*¢ ™ ISO/TEC JIC 1/sGFS N 819
date 1993-02‘1 8 total pages
Item nr. supersedes document
Secretariat: Nederiands Normalisatie-instituut (NNI) ISO/IEC JIC 1/SGFS
Kalfjeslaan2 P.O. box 5059 Title: ISO/IEC JIC 1 Special Group on Functional
2600 GB Delft Standardization
Netheriands
telephone: -+ 31 15 680380
telefax: + 31-15 890780
telex: 38144 nni nl
telegrams: Normalisatie Deift Secretariat: NNI (Netheriands)
Title : JTCI N2319:

U.S. Contribution on the Need for JTC1 to Establish Specific
Policies and Precedures for the Standardization of Application
Program Interface (API) Specifications

Source : U.S. National Body

Status . For information

Note

ISO/IECJTC 1N 2 31 9
Date: 1993-01-22

ISO/IEC JTC 1
INFORMATION TECHNOLOGY
Secretariat: USA (ANSI)

TIVLE: U.S. Contribution on the Need for JTC 1 to Establish
Specific Policies and Procedures for the Standardization
of Application Program Interfece (API) Specifications

SOURCE: U.S. National Body
PROJECT: --
STATUS: U. S. Contribution to the JTC 1 Plenary Meeting in Berlin

REQUESTED ACTION: For information and review at the JTC 1
Plenary Meeting in Berlin, 23-26 March 1993

DISTRIBUTION: P and L Members

Address reply to:
Secretariat ISO/IEC JTC 1—American National Standards Institute,11 West 42nd Street, New York, NY 10036

Tel: 212 642-4934, 212 642-4884; TX: 42 42 96 ANSI Ul; FAX: 212 398-0023

U.S. CONTRIBUTION ON THE NEED FOR JTC1 TO ESTABLISH
SPECIFIC POLICIES AND PROCEDURES FOR THE
STANDARDIZATION OF APPLICATION PROGRAM INTERFACE (API)
SPECIFICATIONS

DECEMBER 4, 1992

TABLE OF CONTENTS

0. OIVERNVIEIN . o isss s s s s 0 o s s S e A R R B 3
L. CHARACTERISTICS AND DEFINITIONccoiiiiiiiiiiiiiinieiiiiee, 4
1] Application Program Interface (API) Related Conceptscovvviiiiiiinns 4
1.2 Requirements for Standard API Specificationocoviiemieiriiinninnenn 5
1.3 Level Of ADSITACTION. . ciiiueiiuieiinirinr ittt 6
2 METHODS AND COMPONENTS FOR JTC1 APIWORK............ccooieininis 8
2.1 [Tt gele 1o 5o} s DEUTETP TP PP R RRREEE 8
7.2 Relation to Other Standardsoovverrerimreriiueaiaiaiiiiieieiin s 8
2.3 Language-Independent API Specifications and Language Bindings.. oo 8
2.4 Conformance and Testability.....coooiimiiiiiiiie 10
2.5 MOELS s e v meseonnesssssisinsshsnniis spasis vivammerspsananssansaesvrs sammusssssaresss 10
2.6 FOIMAal MEthOAS . .uuenuinsennaneeneniinsinsrars e eaeiiiistattentaitaesiinest st 11
3 NEED FOR AN IMPLEMENTATION PLANoiiiiiee 12
3.1 INTOAUCHON e eeneeeenieseneeseensstnaesasaseneasasaassertansnnassanasentasistantns 12
3.2 Placement within JTC] for Standardization of API Specifications................ 12
3.3 COOTAIMALION tt v veneenneenneneenseraeoneestoneansaaansesacastennnssnssasesaneossisnss 13
3.4 International Standardized Profiles (ISPS)oouiieiiiiiiiiiiiiiiiiis 13
3.5 Migration ..iccssusumssimmsisimiseissonmmrmsassnonnresssnsans svas iea fan s e e ds §8084 14
APPENDIX A. REFERENCES.....cciuiiiiiiiiiiiiiiatetae et e e 15
APPENDIX B. API PROJECTS .. .cttitiiitiiinianianiiiiaeen it 16
APPENDIX C. ABBREVIATIONSccviuiiiiiiiiiniieneaieiiteiiieiienaneanseeeen 18
APPENDIX D. SUMMARY OF RECOMMENDATIONS.......ccccoiiiiiiiiinn. 19

0. OVERVIEW

Standardization of Application Program Interface (API) specifications by ISO/IEC JTCI is
important for implementation of many Information Technology products and services
which utilize JTCI standards. Indeed, successful standardization of API specifications has
already been underway for some ume within JTCI. ISO/IEC draft Technical Report
10182, Guidelines for Language Bindings, offers guidelines on preparation of API
specifications and draws from the successful experiences within JTC] in the fields of
computer graphics and database management. The U.S. believes that a significant increase
in the number of projects for standardization of API specifications can be expected within
JTCI in the near future and hopes that the adoption of the recommendations contained in
this document will improve the standardization of API specifications.

This document addresses important concepts, requirements and procedures related to API
standardization.

In order to discuss this area of standardization, the U.S. believes it is important to
distinguish between the terms "API" and "API specification." Section 1 of this
contribution establishes operational definitions for these two terms.

There are three main sections to this contribution. These sections describe important API
concepts, methodologies for standardization of API specifications, and a management
approach to standardization of API specifications. In order to assist in the review of this
contribution, the recommendations found in the three main sections are summarized in
Appendix D.

If the recommendations in this contribution are accepted, they would require modifications
to the JTCI Directives and the administrative processing of projects. These modifications
would best be adopted as a supplement to the JTC! Directives in order to expedite their
implementation. If JTCI agrees, the U.S. would be pleased to recommend specific text to
SWG-P for its consideration.

L CHARACTERISTICS AND DEFINITION
1.1 Application Program Interface (API) Related Concepts

An interface is a boundary between two entities that defines a relationship between them.
For an Application Program Interface (API), the boundary is between an application
software entity (the service user) and an application platform (the service provider). This
application platform is a set of resources on which the application software will run,
providing all of the services required by the application software. In this context, a service
is a capability of a service-providing-entity which is made available to a service-using-entity
at the boundary between those entities.

The TSG-1 model [ISO/IEC JTCI N1335, May 1, 1991] "TSG-1: Standards Necessary to
Define Interfaces for Application Portability (IAP) - Final Report", describes two kinds of

interfaces that are important for application portability:

a) The Application Program Interface (API) is the "internal" interface between
application software and the application software platform; and

b) The Platform External Interface (PEI) is the "external" interface between
application software platform and the external world.

This document addresses only API specifications. Note that the relationships depicted in
Figure 1 could be represented in a number of ways. Clear identification of the key
interfaces and entities is the objective of this discussion rather than a selection of any
particular diagram.

— — ——

Application
Platform Software
External w Application
Interfaces Program
T Interfaces
Platform

Extemnal World

—-ee-—sssxs —

Figure 1: API Relationships

Within the context of this document, there may be multiple API relationships within any
system. The distinction between an application and its supporting platform is relative,
rather than absolute, with respect to the specific application under consideration.

An API is a boundary across which application software uses facilities of programming
languages to invoke services. These facilities may include procedures or operations,
shared data objects and resolution of identifiers. A wide range of services may be required
at an API to support applications. Different methods may be appropriate for documenting
API specifications for different types of services.

The information flow across the API boundary is defined by the syntax and semantics of a
particular programming language, such that the user of that language may access the
services provided by the application platform on the other side of the boundary. This
implies the specification of a mapping of the functions being made available by the
application platform into the syntax and semantics of the programming language.

An API specification documents a service and/or service access method that is available at
an interface between the application and an application platform.

An API specification may take the form of one of the following:

a) Programming language specification, which is a description of a language
defined within the program of work of SC22, such as Fortran, Ada and C.

b) Language independent API specification, which is a description of a set of
functionality in terms of semantics (in an abstract syntax) and abstract data
types that can be bound to multiple programming languages.

C) Language specific API specification, which is a description of a set of
functionality in terms of the syntax and data types of some programming
language.

Language-independent API specifications are useful in defining specifications for invoking
services at the APL. The language independent specification serves primarily as the
reference used to assure consistency across different language bindings. However, one or
more language bindings to programming languages such as COBOL or C must also exist.
Language specific API specifications are used by programmers, writing in a particular
programming language, to invoke a service provided by the application platform. They
may be used by a program to invoke a supporting service offered by another application
software entity.

1.2 Requirements for Standard API Specification
The needs for standardization of API specifications include:
a) For integration of information technology standards

API standards provide a linkage between standards which specify services
and standards which specify programming languages. Thus, API standards
play a vital role in integrating Information Technology standards into a
coherent whole. This integration is important both for effectiveness and
manageability of the standards development process, and for effectiveness
of the resulting standards.

b) For application portability

API standards have portability as a key objective. To accomplish this,
individual API specifications and combined sets of API specifications (Open
System Environment profiles), must be sufficiently complete to enhance
predictable portability. The porting of an application that uses standard API
specifications to another system that provides the same standard API
specifications is considerably simpler than ports involving different systems
not based on standard API specifications.

c) For application interoperability

By facilitating application use of interoperable services, API standards help
support interoperability between applications.

d) For specifying a suitable platform to provide a set of services

Computer users can select and match application software and application
platforms from potentially different suppliers to assemble an environment to
address specific business needs.

e) For software reuse
Standard API specifications also promote reuse of software modules.
1.3 Level of Abstraction

The concept of "Level of Abstraction" is complex, with several (possibly non-conflicting)
usages. Usage of "Level of Abstraction" implies variation in the amount of functionality
offered to the calling program by each invocation.

The same service may be provided by multiple API specifications which differ in level of
abstraction. For example, a less abstract API specification for X.400 electronic mail
services may provide the application programmer substantial control over details of its
interaction with the mail servers. On the other hand, a more abstract API specification may
provide a simple, single subroutine call for sending a file as a mail message to a mailbox.

Under this usage, a more abstract API specification is easier to use than a less abstract
specification provided that the conventions adopted in implementing the service are
appropriate to the application. A less abstract API specification is used where there are
application specific requirements relating to details of the interaction or the implementation.

Another usage of "Level of Abstraction" reflects the degree to which the implementation
method is visible/invisible to the users of the API specification calls.

An API specification may reflect a pure abstraction driven only by the service requirements
(e.g. a protocol independent network API specification), or it may reflect details of the
implementation. These details may be associated with one of several alternative methods
for service satisfaction (e.g. OSI, TCP/IP, or ISDN communication service API
specification). The details could also reflect aspects of alternative platforms'
implementations. In this context, use of a more abstract API specification yields greater
portability and implementation independence, while a less abstract API specification may
provide more control and/or improved performance.

The level of abstraction of API specification varies with the programming language and the
abstractions inherent to the specific service. Therefore, a "uniform" level of abstraction
across the set all API specifications is not appropriate.

2 METHODS AND COMPONENTS FOR JTC1 API WORK

2.1 Introduction

A standard API specification specifies a mapping between a programming language and the
features of a particular service, and thereby provides access to that service from
applications written in a particular programming language. Such a mapping is said to create
a binding between the service and the programming language.

2.2 Relation to Other Standards

A standard API specification may be part of the standard that specifies the associated
programming language, may be part of the standard that specifies the associated service, or
may be a separate standard that refers to other standards that define the associated
programming language and service. Thus, programming language standards can be
considered as one kind of standard API specification.

The following policies are recommended:

1. Standard API specifications shall identify the standards that specify the
programming language and the service associated with it, if these are not
specified by the standard API specification itself.

2. Standard API specifications shall be consistent with, and shall avoid
duplication of, requirements specified by the associated service and
programming language standards.

3. Where it can be expected that implementations will support bindings to a
service for multiple programming languages, any requirements on
interoperability between these bindings should be specified, including
requirements on exchange of data values.

4. Where it can be expected that implementations will support bindings to
multiple services for a single programming language, any requirements on
compatibility between these bindings should be specified, including
requirements on coordination of identifier name spaces.

2.3 Language-Independent API Specifications and Language Bindings

Standard API specifications can specify a direct mapping between a programming language
and a service, or an indirect mapping that makes use of an intermediate, abstract interface
model and syntax that is separately mapped to the programming language and to the
service. Where an indirect mapping is used and the same abstract interface is mapped to
multiple programming languages, the specification of the mapping from the service to the
abstract interface model and syntax is called a language-independent API specification. A
specification of a mapping to a programming language, whether directly from a service or
from a language-independent API for a service, is called a language binding for that
service.

Where there are multiple language bindings to a service, some language bindings may
depend on a language-independent API specification, while others map directly to the
service, and different groups of language bindings may depend on separate
language-independent API specification, for example where the bindings for different
programming languages have incompatible requirements. [See Figure 2.]

FORTRAN-

Ada-

LISP- Prolog-

Specific Specific Specific Specific
API API API API
Specificadon Specification Specificadon Specification

Language-Independent
API
Specificaton #1

Language-Independent
API
Specificadon #2

COBOL-
Specific
API
Specification

Figure 2: Role of Language-Independent API Specifications
The following policies are recommended:

3. Where a standardization project for an API specification includes multiple
language bindings with common interface characteristics, the use of
language-independent API specifications should be strongly encouraged.

6. Where a standardization project for an API specification includes a
language-independent API specification, the language-independent API
specification shall be progressed together with at least one language binding
that depends on the language-independent API specification.

7. The development and use of common, standardized methods for the
specification of language-independent API specification should be
encouraged.

The Common Language-Independent Datatypes [SC22 N970, CD 11404], Common
Language-Independent Procedure Calling Mechanisms [SC22 N1082, WD], and the OSI
Interface Definition Notation [SC21 N7348, CD 11578] (when remoteness is involved)
are intended to define components of an abstract model and syntax that can be used to
specify language-independent API specifications. A primary goal of this work is to
facilitate the generation of language bindings, when the model and syntax are separately
mapped to the service and to the programming language. This approach will reduce the
need for separate language binding standards. However, this methodology is not likely to
yield results compatible with existing practice.

2.4 Conformance and Testability

Clear definitions of conformance and testability are essential for standard API
specifications. Not all required functions can be effectively tested. However, where
possible, test methods should be readily derivable from the standard. [See ISO/IEC
9646:1991, and SC22 N1180, which is the basis for an SC22 CD in Q4 1992.]

The following policies are recommended:

8. Standard API specifications shall specify the mapping between conformance
levels defined by the API standard and conformance levels defined by the
standards defining the associated programming language and service.

9. The "conformance clauses" and conformance requirements specified in
standard API specifications shall distinguish between the requirements on a
platform's conforming service implementations and those on conforming
applications.

10. API conformance requirements should include sufficient level of specificity
that verification test methods can be readily derived.

11. The use of API specification methods that support the use of automnated test
procedures should be encouraged.

2.5 Models

All API specifications, in mapping between a programming language and a service, must
take into account the underlying semantic models of the programming language and the
service, whether these are explicit or implicit.

The following policies are recommended:

12. The specification of explicit semantic models should be encouraged in the
development of standards for programming languages and services, in order
to facilitate the development of API specifications which bind them together.

13. The mapping defined by an API specification may harmonize or, instead,
separate the underlying semantic models of the associated programming
language and service. The approach chosen should be determined in each
case according to the characteristics of these semantic models and the needs
of the users of the API specification.

14. Where a JTCI1 standard exists for a model or framework that addresses the

scope of proposed work, the relationship of that work to the model shall be
documented.

10

2.6 Formal Methods

Formal methods can improve the correctness and clarity of a standard, encourage
consistency between standards, and simplify testing, and in the case of API specifications,
may provide for unambiguous derivation of bindings and test methods. However, for
some areas of work formal methods may not exist, or be complete enough to provide a
sufficient description. Where work is based on existing experience, formal methods may
introduce substantial delays into development of the standard. And, in some cases, formal
methods may reduce the ease-of-use of a standard (note that standard API specifications are
used by both platform implementors and application implementors.)

The following policy is recommended:
15. In determining whether the use of a formal specification method is

appropriate, the timeliness and useability of the resulting standard should be
considered, as well as the availability of National Body experts.

11

3. NEED FOR AN IMPLEMENTATION PLAN

3.1 Introduction

There are a large number of existing and future projects involving the standardization of
API specifications. Consequently, there is a need to establish criteria and specific JTCI
policies and procedures for such standardization which will allow ongoing work to
continue while migrating to a comprehensive approach. The development by JTC1 of such
an implementation plan should include review of the proposed plan by both JTC1 NBs and

JTCI1 Subgroups.
3.2 Placement within JTCI1 for Standardization of API Specifications

Standardization of API specifications within JTC1 has been successfully progressed using
various approaches to placement of the work. It has been accomplished by groups
standardizing programming languages (for example, the binding of GKS to Basic) and
groups specifying the services (for example, the binding of SQL to Ada).

There are three types of expertise that need to be involved in the development of API
specifications. The developers of the service standards must be involved to provide
detailed knowledge on the use of service standards. The users of the base standards and
the API must be involved to facilitate determining the appropriate levels of abstraction and
“common usage". Language experts need to be involved to ensure that the API is properly
integrated into the various languages. One of the more important aspects of the language
dependent API specifications is that they fit well into the style and model of the lan guage in
which they are to be used without conflicting with existing syntax and semantics. Those
participating in the development of an API specification would not be expected to limit their
participation to a single type of expertise. However, these categories do serve to
characterize the kinds of knowledge that needs to be involved.

Level of Abstraction and Language-Independence are two characteristics of API
specifications that could be used to help determine the placement of work on API
specifications. Much like the types of expertise just described, these are not an absolute
characterization, but more an indication of degrees or shadings. For API specifications that
were very language independent and were at a lower level of abstraction, the work may rely
more heavily on base standards participation. By moving to higher levels of abstraction,
more user participation and a rise in the need for language expertise is expected. By
moving from more language independence to more language dependence, greater
participation by language experts and less participation from base standards is expected.

The following policy is recommended:

16. To expedite placement of future work, an NP or fast-track submission
which includes an API component must be accompanied by a statement that
addresses the following questions:

a) Which SC is responsible for the underlying service?
b) Which SC is responsible for the programming language(s)?

c) Will the API specification require extension(s) to an existing
programming language or service?

12

d) What is the kind of expertise required in the development of the API

specification?

e) What resources of the SC are available to perform the new API
specification work?

f) What is the relationship of the API specification work to other work
in the SC?

g) Is the appropriate expertise available for review and consideration of

the draft API specifications, especially during the CD ballot stage?

3.3 Coordination

Given the nature of standardization of API specifications, there are clear needs to ensure
that NPs for the work include detailed information on:

a) Related work (base standards and ISPs) and

b) necessary liaisons.
JTC]1 has recently reorganized to enhance its abilities to coordinate its program of work
(e.g., additional coordination questions are being added to the NP form). For
standardization of API specifications it would be useful to address specific questions (as
discussed in Section 3.2). Similarly, requesters of fast-track processing for API standards
should be asked to provide information analogous to that provided for NP processing.
Standardization of API specifications are dependent upon related standards which apply to
one or both sides of the interface involved. Therefore, it is important that during the
development of standards for API specifications:

a) Related work is progressed and

b) liaisons are active

in order to ensure that technically sound and complete standards are developed in a timely
fashion.

The following policy is recommended:
17. Standardization of API specifications should require specific explicit review
by specifically identified liaisons at specific stages of development (e.g.,
CD, at time of registration, should be sent to these identified liaison SCs for
required review and comment to the developing SC.)
3.4 International Standardized Profiles (ISPs)
The SGFS has recently had its area of work expanded to include ISPs for Open System

Environments (OSE). It is anticipated that this process will identify the need to further
Standardization of API specifications.

13

3.5 Migration

It is obvious that there will be an increasing workload in JTC1 on Standardization of API
specifications.

A JTCI1 implementation plan for new policies and procedures for Standardization of API
specifications should include:

a) Applicability to new JTCI projects and JTCI projects which have not yet
reached the stage of CD registration,

b) Applicability to all other projects which have not reached IS stage by a
future deadline, and

C) a target date for implementation.

14

APPENDIX A. REFERENCES

ISO 9646:1991 - Information technology - Open system interconnection - Conformance
testing methodology and framework

ISO/IEC JTCI Directives

ISO/IEC DTR 10182, "Guidelines for Language Bindings," Draft technical report,
document SC22 N1098.

ISO/IEC JTCI N1335, May 1, 1991: "TSG-1: Standards Necessary to Define
Interfaces for Application Portability (LAP) - Final Report.”

SC22 N970, CD 11404: Information technology - Programming languages - Common
language-independent datatypes

SC22 N1082, WD: Information technology - Programming languages - Common
language-independent procedure calling mechanisms

SC21N 7348, CD11578: Information technology - Open Systems Interconnection
-Interface Definition Notation

SC22 N1180, WD: Information technology - Programming languages - Test methods for
testing conformance to POSIX

15

APPENDIX B. API PROJECTS

The following is a list of SC18, SC21 and SC24 projects which are candidates for

requiring API specification be developed for them. This is not an official list and may have

either errors of omission (a project should be on the list which isn't) or inclusion (a
particular project shouldn't be on the list which is).

The purpose of this list to illustrate the magnitude of the work which will be required to
provide the API specifications required for current standards projects from just SCI8,
SC21 and SC24 (there are many other committees developing standards which will also
require API specifications).

Project No.

SC18 Projects
18.10

18.11
18.15.01
18.15.06.02
18.21.02
18.29
18.31

18.32
18.33.01
18.33.02
18.35
18.37

18.41

18.46
SC21 Projects
1.21.03.02
1.21.06
1.21.11
1.21.12
1.21.13
1.21.17.3
1.21.22.1
1.21.28.3
1.21.28.5.1
1.21.28.5.2
1.21.28.5.5.4
1.21.28.5.5.5
1.21.28.6.1
1.21.28.6.2
1.21.28.6.3
1.21.28..6.4
1.21.28.7.1
1.21.28.7.2
1.21.28.8.1
1.21.28.9.1
1.21.28.9.2
1.21.28.9.3
1.21.28.9.4

Title

Abstract Interface for Manipulation of ODA Documents
Message Handling System (MHS)

Standard Generalized Markup Language (SGML)
Standard Page description Language (SPDL)
Graphical Symbols Used in Screens

Keyboard Maps

Document Filing and Retrieval (DFR)

Document Printing Application (DPA)

Font Services, Part 1: Abstract Service Definition
Font Services, part 2: Protocol Specification

Support for Electronic Data Interchange (EDI) in MHS
Referenced Data Transfer (RDT)

Dialog Interaction Techniques

User Interface to Voice Messaging (and related applications)

SQL

IRDS

Virtual Terminal

FTAM

FTM

ASN.1

ACSE

CMIS

Object Management Function

State Management Function
General Relationship Management Function
Change Over Function

Alarm Reporting Function

Event Report Management Function
Log Control Function

Test Management Function
Security Alarm Reporting Function
Security Audit Trail Function
Accounting Meter Function
Workload Monitoring Function
Summarization Function

Response Time Monitoring Function
Scheduling Function

16

1.21.28.10 Software Management Function
1.21.28.11 Time Management Function
1.21.29 Directory

1.21.34 1P

1.21.34.7.1 UDT with TP

1.21.34.7.2 Queuing with TP

1.21.38 Presentation (connectionless)
1.21.55 RTSE

1:21:56 ROSE

SC24 Projects

1.24.10.1 Image Processing and Interchange Functional Specification Part 1:
A Common Architecture for Imaging (ISO 12087-1)
1.24.10.2 Image Processing and Interchange Functional Specification Part 2:

The Programmer's Imaging Kernel System Application Program
Interface (ISO 12087-2)

1.24.10.3 Image Processing and Interchange Functional Specification Part 3:
Image Interchange Facility (ISO 12087-3)

1.24.1.5 GKS Revision, ISO 7942-1

1.24.xx Programming Environment for Graphical Objects (new)

17

APPENDIX C. ABBREVIATIONS

APl Application Program Interface

FDT Formal Description Technique

LIS Language-Independent Specification
ISPooaol. International Standardized Profile
OSE Open System Environment

18

APPENDIX D. SUMMARY OF RECOMMENDATIONS

1.

10.

L'l

12,

Standard API specifications shall identify the standards that specify the
programming language and the service associated with it, if these are not
specified by the standard API specification itself. [Section 2.2]

Standard API specifications shall be consistent with, and shall avoid
duplication of, requirements specified by the associated service and
programming language standards. [Section 2.2]

Where it can be expected that implementations will support bindings to a
service for multiple programming languages, any requirements on
interoperability between these bindings should be specified, including
requirements on exchange of data values. [Section 2.2]

Where it can be expected that implementations will support bindings to
multiple services for a single programming language, any requirements on
compatibility between these bindings should be specified, m{,ludmg
requirements on coordination of identifier name spaces. [Section 2.2]

Where a standardization project for an API specification includes multiple
language bindings with common interface characteristics, the use of
language-independent API specifications should be strongly encouraged.
[Section 2.3]

Where a standardization project for an API specification includes a
language-independent API specification, the language-independent API
specification shall be progressed together with at least one language binding
that depends on the language-independent API specification. [Section 2.3]

The development and use of common, standardized methods for the
specification of language-independent API specifications should be
encouraged. [Section 2.3]

Standard API specifications shall specify the mapping between conformance
levels defined by the API standard and conformance levels defined by the
standards defining the associated programming language and service.
[Section 2.4]

The "conformance clauses" and conformance requirements specified in
standard API specifications shall distinguish between the requirements on a
platform's conforming service implementations and those on conforming
applications. [Section 2.4]

API conformance requirements should include sufficient level of specificity
that verification test methods can be readily derived. [Section 2.4]

The use of API specification methods that support the use of automated test
procedures should be encouraged. [Section 2.4]

The specification of explicit semantic models should be encouraged in the
development of standards for programming languages and services, in order
to facilitate the development of API specifications which bind them together.
[Section 2.5]

19

13.

14.

13,

16.

17:

The mapping defined by an API specification may harmonize or, instead,
separate the underlying semantic models of the associated programming
language and service. The approach chosen should be determined in each
case according to the characteristics of these semantic models and the needs
of the users of the API specification. [Section 2.5]

Where a JTC]1 standard exists for a model or framework that addresses the
scope of proposed work, the relationship of that work to the model shall be
documented. [Section 2.5]

In determining whether the use of a formal specification method is
appropriate, the timeliness and useability of the resulting standard should be

considered, as well as the availability of National Body experts. [Section
2.6]

To expedite placement of future work, an NP or fast-track submission
which includes an API component must be accompanied by a statement that
addresses the following questions: [Section 3.2]

a) Which SC is responsible for the underlying service?
b) Which SC is responsible for the programming language(s)?

c) Will the API specification require extension(s) to an existing
programming language or service?

d) What is the kind of expertise required in the development of the API

specification?

e) What resources of the SC are available to perform the new API
specification work?

f) What is the relationship of the API specification work to other work
in the SC?

g) Is the appropriate expertise available for review and consideration of

the draft API specifications, especially during the CD ballot stage?

Standardization of API specifications should require specific explicit review
by specifically identified liaisons at specific stages of development (e.g.,
CD, at time of registration, should be sent to these identified liaison SCs for
required review and comment to the developing SC.) [Section 3.3]

20

