]
We consider it not unreasonable to do the following
class A { protected: void g(); }; class B : public A { public: using A::g; // B::g is a public synonym for A::g }; class C: public A { void foo(); }; void C::foo() { B b; b.g(); }
However the EDG front-end does not like and gives the error
#410-D: protected function "A::g" is not accessible through a "B" pointer or object b.g(); ^
Steve Adamczyk: The error in this case is due to 11.4 [class.protected] of the standard, which is an additional check on top of the other access checking. When that section says "a protected nonstatic member function ... of a base class" it doesn't indicate whether the fact that there is a using-declaration is relevant. I'd say the current wording taken at face value would suggest that the error is correct -- the function is protected, even if the using-declaration for it makes it accessible as a public function. But I'm quite sure the wording in 11.4 [class.protected] was written before using-declarations were invented and has not been reviewed since for consistency with that addition.
Notes from April 2003 meeting:
We agreed that the example should be allowed.
Proposed resolution (April 2003, revised October 2003):
Change 11.4 [class.protected] paragraph 1 from
When a friend or a member function of a derived class references a protected nonstatic member function or protected nonstatic data member of a base class, an access check applies in addition to those described earlier in clause 11 [class.access]. [Footnote: This additional check does not apply to other members, e.g. static data members or enumerator member constants.] Except when forming a pointer to member (5.3.1 [expr.unary.op]), the access must be through a pointer to, reference to, or object of the derived class itself (or any class derived from that class (5.2.5 [expr.ref]). If the access is to form a pointer to member, the nested-name-specifier shall name the derived class (or any class derived from that class).
to
An additional access check beyond those described earlier in clause 11 [class.access] is applied when a nonstatic data member or nonstatic member function is a protected member of its naming class (11.2 [class.access.base]). [Footnote: This additional check does not apply to other members, e.g., static data members or enumerator member constants.] As described earlier, access to a protected member is granted because the reference occurs in a friend or member of some class C. If the access is to form a pointer to member (5.3.1 [expr.unary.op]), the nested-name-specifier shall name C or a class derived from C. All other accesses involve a (possibly implicit) object expression (5.2.5 [expr.ref]). In this case, the class of the object expression shall be C or a class derived from C.
Additional discussion (September, 2004):
Steve Adamczyk: I wonder if this wording is incorrect. Consider:
class A { public: int p; }; class B : protected A { // p is a protected member of B }; class C : public B { friend void fr(); }; void fr() { B *pb = new B; pb->p = 1; // Access okay? Naming class is B, p is a protected member of B, // the "C" of the issue 385 wording is C, but access is not via // an object of type C or a derived class thereof. }
I think the formulation that the member is a protected member of its naming class is not what we want. I think we intended that the member is protected in the declaration that is found, where the declaration found might be a using-declaration.
Mike Miller: I think the proposed wording makes the access pb->p ill-formed, and I think that's the right thing to do.
First, protected inheritance of A by B means that B intends the public and protected members of A to be part of B's implementation, available to B's descendants only. (That's why there's a restriction on converting from B* to A*, to enforce B's intention on the use of members of A.) Consequently, I see no difference in access policy between your example and
class B { protected: int p; };
Second, the reason we have this rule is that C's use of inherited protected members might be different from their use in a sibling class, say D. Thus members and friends of C can only use B::p in a manner consistent with C's usage, i.e., in C or derived-from-C objects. If we rewrote your example slightly,
class D: public B { }; void fr(B* pb) { pb->p = 1; } void g() { fr(new D); }
it's clear that the intent of this rule is broken — fr would be accessing B::p assuming C's policies when the object in question actually required D's policies.
(See also issues 471 and 472.)
[Moved to DR at 4/01 meeting.]
Paragraph 1 says: "The members of a nested class have no special access to members of an enclosing class..."
This prevents a member of a nested class from being defined outside of its class definition. i.e. Should the following be well-formed?
class D { class E { static E* m; }; }; D::E* D::E::m = 1; // ill-formedThis is because the nested class does not have access to the member E in D. 11 [class.access] paragraph 5 says that access to D::E is checked with member access to class E, but unfortunately that doesn't give access to D::E. 11 [class.access] paragraph 6 covers the access for D::E::m, but it doesn't affect the D::E access. Are there any implementations that are standard compliant that support this?
Here is another example:
class C { class B { C::B *t; //2 error, C::B is inaccessible }; };This causes trouble for member functions declared outside of the class member list. For example:
class C { class B { B& operator= (const B&); }; }; C::B& C::B::operator= (const B&) { } //3If the return type (i.e. C::B) is access checked in the scope of class B (as implied by 11 [class.access] paragraph 5) as a qualified name, then the return type is an error just like referring to C::B in the member list of class B above (i.e. //2) is ill-formed.
Proposed resolution (04/01):
The resolution for this issue is incorporated into the resolution for issue 45.
[Moved to DR at 4/01 meeting.]
Example:
#include <iostream.h> class C { // entire body is private struct Parent { Parent() { cout << "C::Parent::Parent()\n"; } }; struct Derived : Parent { Derived() { cout << "C::Derived::Derived()\n"; } }; Derived d; }; int main() { C c; // Prints message from both nested classes return 0; }How legal/illegal is this? Paragraphs that seem to apply here are:
11 [class.access] paragraph 1:
A member of a class can beand 11.7 [class.access.nest] paragraph 1:
- private; that is, its name can be used only by members and friends of the class in which it is declared. [...]
The members of a nested class have no special access to members of an enclosing class, nor to classes or functions that have granted friendship to an enclosing class; the usual access rules (clause 11 [class.access] ) shall be obeyed. [...]This makes me think that the ': Parent' part is OK by itself, but that the implicit call of 'Parent::Parent()' by 'Derived::Derived()' is not.
From Mike Miller:
I think it is completely legal, by the reasoning given in the (non-normative) 11.7 [class.access.nest] paragraph 2. The use of a private nested class as a base of another nested class is explicitly declared to be acceptable there. I think the rationale in the comments in the example ("// OK because of injection of name A in A") presupposes that public members of the base class will be public members in a (publicly-derived) derived class, regardless of the access of the base class, so the constructor invocation should be okay as well.
I can't find anything normative that explicitly says that, though.
(See also papers J16/99-0009 = WG21 N1186, J16/00-0031 = WG21 N1254, and J16/00-0045 = WG21 N1268.)
Proposed Resolution (04/01):
Insert the following as a new paragraph following 11 [class.access] paragraph 1:
A member of a class can also access all names as the class of which it is a member. A local class of a member function may access the same names that the member function itself may access. [Footnote: Access permissions are thus transitive and cumulative to nested and local classes.]
Delete 11 [class.access] paragraph 6.
In 11.7 [class.access.nest] paragraph 1, change
The members of a nested class have no special access to members of an enclosing class, nor to classes or functions that have granted friendship to an enclosing class; the usual access rules (clause 11 [class.access]) shall be obeyed.
to
A nested class is a member and as such has the same access rights as any other member.
Change
B b; // error: E::B is private
to
B b; // Okay, E::I can access E::B
Change
p->x = i; // error: E::x is private
to
p->x = i; // Okay, E::I can access E::x
Delete 11.7 [class.access.nest] paragraph 2.
(This resolution also resolves issues 8 and 10.
[Voted into WP at April 2003 meeting.]
According to 12.1 [class.ctor] paragraph 1, a declaration of a constructor has a special limited syntax, in which only function-specifiers are allowed. A friend specifier is not a function-specifier, so one interpretation is that a constructor cannot be declared in a friend declaration.
(It should also be noted, however, that neither friend nor function-specifier is part of the declarator syntax, so it's not clear that anything conclusive can be derived from the wording of 12.1 [class.ctor].)
Notes from 04/01 meeting:
The consensus of the core language working group was that it should be permitted to declare constructors as friends.
Proposed Resolution (revised October 2002):
Change paragraph 1a in 3.4.3.1 [class.qual] (added by the resolution of issue 147) as follows:
If the nested-name-specifier nominates a class C, and the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of C (clause 9 [class]), the name is instead considered to name the constructor of class C. Such a constructor name shall be used only in the declarator-id of a constructor definition declaration that appears outside of the class definition names a constructor....
Note: the above does not allow qualified names to be used for in-class declarations; see 8.3 [dcl.meaning] paragraph 1. Also note that issue 318 updates the same paragraph.
Change the example in 11.3 [class.friend], paragraph 4 as follows:
class Y { friend char* X::foo(int); friend X::X(char); // constructors can be friends friend X::~X(); // destructors can be friends //... };
[Voted into WP at October 2003 meeting.]
In 12.1 [class.ctor] paragraph 5, the standard says "A constructor is trivial if [...]", and goes on to define a trivial default constructor. Taken literally, this would mean that a copy constructor can't be trivial (contrary to 12.8 [class.copy] paragraph 6). I suggest changing this to "A default constructor is trivial if [...]". (I think the change is purely editorial.)
Proposed Resolution (revised October 2002):
Change 12.1 [class.ctor] paragraph 5-6 as follows:
A default constructor for a class X is a constructor of class X that can be called without an argument. If there is no user-declared user-declared constructor for class X, a default constructor is implicitly declared. An implicitly-declared implicitly-declared default constructor is an inline public member of its class. A default constructor is trivial if it is an implicitly-declared default constructor and if:
- its class has no virtual functions (10.3 [class.virtual]) and no virtual base classes (10.1 [class.mi]), and
- all the direct base classes of its class have trivial default constructors, and
- for all the nonstatic data members of its class that are of class type (or array thereof), each such class has a trivial default constructor.
Otherwise, the default constructor is non-trivial.
Change 12.4 [class.dtor] paragraphs 3-4 as follows (the main changes are removing italics):
If a class has no user-declared user-declared destructor, a destructor is declared implicitly. An implicitly-declared implicitly-declared destructor is an inline public member of its class. A destructor is trivial if it is an implicitly-declared destructor and if:
- all of the direct base classes of its class have trivial destructors and
- for all of the non-static data members of its class that are of class type (or array thereof), each