TMQL (Topic Map Query Language)

Ann Wrightson, Ontopia, BSI (annw@ontopia.net)

7 Nov 2000 (corrected 28 Nov 2000)

Abstract

This is a (corrected) second preliminary draft of TMQL, a query language for Topic Maps.

Scope

A preliminary draft for discussion; intended as a substantive discussion paper to table alongside a NWI proposal for ISO/IEC JTC1 SC34 at Washington, December 2000.

All of it is provisional – the parts in italics are more “straw-man” than others, and are just intended to indicate that something of that kind is needed.

Introduction

The Topic Maps standard - “ISO 13250” below in this draft - describes an interchange syntax for Topic Maps, intended to facilitate accurate exchange of information between applications conforming to that standard. However, many foreseen practical uses of Topic Maps will require operations to be performed on Topic Maps. TMQL fulfils a known industry requirement, for a standardized language for specifying these operations on Topic Maps.

The TM concerned will not necessarily, or usually, be manipulated in the ISO 13250 interchange syntax for this purpose – but the functionality of TMQL must nevertheless be appropriately related to ISO 13250.

The initial suggestion made here, is to describe the requisite repertoire of Topic Map operations - TMQL - in a way which is not inherently bound to a specific interchange syntax, and also to provide a specific and detailed way of relating that functionality to the syntax in ISO 13250, by way of a semi-formal data model and associated operations.

(Another possibility is to provide detailed conformance specifications grounded in TM interchange syntax, including a normative specification for ISO 13250, and an informative specification for XTM 1.0. These detailed conformance specifications could be written as if for each TMQL operation, a TM in a specific interchange syntax is read by a TMQL processor, processed, then output again in that syntax. It will not be necessary for a conforming TMQL processor to actually do this, but what it does must be equivalent.

This approach is motivated by wanting to ensure that conformance to TMQL is properly co-ordinated with the current medium of Topic Map standardization, whilst also respecting the realities of practical TM application development.

However, it is probably more realistic in line with actual emerging uses of Topic Maps to ground everything in a semi-formal data model, whose development can be expected to give rise to corrigenda for 13250.)

Conformance

Suggestion:

Detailed conformance specifications are provided in Appendix B (normative) for topic maps derived from ISO 13250, and Appendix C (informative) for XTM 1.0. Further informative conformance specifications may be added in due course, as & if TM are formally adopted in other domains which publish their own distinctive interchange syntax.

(Both to follow once the data model and transaction model are stable.)

Question: It is desirable to integrate XTM like this, but is it possible?

Acknowledgements

The conceptual model of Topic Maps underlying TMQL owes much to the abstract modelling of the concepts underlying ISO 13250 undertaken by the XTM activity (these models are available at time of writing via http://www.doctypes.org/xtm/home.html); the query syntax uses, for embedded Topic Map descriptions, the LTM notation developed by Ontopia AS (available at the time of writing on http://www.ontopia.net).

Approach

TMQL has two complementary aspects:

· The TMQL language

· The TMQL evaluation specification

The exposition below first gives an introduction to TMQL and TMQL evaluation, then presents the full TMQL language, then gives a detailed account of TMQL evaluation.

There are inevitably large gaps, and a number of issues outstanding at this stage – some issues are noted in this document. This document is intended as a basis for further discussion, not as a finished work in any sense or part.

Introducing TMQL and TMQL Evaluation

TMQL is a transactional language, similar in principle to SQL (ISO ref?). Each statement of TMQL is evaluated as a separate transaction on a specified TM. Bearing in mind probable future requirements in large TM-based systems, there is a requirement for a well-described concept of “undo” or “rollback” for TMQL transactions, including partially completed transactions.

In brief, the “rollback” yields a result equivalent to the state of the TM before the transaction started, where the “state of the TM” is equivalent to what would be written in the interchange syntax to represent the TM.

TMQL transactions

TMQL has three basic transactions:

· Add

· Remove

· Select

Each TMQL transaction starts and ends with one or more topic maps (this is why conformance can be specified in terms of pre- and post-conditions on topic maps in ISO 13250 syntax).

Note: There may be other transactions. However, TMQL should refrain from trying to do things which are not to do with providing basic access operations to a TM. These belong in different documents, e.g. a technical report on modelling (specific kinds of) inferential relationships with Topic Maps.

 A sequence of TMQL transactions can be represented as a sequence of statements in the TMQL syntax given below. Alternatively, a collection of TMQL transactions can be organized for more flexible use using a Topic Map.

Each transaction performs an operation on an input TM (called the source-topic-map or S-TM), and yields an output or result TM (called the result-topic-map or R-TM). In the case of Add and Remove, the output TM can be thought of as an amended form of the input TM; in the case of Select, the output TM is better regarded as a constructed selective view of the input TM (and this view is of course itself a TM).

TM application builders are free to make their own choices regarding all aspects of their implementation of TMQL operations on their own internal TM representations (e.g. whether the Selected TM is actually a separate TM, or a scoped portion of an amended version of the original TM). The conformance criteria imposed by this standard will ensure that the end result of applying the same sequence of TMQL transactions to the same Topic Map in different conforming Topic Map applications will be functionally equivalent with respect to the changes made in the Topic Map concerned.

These basic TMQL transactions use a number of component operations, including

· Constructing the Topic Map(s) whose description(s) are embedded in the TMQL statement (called the Q-TM, short for query-topic-map, below; where there are several in one TMQL transaction, they are called Q-TM1, Q-TM2 etc)

· Matching a Q-TM against the S-TM, and ranking candidate matches where there is more than one matching fragment.

· Constructing the R-TM

These component operations have parameters, in order to allow concise and helpfully similar TMQL syntax to be used for closely related operations.

There follows an outline of TMQL evaluation for these transactions and component operations.

General issue: Do TMQL transactions have scope, i.e. can they be restricted to take effect within a specified scope within the S-TM? – I say yes, but it needs debate. If yes, then there is a preliminary filter of the S-TM with respect to the transaction scope before anything else in the transaction takes place; and the effect of the transaction-within-scope on the TM as it appears in the default/universal scope needs careful description, e.g. removal of a TM component by a scoped-transaction is likely (only) a removal of that scope from the node in question.

General issue: Integrity constraints on TM need describing (we need something which plays an analogous role to referential integrity in relational databases, e.g. to help judge between alternatives for the issue just above)

Add

The Add transaction applies a single Q-TM to the S-TM. The Q-TM and S-TM are merged to yield the R-TM.

Issue: Parameters to this merging need definition. Default is 13250 merge. (Note: there is consensus amongst TM tool developers that this merge concept needs more precision – this is one of the matters referred to above in the notes regarding the semi-formal model and conformance.)

Remove

The Remove transaction applies a single Q-TM to the S-TM. The Q-TM is matched against the S-TM; the highest ranking matched fragment of the S-TM is removed to yield the R-TM.

Issue: Removal semantics need detailed specification, including integrity constraints.

Query

The basic Query transaction applies a single Q-TM to the S-TM. The Q-TM is matched against the S-TM; some selected (how?) matched fragment of the S-TM is replicated as the R-TM.

Other options available:

· All the matching fragments are constructed into a single R-TM in some appropriate way

· Parameters to the query (which could be pretty complex, e.g. logical expressions, or a TM specifying the behaviour) control the process according to which S-TM fragments matching the Q-TM are included in the R-TM

· The R-TM is articulated with the S-TM in some standardized way, e.g. by means of a structure-respecting set of associations (which are possibly scoped by the topic representing this query, if the query was launched from a TM, and) which are scoped by various public subjects denoting the kind of relationships which the R-TM components have to the S-TM components.

The query evaluation process needs careful definition, but will probably be something like (for a basic query):

· Build Q-TM

· Match Q-TM to S-TM, and select best match

· Construct R-TM by naming, scoping and “role”-ing its components appropriately and populating Q-TM occurrences from relevant S-TM occurrences.

There are a number of possible ways of usefully extending the simple query, including:

· Query gives several Q-TMs which are combined (by standard merge, or TMQL extended merging semantics) into a single Q-TM, then used as above.

Parameters on merging, matching, and construction of R-TMs

These may be simple values, or TMs. Their nature and significance needs careful analysis and specification. For example,:

· May specify transitive closure on associations which have designated scope(s)

· May specify transitive closure on occurrence-which-is-topic-which-has-occurrence-which-is-topic…. (within a designated scope)

TMQL Language

Describing transactions

The general form of a transaction is the name of the transaction, followed by a sufficient identification of the S-TM, and either a similar identification for the Q-TM, e.g. a suitable identification (what?) of a file containing the Q-TM in 13250 syntax, or a specification of the Q-TM in the TMQL embedded notation (see below).

Issue: Can any of S-TM, Q-TM be in TMQL embedded notation, or only Q-TM? Suggest any, but deprecate large ones. “S-TM” below is intended to indicate any suitable way (repertoire to be defined) of naming or identifying the Tm involved.

Examples:

ADD { (Q-TM) } TO { (S-TM) }

REMOVE {(Q-TM) } FROM { (S-TM) }

SELECT { (Q-TM) } IN { (S-TM) }

More complex examples (Note: these examples distinguish different source, query and result TMs using numerical suffixes – these suffixes have no other intended meaning):

ADD { SELECT { (Q-TM) } IN { (S-TM1) } } TO { (S-TM2) }

REMOVE { (Q-TM1) } FROM { ADD { (Q-TM2) } TO { (S-TM) } }

The centre connective (TO, FROM, IN) is provided to enable easier writing and reading of queries. For example, if there is an explicit TO in the middle, then errors of braces matching will be easier to debug.

Describing topic maps (usually Q-TM) in TMQL embedded notation

The TMQL embedded notation allows a topic map (using a useful working subset of the full ISO 13250 concept) to be embedded in a TMQL query. If there is a requirement in a TMQL Q-TM for topic map features that are not reflected in the TMQL embedded notation, then that topic map can be provided to the TMQL transaction as a separate TM.

TMQL embedded notation has the following limitations compared to the ISO 13250 interchange syntax:

· Limited expressive power

· No Facets.

· No mnemonic string alternatives to types on various constructs.

· No scoping on individual base names, sort names and display names.

· No display names that are not strings.

· No scoping of associations, occurrences and topics.

· No added themes.

· No multiple identities, or any identities other than very simple names.

The basis of the notation is the ability to describe topics, which is done by writing what would be the SGML ID of the topic in the ISO 13250 interchange syntax, in square brackets. For example:

[ltm]

This represents a topic map consisting of a single topic that has the SGML ID 'ltm', but no other topic characteristics. If you want, you can provide it with a base name and a sort name as well, as in the example below. Note that the sort name is optional.

[ltm = "The linear topic map notation";

 "linear topic map notation, the"]

You can also add a display name. If you have a display name the sort name is optional, but you need two semicolons to tell the parser that the second name is a display name and not a sort name. The example below shows a topic with all three name types.

[foo = "basename"; "sortname"; "misname"]

The topic can also be typed, if so desired. The example below adds the type 'format' to the ltm topic. Multiple type IDs can be listed after the colon if the topic has more than just one type.

[ltm : format = "The linear topic map notation";

 "linear topic map notation, the"]

Note that even if no topic with the ID 'format' is described anywhere in the Embedded Q-TM this reference will cause the topic to be created by the TMQL processor. The 'format' topic will have an ID, but no other characteristics. Note also that in TMQL you can add as much white space as you want anywhere except inside strings without having any effect on the resulting topic map.

TMQL also supports providing subject identifiers for topics, as shown below. The subject identifier is quoted and preceded by an '@' character.

[ltm : format = "The linear topic map notation";

 "linear topic map notation, the"

 @"http://www.ontopia.net/topicmaps/ltm-tech-report.html"]

The final construct supported by TMQL for topics is scoping of names. This can be done for the basename, sortname, dispname-trinity as a whole, by putting a topic ID preceded by a slash after the initial '=' character, as shown below. Multiple topic IDs are allowed.

[ltm : format = / norwegian

 "Den lineære topic map-notasjonen";

 "lineær topic map-notasjon, den"

 @"http://www.ontopia.net/topicmaps/ltm-tech-report.html"]

Note that if this example and the one above it were to appear in the same Embedded Q-TM it would cause a single topic to be created with the union of the characteristics of these two definitions. That means that the topic would have the 'ltm' ID, the format type, the two different name sets and the given subject identifier.

Note also that there are no requirements on the order in which constructs appear in the TQML embedded topic map description. A topic type can be used before it is described, for example.

Describing associations

The TMQL notation also supports describing associations, which can be done using the notation shown below. In the example below the ltm topic described above is associated with a topic with the ID 'topic maps' by an association that has the format-for type. ('format-for' is of course the ID of the topic that types that association.)

format-for([ltm], [topic-maps])

Note the use of square brackets around the IDs. All the constructs used when describing topics can be used here, which means that it is possible to describe topics with their characteristics in the associations they participate in without describing them anywhere else. The example could therefore also have been written as below.

format-for([ltm], [topic-maps : standard = "Topic maps"])

The meaning of this example is that TMQL is a serialization format for topic maps. This should perhaps be made clearer by adding association role types. The example below does this.

format-for([ltm] : format, [topic-maps] : standard)

Describing occurrences

TMQL also supports describing occurrences. This is done using the notation shown below, where the occurrence information is given in curly braces. Three pieces of information, all of which are required, appear inside the braces, separated by commas. The first is the ID of the topic which has the occurrence, the second is the ID of the occurrence role type and the third is the locator of the occurrence in double quotes.

{ltm, specification, "http://www.ontopia.net/topicmaps/ltm-tech-report.html"}

A complete example

Below is given a more complete example of a topic map in TMQL embedded notation. Note that text appearing between '/*' and '*/' is comments.

/* topic types */

[format = "Format"]

[standard = "Standard"]

[organization = "Organization"]

/* association types */

[format-for = "Format for"]

[described-by = "Described by"]

/* occurrence types */

[specification = "Specification"]

[homepage = "Home page"]

/* topics, associations and occurrences */

[topic-maps : standard = "Topic maps"

 = / fullname "ISO/IEC 13250 Topic Maps"]

{topic-maps, specification,

 "http://www.y12.doe.gov/sgml/sc34/document/0129.pdf"}

[xtm : format = "XTM Syntax"]

[ltm : format = "The linear topic map notation";

 "linear topic map notation, the"

 @"http://www.ontopia.net/topicmaps/ltm-tech-report.html"]

{ltm, specification, "http://www.ontopia.net/topicmaps/ltm-tech-report.html"}

format-for([ltm], [topic-maps])

format-for([xtm], [topic-maps])

described-by([ltm], [ontopia])

described-by([xtm], [xtm-wg])

[ontopia : organization = "Ontopia AS"]

{ontopia, homepage, "http://www.ontopia.net"}

[xtm-wg : organization = "XTM Working Group"]

{xtm-wg, homepage, "http://www.egroups.com/group/xtm-wg"}

Formal syntax definition

This section describes the syntax of the TMQL embedded notation using a formal extended BNF grammar. Lexical tokens are given either as single-quoted strings directly in the grammar, or as upper-case names of token types. The token types are described separately further below.

 topic-map ::= encoding? (topic | assoc | occur) +

 encoding ::= '@' STRING

 topic ::= '[' NAME (WS ':' NAME+)? (topname)* psi? ']'

 psi ::= '@' STRING

 topname ::= '=' scope? basename ((';' sortname) |

 (';' sortname? ';' dispname))?

 scope ::= '/' NAME+

 basename ::= STRING

 sortname ::= STRING

 dispname ::= STRING

 assoc ::= NAME '(' assoc-role (',' assoc-role)* ')'

 assoc-role ::= topic (':' NAME)?

 occur ::= '{' occ-topic ',' occ-type ',' STRING '}'

 occ-topic ::= NAME

 occ-type ::= NAME

The lexical token types described below use perl-style regular expressions for their definitions. Note that while white space (represented by the WS token type) is implicitly allowed between any two tokens, it is explicitly required in the 'topic' production in the above grammar. This is to avoid problems caused by the fact that a colon is allowed in topic IDs.

 NAME = [A-Za-z_][-A-Za-z_0-9.:]*

 COMMENT = /*([^*]|*[^/])**/

 STRING = "[^"]*"

 WS = [\r\n\t]+

The NAME token type is slightly modified compared to the definition in the XML recommendation. The colon is no longer allowed as a name start character, since otherwise a single colon could be both a name and a separator.

All tokens are case-sensitive.

Character encoding handling

All Embedded TMQL topic maps are to be processed as if they were composed of Unicode characters. Files may be in any encoding, but if that encoding is not ISO 8859-1 it should be declared using the encoding production. If the encoding declaration appears in the file it must appear at the very beginning.

Processing and references

Any topic referred to by its ID in an Embedded TQML topic map is considered to exist, even if it is never described anywhere by an explicit occurrence of the topic production with that topic. All occurrences of the same topic ID are considered to be references to the same topic.

Further detailed issues will no doubt be identified and require resolution.

Full definition of TMQL transaction processing (construction, matching and evaluation)

To follow

(Possible) Appendices:

Appendix A (normative): Topic Maps Data Model

Appendix B (normative): Conformance specification for TMQL transactions

Appendix C (not normative) : Conformance specification for TMQL transactions, for Topic Maps expressed in XTM 1.0 interchange syntax
End of draft.

