
DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 i	
	

	ISO/IEC	JTC	1/SC	22/WG23	N1156	
Date:	2022-03-10	

	

ISO/IEC	24772–6	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 ii	
	

Notes	on	this	document	
	
This	document	is	posted	for	analysis	by	SPARK	experts	to	determine	the	scope	of	changes	needed	in	the	document	
for	compatibility	with	the	latest	published	SPARK	specification.	
	
	
	
	 	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 iii	
	

	

	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Information	Technology	—	Programming	languages	—	Avoiding	vulnerabilities	in	
programming	languages	–	Part	6	–	Vulnerability	descriptions	for	the	programming	
language	SPARK	
	
Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	
	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	
without	notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	
they	are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 iv	
	

	
Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	
While	the	reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	
participants	in	the	ISO	standards	development	process	is	permitted	without	prior	
permission	from	ISO,	neither	this	document	nor	any	extract	from	it	may	be	reproduced,	
stored	or	transmitted	in	any	form	for	any	other	purpose	without	prior	written	permission	
from	ISO.	
Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	
addressed	as	shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	
agreement.	
Violators	may	be	prosecuted.	

	
	
	
	 	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 v	
	

Table of Contents

FOREWORD .. VII

INTRODUCTION .. 9

1. SCOPE .. 10
2. NORMATIVE REFERENCES .. 10
3. TERMS AND DEFINITIONS, SYMBOLS AND CONVENTIONS .. 11
3.1 TERMS AND DEFINITIONS ... 11
4. USING THIS DOCUMENT .. 11
5. LANGUAGE CONCEPTS, COMMON GUIDANCE ... 12
5.1 LANGUAGE CONCEPTS ... 12
5.2 TOP AVOIDANCE MECHANISMS ... 16
6. SPECIFIC GUIDANCE FOR SPARK VULNERABILITIES .. 19
6.1 GENERAL .. 19
6.2 TYPE SYSTEM [IHN] .. 19
6.3 BIT REPRESENTATIONS [STR] ... 20
6.4 FLOATING-POINT ARITHMETIC [PLF] ... 20
6.5 ENUMERATOR ISSUES [CCB] .. 21
6.6 CONVERSION ERRORS [FLC] ... 21
6.7 STRING TERMINATION [CJM] ... 22
6.8 BUFFER BOUNDARY VIOLATION [HCB] ... 22
6.9 UNCHECKED ARRAY INDEXING [XYZ] ... 22
6.10 UNCHECKED ARRAY COPYING [XYW] ... 22
6.11 POINTER TYPE CONVERSIONS [HFC] .. 22
6.12 POINTER ARITHMETIC [RVG] ... 22
6.13 NULL POINTER DEREFERENCE [XYH] ... 23
6.14 DANGLING REFERENCE TO HEAP [XYK] .. 23
6.15 ARITHMETIC WRAP-AROUND ERROR [FIF] .. 23
6.16 USING SHIFT OPERATIONS FOR MULTIPLICATION AND DIVISION [PIK] .. 23
6.17 CHOICE OF CLEAR NAMES [NAI] ... 24
6.18 DEAD STORE [WXQ] .. 25
6.19 UNUSED VARIABLE [YZS] ... 25
6.20 IDENTIFIER NAME REUSE [YOW] .. 25
6.21 NAMESPACE ISSUES [BJL] .. 26
6.22 INITIALIZATION OF VARIABLES [LAV] ... 26
6.23 OPERATOR PRECEDENCE AND ASSOCIATIVITY [JCW] ... 26
6.24 SIDE-EFFECTS AND ORDER OF EVALUATION OF OPERANDS [SAM] ... 27
6.25 LIKELY INCORRECT EXPRESSION [KOA] ... 27
6.25.2 GUIDANCE TO LANGUAGE USERS .. 28
6.26 DEAD AND DEACTIVATED CODE [XYQ] ... 28
6.27 SWITCH STATEMENTS AND STATIC ANALYSIS [CLL] ... 29
6.28 DEMARCATION OF CONTROL FLOW [EOJ] ... 29
6.29 LOOP CONTROL VARIABLES [TEX] ... 29
6.30 OFF-BY-ONE ERROR [XZH] .. 30
6.31 UNSTRUCTURED PROGRAMMING [EWD] ... 31
6.32 PASSING PARAMETERS AND RETURN VALUES [CSJ] ... 31
6.33 DANGLING REFERENCES TO STACK FRAMES [DCM] .. 32

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 vi	
	

6.34 SUBPROGRAM SIGNATURE MISMATCH [OTR] ... 32
6.35 RECURSION [GDL] ... 32
6.36 IGNORED ERROR STATUS AND UNHANDLED EXCEPTIONS [OYB] .. 33
6.37 TYPE-BREAKING REINTERPRETATION OF DATA [AMV] ... 34
6.38 DEEP VS. SHALLOW COPYING [YAN] .. 35
6.39 MEMORY LEAK AND HEAP FRAGMENTATION [XYL] .. 35
6.40 TEMPLATES AND GENERICS [SYM] .. 36
6.41 INHERITANCE [RIP] .. 36
6.42 VIOLATIONS OF THE LISKOV SUBSTITUTION PRINCIPLE OR THE CONTRACT MODEL [BLP] .. 37
6.43 REDISPATCHING [PPH] ... 37
6.44 POLYMORPHIC VARIABLES [BKK] .. 38
6.45 EXTRA INTRINSICS [LRM] .. 38
6.46 ARGUMENT PASSING TO LIBRARY FUNCTIONS [TRJ] ... 39
6.47 INTER-LANGUAGE CALLING [DJS] .. 39
6.48 DYNAMICALLY-LINKED CODE AND SELF-MODIFYING CODE [NYY] .. 40
6.49 LIBRARY SIGNATURE [NSQ] ... 40
6.50 UNANTICIPATED EXCEPTIONS FROM LIBRARY ROUTINES [HJW] .. 41
6.51 PRE-PROCESSOR DIRECTIVES [NMP] ... 41
6.52 SUPPRESSION OF LANGUAGE-DEFINED RUN-TIME CHECKING [MXB] ... 41
6.53 PROVISION OF INHERENTLY UNSAFE OPERATIONS [SKL] .. 42
6.54 OBSCURE LANGUAGE FEATURES [BRS] ... 43
6.55 UNSPECIFIED BEHAVIOUR [BQF] .. 43
6.56 UNDEFINED BEHAVIOUR [EWF] ... 44
6.57 IMPLEMENTATION–DEFINED BEHAVIOUR [FAB] .. 44
6.58 DEPRECATED LANGUAGE FEATURES [MEM] ... 46
6.59 CONCURRENCY – ACTIVATION [CGA] .. 46
6.60 CONCURRENCY – DIRECTED TERMINATION [CGT] .. 46
6.61 CONCURRENT DATA ACCESS [CGX] ... 47
6.62 CONCURRENCY – PREMATURE TERMINATION [CGS] .. 48
6.63 LOCK PROTOCOL ERRORS [CGM] .. 48
6.64 UNCONTROLLED FORMAT STRING [SHL] .. 48
6.65 MODIFYING CONSTANTS [UJO] .. 48

BIBLIOGRAPHY ... 50

INDEX ... 51

	
	
	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 vii	
	

Foreword

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	
Electrotechnical	 Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	
National	bodies	that	are	members	of	ISO	or	IEC	participate	in	the	development	of	International	
Standards	through	technical	committees	established	by	the	respective	organization	to	deal	with	
particular	 fields	 of	 technical	 activity.	 ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	
mutual	interest.	Other	international	organizations,	governmental	and	non-governmental,	in	liaison	
with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	and	IEC	
have	established	a	joint	technical	committee,	ISO/IEC	JTC	1.	
	
International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	
Part	2.	
The	 main	 task	 of	 the	 joint	 technical	 committee	 is	 to	 prepare	 International	 Standards.	 Draft	
International	Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	
for	 voting.	 Publication	 as	 an	 International	 Standard	 requires	 approval	 by	 at	 least	 75	%	 of	 the	
national	bodies	casting	a	vote.	
	
In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	
kind	 from	that	which	 is	normally	published	as	an	 International	Standard	(“state	of	 the	art”,	 for	
example),	it	may	decide	to	publish	a	Technical	Report.	A	Technical	Report	is	entirely	informative	
in	nature	and	shall	be	subject	to	review	every	five	years	in	the	same	manner	as	an	International	
Standard.	
	
Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	
of	patent	rights.	 ISO	and	IEC	shall	not	be	held	responsible	for	 identifying	any	or	all	such	patent	
rights.	
	
ISO/IEC	 24772-6	 was	 prepared	 by	 Joint	 Technical	 Committee	 ISO/IEC	JTC	1,	 Information	
technology,	Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	
interfaces.	
	
With	the	cancellation	of	ISO/IEC	TR	24772:2013,	this	document	replaces	ISO/IEC	TR	24772:2013	
Annex	G.	The	main	changes	between	this	document	and	the	previous	version	are:	

• This	document	has	been	brought	up	to	date	with	respect	to	the	most	recent	(June	2020)	release	of	
the	SPARK	Language	Reference	Manual.	

• Recommendations	to	avoid	vulnerabilities	are	ranked	and	the	top	11	are	placed	in	a	table	in	clause	
5,	together	with	the	vulnerabilities	in	clauses	6	that	contain	each	recommendation.	

• The	following	vulnerabilities	that	were	documented	in	clause	8	of	ISO/IEC	TR	24772:2013	are	now	
addressed	in	this	document	in	clause	6.	

o [CGA]	Concurrency	–	Activation	
o [CGT]	Concurrency	–	Directed	termination	
o [CGX]	Concurrent	data	access	
o [CGS]	Concurrency	–	Premature	termination	
o [CGM]	Protocol	lock	errors	is	now	Lock	protocol	errors	
o [CGY]	Inadequately	secure	communication	of	shared	resource.	

• Clauses	6.2	Terminology	is	integrated	into	clause	3,	and	all	subclauses	in	clause	6	are	renumbered.	

DRAFT	

Baseline	Edition		 ISO/IEC	24772–6	

©	ISO/IEC	2021	–	All	rights	reserved	 viii	
	

• The	following	vulnerabilities	were	removed:	
o [XZI]	Sign	extension	error	was	integrated	into	[XTR]	Type	system.	
o [REU]	Termination	strategy,	6.39,	is	placed	in	clause	7	in	Part	1,	and	hence	is	not	documented	

for	SPARK	herein.	
• 	The	following	vulnerabilities	were	renamed	to	track	the	changes	made	in	Part	1:	

o [HFC]	Pointer	casting	and	pointer	type	changes	was	renamed	to	Pointer	type	conversion;	
o [JCW]	Operator	precedence/Order	of	evaluation,	was	renamed	to	Operator	precedence	and	

associativity;	
o [XYL]	Memory	leak	is	renamed	to	Memory	leaks	and	heap	fragmentation;	
o [XYP]	Hard	coded	password	is	renamed	Hard	coded	credentials;	

• New	vulnerabilities	are	added,	to	match	the	additions	of	Part	1:	
o [YAN]	Deep	vs	shallow	copying;	
o [BLP]	Violations	of	the	Liskov	substitution	principle	or	the	contract	model;	
o [PPH]	Redispatching;	
o [BKK]	Polymorphic	Variables;	
o [SHL]	Reliance	on	external	format	strings;	
o [UJO]	Modifying	constants	

• Guidance	material	for	each	vulnerability	given	in	subclause	6.X.2	is	reworded	to	be	more	explicit	
and	directive.	

Additional	material	has	been	included	for	some	vulnerabilities	to	reflect	additional	knowledge	
gained	since	the	publication	of	ISO/IEC	24772-2

	

©	ISO/IEC	2021	–	All	rights	reserved	 9	
	

	

Introduction

This	International	Standard	provides	guidance	for	the	programming	language	SPARK,	so	
that	application	developers	considering	SPARK	or	using	SPARK	will	be	better	able	to	avoid	
the	programming	constructs	that	lead	to	vulnerabilities	in	software	written	in	the	SPARK	
programming	language	and	their	attendant	consequences.	This	guidance	can	also	be	used	
by	developers	to	select	source	code	evaluation	tools	that	can	discover	and	eliminate	some	
constructs	that	could	lead	to	vulnerabilities	in	their	software.	This	document	can	also	be	
used	 in	 comparison	 with	 companion	 standards	 and	 with	 the	 language-independent	
standard,	 ISO/IEC	 24772–1,	 to	 select	 a	 programming	 language	 that	 provides	 the	
appropriate	level	of	confidence	that	anticipated	problems	can	be	avoided.	
	
This	 document	 part	 is	 intended	 to	 be	 used	 with	 ISO/IEC	 24772–1,	 which	 discusses	
programming	 language	 vulnerabilities	 in	 a	 language	 independent	 fashion.	 It	 is	 also	
intended	to	be	used	with	ISO/IEC	24772-2,	Ada	which	discusses	how	the	vulnerabilities	
introduced	in	ISO/IEC	24772-1	are	manifested	in	Ada,	which	is	a	superset	of	SPARK.	
	
It	should	be	noted	that	this	document	is	inherently	incomplete.	It	is	not	possible	to	provide	
a	 complete	 list	 of	 programming	 language	 vulnerabilities	 because	 new	weaknesses	 are	
discovered	continually.	Any	such	document	can	only	describe	those	that	have	been	found,	
characterized,	and	determined	to	have	sufficient	probability	and	consequence.	
	 	

	

©	ISO/IEC	2021	–	All	rights	reserved	 10	
	

	
	
Information	Technology	—	Programming	Languages	—	
Guidance	to	avoiding	vulnerabilities	in	programming	languages	
—	Vulnerability	descriptions	for	the	programming	language	
SPARK	

1.	Scope	

This	document	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	
development	of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-
critical	and	business-critical	software.	In	general,	this	guidance	is	applicable	to	the	software	
developed,	reviewed,	or	maintained	for	any	application.	
This	 document	 describes	 the	 way	 that	 the	 vulnerabilities	 presented	 in	 the	 language-
independent	ISO/IEC	24772–1	manifest	in	SPARK.	
	
This	document	is	based	on	the	publicly	available	“Community	2020”	release	of	the	SPARK,	
which	is	itself	based	on	Ada	2012.	Earlier	versions	of	SPARK	(those	based	on	Ada83	through	
Ada2005),	are	not	covered	by	this	document.	
	

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	
document.	For	dated	references,	only	the	edition	cited	applies.	For	undated	references,	the	
latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	
	
ISO	80000–2:2009,	Quantities	and	units	—	Part	2:	Mathematical	signs	and	symbols	to	be	
used	in	the	natural	sciences	and	technology	
ISO/IEC	2382–1:1993,	Information	technology	—	Vocabulary	—	Part	1:	Fundamental	terms	
ISO/IEC	24772-1,	Programming	Languages—	Guidance	to	avoiding	vulnerabilities	in	
programming	languages	–	Part	1:	Language	independent	guidance	
ISO/IEC	24772-2,	Programming	Languages—	Guidance	to	avoiding	vulnerabilities	in	
programming	languages	–	Part	2:	Ada	
ISO/IEC	8652:2012,	Information	Technology	–	Programming	Languages—Ada	

	

©	ISO/IEC	2021	–	All	rights	reserved	 11	
	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	 the	 purposes	 of	 this	 document,	 the	 terms	 and	 definitions	 given	 in	 ISO/IEC	 2382,	 in	
ISO/IEC	 24772–1,	 in	 ISO/IEC	 24772–2	 and	 the	 following	 apply.	 Other	 terms	 are	 defined	
where	they	appear	in	italic	type.	
	
See	clause	2.	Normative	references,	plus	the	bibliography.		
	
In	the	body	of	this	annex,	the	following	document	is	referenced	using	the	short	abbreviation	
that	introduces	the	document,	optionally	followed	by	a	specific	section	number.	For	example	
“[SRM	5.2]”	refers	to	section	5.2	of	the	SPARK	Reference	Manual.	
	
[SRM]	SPARK	2014	Reference	Manual	Release	2020.	AdaCore	and	Altran	UK,	April	2020	[1].	
Available	 from	 https://www.adacore.com/papers/spark-2014-reference-manual-release-
2020	
	

4.	Using	this	document	

ISO/IEC	24772-1:20xx	clause	4.2	documents	the	process	of	creating	software	that	 is	safe,	
secure	 and	 trusted	 within	 the	 context	 of	 the	 system	 in	 which	 it	 is	 used.	 The	 SPARK	
programming	language	was	explicitly	designed	for	safety,	security	and	the	early	elimination	
of	errors	from	SPARK	programs.	Nevertheless,	as	this	document	shows,	vulnerabilities	exist	
in	 the	 SPARK	 programming	 environment,	 and	 organizations	 are	 responsible	 for	
understanding	and	addressing	the	programming	language	issues	that	arise	in	the	context	of	
the	real-world	environment	in	which	the	program	will	be	fielded.	
	
Organizations	 following	 this	 document,	 meet	 the	 requirements	 of	 clause	 4.2	 of	 ISO/IEC	
24772-1,	repeated	here	for	the	convenience	of	the	reader:	

1. Identify	and	analyze	weaknesses	in	the	product	or	system,	including	systems,	subsystems,	
modules,	and	individual	components;	

2. Identify	and	analyze	sources	of	programming	errors;		
3. Determine	acceptable	programming	paradigms	and	practices	to	avoid	vulnerabilities	using	

guidance	drawn	from	clauses	5.3	and	6	in	this	document;	
4. Determine	avoidance	and	mitigation	mechanisms	using	clause	6	of	this	document	as	well	as	

other	technical	documentation;	
5. Map	the	identified	acceptable	programming	practices	into	coding	standards;	
6. Select	and	deploy	tooling	and	processes	to	enforce	coding	rules	or	practices;	

	

©	ISO/IEC	2021	–	All	rights	reserved	 12	
	

7. Implement	 controls	 (in	keeping	with	 the	 requirements	of	 the	 safety,	 security	and	general	
requirements	of	the	system)	that	enforce	these	practices	and	procedures	to	ensure	that	the	
vulnerabilities	do	not	affect	the	safety	and	security	of	the	system	under	development.	

Tool	vendors		adhere	to	this	document	by	providing	tools	that	diagnose	the	vulnerabilities	
described	in	this	document.	Tool	vendors	also	document	for	their	users	those	vulnerabilities	
that	cannot	be	diagnosed	by	the	tools.	
	
Programmers	 and	 software	 designers	 adhere	 to	 this	 document	 by	 observing	 the	
architectural	 and	 coding	 guidelines	 of	 their	 organization,	 and	 by	 choosing	 appropriate	
mitigation	techniques	when	a	vulnerability	is	not	avoidable.	
	

5.	Language	concepts,	common	guidance	 	

5.1	Language	concepts	

5.1.1	SPARK	language	design	
The	SPARK	 language	 is	a	subset	of	Ada,	specifically	designed	 for	high-assurance	systems.	
SPARK	is	designed	to	be	amenable	to	various	forms	of	static	analysis	that	prevent	or	mitigate	
the	 vulnerabilities	 described	 in	 this	 Document.	 As	 a	 subset	 of	 Ada,	 SPARK	 shares	 the	
applicable	vulnerabilities	of	Ada.	However,	beyond	enforcing	the	Ada	rules	about	soundness	
and	the	subset	restrictions,	SPARK	programs	are	also	subjected	to	mandatory	static	analyses,	
which	prevent	vulnerabilities	present	in	Ada.	
	
Many	 terms	 and	 concepts	 applicable	 to	Ada	 also	 apply	 to	 SPARK.	 See	 clauses	3	 and	4	of	
ISO/IEC	24772-2.	
	
This	clause	introduces	concepts	and	terminology	which	are	specific	to	SPARK	and/or	relate	
to	the	use	of	static	analysis	tools.	
	

5.1.2	Soundness	
Soundness	relates	to	the	absence	of	false-negative	results	from	a	static	analysis	tool.	A	false	
negative	is	when	a	tool	is	posed	the	question	“Does	this	program	exhibit	vulnerability	X?”	
but	incorrectly	responds	“no.”	Such	a	tool	is	said	to	be	unsound	for	vulnerability	X.	A	sound	
tool	effectively	finds	all	the	vulnerabilities	of	a	particular	class,	whereas	an	unsound	tool	only	
finds	some	of	them.	
	
The	provision	of	soundness	in	static	analysis	is	problematic,	mainly	owing	to	the	presence	of	
unspecified	 and	 undefined	 behaviours	 in	 programming	 languages.	 Claims	 of	 soundness	
made	by	tool	vendors	should	be	carefully	evaluated	to	verify	that	they	are	reasonable	for	a	
particular	language,	compiler	and	target	machine.	Soundness	claims	are	always	underpinned	

	

©	ISO/IEC	2021	–	All	rights	reserved	 13	
	

by	 assumptions	 (for	 example,	 regarding	 the	 reliability	 of	memory,	 or	 the	 correctness	 of	
compiled	code)	that	should	also	be	validated	by	users	for	appropriateness	in	their	situation.	
	
Static	analysis	techniques	can	also	be	sound	in	theory	–	where	the	mathematical	model	for	
the	 language	 semantics	 and	 analysis	 techniques	 have	 been	 formally	 stated,	 proved,	 and	
reviewed.	
	
Note:	There	is	also	the	concept	of	unsound	in	practice	owing	to	defects	in	the	implementation	
of	 analysis	 tools.	 Users	 should	 seek	 evidence	 to	 support	 any	 soundness	 claim	 made	 by	
language	designers	and	tool	vendors.	
	
The	single	overriding	design	goal	of	SPARK	is	the	provision	of	a	static	analysis	framework	
which	is	sound	in	theory.	
	
In	 the	 subclauses	 below,	 we	 say	 that	 SPARK	 prevents	 a	 vulnerability	 if	 supported	 by	 a	
mandatory	form	of	static	analysis	which	is	sound	in	theory.	We	say	that	SPARK	mitigates	a	
particular	vulnerability	if,	between	the	SPARK	analyses	and	user	action,	the	vulnerability	can	
be	identified	and	avoided.	
	

5.1.3	SPARK	Analyzer	
A	SPARK	Analyzer	is	a	tool	that	implements	the	various	forms	of	static	analysis	required	by	
the	 SPARK	 language	 definition.	 Without	 having	 been	 analyzed	 by	 a	 SPARK	 Analyzer,	 a	
program	cannot	reasonably	be	claimed	to	be	SPARK,	much	in	the	same	way	as	a	compiler	
checks	the	static	semantic	rules	of	a	standard	programming	language.	
	
In	SPARK,	certain	forms	of	analysis	are	mandatory	–	they	are	required	to	be	implemented	
and	programs	must	pass	these	checks	to	be	valid	SPARK.	Examples	of	mandatory	analyses	
are	

• Enforcement	of	the	SPARK	language	subset.	
• Verification	of	the	absence	of	aliasing.	
• Verification	of	the	absence	of	function	side-effects.	
• Verification	that	every	variable	is	initialized	before	use.	
• Verification	of	the	absence	of	undefined	or	erroneous	behaviour.	
• Verification	that	there	is	no	dependence	on	unspecified	behaviour.	
• Verification	of	the	absence	of	most	runtime	errors	that	would	raise	a	predefined	exception	in	

Ada,	such	as	buffer	overflow,	division-by-zero,	and	arithmetic	overflow.	
	
In	 addition	 to	 the	 language	 analysis,	 SPARK	 supports	 the	 static	 analysis	 of	 user-written	
preconditions,	 postconditions,	 loop	 invariants,	 type	 invariants	 and	 assertions	 that	 allow	
verification	 beyond	 the	 scope	 of	 the	 mandatory	 analysis.	 The	 use	 of	 such	 user-written	
assertions	is	optional,	as	is	the	application	of	some	analyses.	The	most	notable	example	of	an	
optional	analysis	in	SPARK	is	the	generation	and	proof	of	verification	conditions	for	user-

	

©	ISO/IEC	2021	–	All	rights	reserved	 14	
	

defined	contracts.	Optional	analyses	may	provide	greater	depth	of	analysis,	protection	from	
additional	vulnerabilities,	and	functional	proofs	of	correctness.	
	

5.1.4	Static	type	safety	
ISO/IEC	24772-1,	clause	6.2.3,	defines:	
	
“The	 type	 system	of	 a	 language	 is	 the	 set	 of	 rules	 used	 by	 the	 language	 to	 structure	 and	
organize	its	collection	of	types.	Any	attempt	to	manipulate	data	objects	with	inappropriate	
operations	 is	 a	 type	 error.	 A	 program	 is	 said	 to	 be	 type	 safe	 (or	 type	 secure)	 if	 it	 can	 be	
demonstrated	that	it	has	no	type	errors.”	
	
It	also	notes	that	most	languages	enforce	their	type	system	with	a	mix	of	both	static	(i.e.	prior	
to	program	execution)	and	dynamic	(i.e.	during	program	execution)	verification,	but	leaves	
it	to	the	language-specific	Parts	to	define	the	notions	for	each	language.	
	
The	notion	of	“type	safety”	for	a	particular	language	therefore	depends	on	the	definition	of	
“appropriate	operations”	for	all	types	when	the	rules	are	checked	(statically	or	dynamically)	
and	what	happens	when	a	dynamic	check	fails.	
	
Ada	(SPARK’s	parent	language)	provides	a	hybrid	model	for	type	safety,	in	that:	

• Some	typing	rules	are	required	to	be	checked	statically	(by	a	compiler).	Failure	to	meet	these	
rules	prevents	compilation	and	deployment	of	a	program.	

• Some	 typing	 rules	 are	 checked	 dynamically,	 such	 as	 the	 checks	 associated	 with	 a	 type	
conversion	from	some	tagged	type	to	a	descendant	of	that	tagged	type.	

• Failure	of	such	a	runtime	check	in	Ada	is	required	to	raise	an	exception	and	the	programmer	
has	the	option	of	adding	exception	handlers	to	catch	and	respond	to	these.	

	
SPARK	goes	further.	It	strengthens	Ada’s	existing	typing	rules	to	verify	by	static	analysis	the	
absence	of	all	runtime	type	errors.	A	SPARK	program	that	has	met	this	depth	of	verification	
and	is	free	from	unsafe	programming	techniques	(see	subclause	6.53)	is	said	to	be	statically	
type	safe,	meaning	that	any	execution	of	the	verified	program:	

• Will	not	exhibit	undefined	behaviour;	and	
• Will	not	enter	a	state	that	would	require	a	predefined	exception	to	be	raised.	

5.1.5	Failure	modes	for	static	analysis	
Unlike	 a	 language	 compiler,	 a	 user	 can	 always	 choose	 not	 to	 run	 a	 static	 analysis	 tool.	
Therefore,	there	are	two	modes	of	failure	that	apply	to	all	vulnerabilities:		
the	user	fails	to	apply	the	appropriate	static	analysis	tool	to	their	code,	or		
the	user	fails	to	review	or	misinterprets	the	output	of	static	analysis.	
In	the	discussion	of	specific	vulnerabilities	in	clause	6,	this	document	assumes	that	all	proof	
obligations	have	been	successfully	discharged	via	a	SPARK	Analyzer.	It	is	also	assumed	that	
pragma	Assume	(an	explicitly	unsafe	construct	that	can	be	used	to	"prove"	things	that	are	
not	 true)	 is	 not	 used.	 It	 is	 also	 assumed	 that	 any	 non-SPARK	 code	 in	 the	 closure	 of	 the	

	

©	ISO/IEC	2021	–	All	rights	reserved	 15	
	

program	 does	 nothing	 to	 invalidate	 the	 guarantees	 that	 are	 ensured	 for	 "proven"	 100%	
SPARK	code.	
	

5.1.6	Unsafe	programming	
In	recognition	of	the	occasional	need	to	step	outside	the	type	system	or	to	perform	“risky”	
operations,	SPARK	provides	clearly	identified	language	features	to	do	so.	These	are:	

• Using	the	generic	Unchecked_Conversion	for	type-conversions.	See	subclause	6.37.	
• Use	of pragma Assume,	which	allows	a	general	Boolean	expression	to	be	asserted	for	the	

purposed	of	program	verification.	See	6.53.	
• Hiding	a	unit	from	a	SPARK	Analyzer,	by	not	providing	the	aspect	“SPARK_Mode”	on	a	unit	or	

on	its	body.	This	means	that	the	unit	body	is	written	in	Ada,	but	not	SPARK.	For	such	units,	
the	advice	of	ISO/IEC	24772-2	applies.	

• Interfacing	 a	 SPARK	 program	 with	 code	 written	 in	 other	 languages	 (except	 Ada);	 for	
associated	vulnerabilities	see	6.47.	

• The	 pragma Suppress allows	 an	 implementation	 to	 omit	 run-time	 checks.	 A	 SPARK	
Analyzer	justifies	the	use	of	this	pragma	by	verifying	that	those	checks	will	never	fail	at	run-
time.	See	subclause	6.52	Suppression	of	language-defined	run-time	checking	[MXB].	

• Overlaying	two	or	more	variables	by	use	of	common	address	specification	clauses.	
The	use	of	these	language	features	is	called	unsafe	programming.	
	

5.1.7	Access	types	in	SPARK	
Over	and	above	the	mechanisms	inherited	from	Ada,	SPARK	requires	additional	protections	
from	vulnerabilities	associated	with	the	use	of	access	types	and	values.	
	
Several	 vulnerabilities	 listed	 in	 clause	 6	 concern	 access	 types,	 so	 this	 clause	 contains	 an	
introductory	 description	 of	 how	 access	 types	 are	 managed	 in	 SPARK,	 in	 order	 to	 avoid	
repetition	of	that	material	in	clause	6.	
	
Firstly,	 avoid	 the	 use	 of	 access	 types	 if	 possible.	 In	 SPARK,	many	 common	programming	
idioms	 can	 be	 implemented	without	 the	 explicit	 use	 of	 access	 types.	 Parameter	 passing,	
including	mutable	parameters	and	functions	returning	composite	types	do	not	require	the	
use	of	access	types	in	SPARK.	Similarly,	the	use	of	array	types	and	low-level	programming	
(such	as	mapping	a	variable	to	a	specific	memory	location)	are	achieved	in	SPARK	without	
recourse	to	access	types.		
	
In	SPARK,	only	simple	access-to-variable	and	access-to-constant	types	are	permitted	which	
allocate	 memory	 from	 a	 single,	 global	 storage	 pool.	 User-defined	 storage	 pools	 are	 not	
permitted.	General	access	types	which	can	reference	global	memory	or	memory	on	the	stack	
are	not	permitted.	Access-to-subprograms	are	not	permitted.	
	
An	access	value	in	SPARK	can	either	be	an	Owner	or	an	Observer	of	the	designated	memory,	
but	not	both.	At	any	point	in	the	execution	of	a	SPARK	program,	any	allocated	area	of	memory	

	

©	ISO/IEC	2021	–	All	rights	reserved	 16	
	

can	 only	 have	 a	 single	 access	 value	 that	 owns	 it.	 Assignment	 of	 access	 values	 transfers	
ownership,	leaving	the	original	value	unable	to	access	the	designated	memory	for	reading	or	
writing.	
	
An	Observing	access	value	has	read-only	permission	on	an	object,	and	several	such	observers	
are	allowed	to	exist.	
	
Any	one	area	of	allocated	memory	has	exactly	one	owner,	or	one	or	more	observers,	but	not	
both,	so	there	can	be	no	aliasing	effects	by	assignments.	
	
As	a	consequence	of	the	above	rules,	SPARK	avoids	all	aliasing	effects	on	allocated	objects	in	
a	program.	
	
Additionally,	the	ownership	of	an	access	value	can	be	“borrowed”	by	a	locally	declared	access	
value,	with	 the	ownership	automatically	 returning	 to	 the	original	 value	at	 the	end	of	 the	
borrowing	value’s	scope.	This	“borrowing”	allows	for	subprograms	that	traverse	or	modify	
linked	and	recursive	data	structures	before	returning	ownership	to	an	enclosing	scope	or	
calling	subprogram.	
	
A	SPARK	Analyzer	is	required	to	keep	track	of	the	ownership	relationship	between	access	
values	and	allocated	memory,	and	to	enforce	legality	rules	which	are	designed	to	prevent	
defects	and	vulnerabilities.	See	clause	6	for	further	information	on	how	these	rules	apply	to	
the	vulnerabilities	identified	by	ISO/IEC	24772-1.	
	
Full	details	of	the	ownership	and	legality	rules	for	access	types	and	values	are	in	[SRM	3.10].	

5.2	Top	avoidance	mechanisms	

In	addition	to	the	generic	programming	rules	from	ISO/IEC	24772-1	clause	5.4,	additional	
rules	 from	 this	 clause	 apply	 specifically	 to	 the	 SPARK	 programming	 language.	 The	
recommendations	of	 this	clause	are	restatements	of	recommendations	 from	clause	6,	but	
represent	ones	stated	frequently,	or	that	are	considered	as	particularly	noteworthy	by	the	
authors.	 Clause	 6	 of	 this	 document	 contains	 the	 full	 set	 of	 recommendations,	 as	well	 as	
explanations	of	the	problems	that	led	to	the	recommendations	made.

Index Avoidance Mechanism Reference

1	 Use	 a	 SPARK	 Analyzer	 to	 perform	 mandatory	 static	
verification{XE	 “static	 verification”}	 of	 all	 SPARK	
language	rules,	including	type	safety.	

All	

	

©	ISO/IEC	2021	–	All	rights	reserved	 17	
	

2	 Develop,	document	and	deploy	a	process	for	managing	
false-positive	results	that	arise	from	static	verification.	

All	

3	 Develop,	document,	and	deploy	an	automated	process	
that	 prevents	 building	 and	 deployment	 of	 an	
application	if	static	verification	goals	are	not	met.	

All	

4	 Do	 not	 use	 features	 explicitly	 identified	 as	 unsafe	
(including	Unchecked_Conversion,	mixed-language	
programming,	and	pragma	Assume)	unless	absolutely	
necessary	and	then	with	extreme	caution.	

6.53	[SKL],	6.14	[XYK],6.37	
[AMV],6.47	[DJS],6.52	[MXB]		

5	 Use	the	type	system	of	SPARK	and	contracts	(including	
preconditions,	 postconditions,	 assertions,	 subtype	
predicates	and	type	invariants)	to	specify	and	enforce	
constraints	on	data	and	formal	parameters.	

6.2	[IHN],	6.32	[CSJ],	6.34	
[OTR],	6.44	[BKK],	6.46	[TRJ]	

6	 Document	 all	 implementation-defined	behaviour	 that	
an	 application	 depends	 on,	 and	 verify	 that	 the	
behaviour	 implemented	 by	 a	 compiler	 matches	 that	
expected	or	assumed	by	a	SPARK	Analyzer.	

6.57	[FAB]	

7	 Use	pragma	Restrictions	to	prevent	the	use	of	language	
features	 not	 required	 by	 an	 application	 (for	 example	
recursion,	 tasking	or	 floating	point	 types),	 to	prevent	
unspecified	 behaviour,	 and	 to	 prevent	 the	 use	 of	
specific	attributes	and	predefined	packages.	

6.35	[GDL],	6.37	[AMV],	6.53	
[SKL],	6.55	[BQF]	

8	 Use	 the	 ‘Valid	 attribute	 to	check	 the	value	returned	
from	 any	 call	 to	 Unchecked_Conversion	 or	 any	
value	returned	from	non-SPARK	code.	

6.37	[AMV],	6.47	[DJS]	

9	 Whenever	possible,	use	the	attributes	'First,	'Last,	
and	 'Range	 for	 loop	 termination.	 If	 the	 'Length	
attribute	must	be	used,	then	extra	care	should	be	taken	
to	 ensure	 that	 the	 length	 expression	 considers	 the	
starting	index	value	for	the	array.	

6.29	[TEX],	6.30	[XZH]	

10	 Use	SPARK's	support	for	whole-array	operations,	such	
as	for	assignment	and	comparison,	plus	aggregates	for	
whole-array	 initialization,	 to	 reduce	 the	 use	 of	
indexing.

6.9	[XYZ],	6.10	[XYW],	6.30	
[XZH]	

11	 For	case	statements,	case	expressions,	and	aggregates,	
do	not	use	the	others	choice.

6.5	[CCB],	6.27	[CLL]	

Table 5-1 Most relevant avoidance mechanisms to be used to prevent vulnerabilities

	

©	ISO/IEC	2021	–	All	rights	reserved	 18	
	

	
As	 stated	above,	every	guidance	provided	 in	 this	clause,	 and	 in	 the	corresponding	Part	6	
clause,	 is	 supported	 by	 material	 in	 clause	 6	 of	 this	 document.	 Clause	 6	 subclauses	 also	
contain	other	important	recommendations.	
	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 19	
	

6.	Specific	guidance	for	SPARK	vulnerabilities	

6.1	General		

This	clause	contains	specific	advice	for	SPARK	about	the	possible	presence	of	vulnerabilities	
as	described	in	ISO/IEC	24772-1	and	provides	specific	guidance	on	how	to	avoid	them	in	
SPARK	code.	This	clause	mirrors	ISO/IEC	24772-1	clause	6	in	that	the	vulnerability	“Type	
System	[IHN]”	is	found	in	6.2	of	ISO/IEC	24772–1,	and	SPARK	specific	guidance	is	found	in	
subclause	6.2	and	subclauses	in	this	document.		
	
For	the	remainder	of	this	clause	6,	the	following	assumptions	apply:	
	

• A	user	applies	a	SPARK	Analyzer	(in	addition	to	a	compiler)	and	has	the	necessary	skills	and	
expertise	to	understand	and	act	on	its	output.	

• A	SPARK	Analyzer	is	used	that	implements	the	mandatory	analyses	required	by	the	SPARK	
language	design,	including	all	of	those	analyses	listed	in	clause	4.	

• Unsafe	programming	and,	and	 in	particular	the	use	of	Unchecked_Conversion	and	pragma	
Assume,	is	not	used.	The	use	of	unsafe	programming	techniques	subverts	the	prevention	of	
many	classes	of	vulnerability,	so	must	be	strictly	controlled.	

6.2	Type	system	[IHN]	

6.2.1	Applicability	to	language				
The	 vulnerability	 as	 described	 in	 ISO/IEC	 24772-1	 subclause	 6.2	 is	mitigated	 by	 SPARK,	
because	SPARK	is	designed	to	offer	strong,	and	wholly	static	type	safety.	
	
A	design	goal	of	SPARK	is	the	provision	of	strong	static	type	safety,	meaning	that	programs	
can	be	shown	to	be	free	from	all	run-time	type	failures	using	entirely	static	analysis.	This	
depth	 of	 verification	 is	mandatory	 in	 SPARK.	 Even	 so,	 verification	 of	 type	 safety	 can	 be	
confounded	in	the	following	ways:	
	

• The	use	of	unsafe	programming	techniques,	specifically	the	use	of	Unchecked_Conversion	
and	pragma Assume,	 can	 introduce	vulnerabilities	 that	will	not	always	be	detected	by	a	
SPARK	Analyzer.	See	subclause	6.37	Type-breaking	reinterpretation	of	data	[AMV].	

• Mixed	language	programming	can	defeat	the	type	system	of	a	SPARK	program.	See	subclause	
6.47	Inter-language	calling	[DJS].	

• A	SPARK	Analyzer	may	not	be	able	to	verify	all	the	type	safety	checks,	although	these	failed	
verifications	may	be	false	alarms.	

• A	program	which	fails	full	type	safety	verification	with	a	SPARK	Analyzer	may	nonetheless	
still	be	a	legal	Ada	program,	and	so	can	still	be	compiled,	linked,	and	deployed.	

• A	 SPARK-Analyzer	 will	 not	 detect	 lacking	 or	 inappropriate	 uses	 of	 the	 type	 system,	 for	
example,	modeling	meters	and	feet	as	subtypes	of	Integer.	

	

	

©	ISO/IEC	2021	–	All	rights	reserved	 20	
	

6.2.2	Guidance	to	language	users	
• Follow	the	guidance	of	ISO/IEC	24772-2	(Ada)	subclause	6.2.2.		
• Use	a	SPARK	Analyzer	to	verify	the	absence	of	runtime	type	errors.
• Document	and	justify	a	process	for	dealing	with	false	alarms	arising	from	static	verification.
• Develop processes and tooling that prevent the compilation and linking of SPARK executables

that do not meet the required depth of static verification.

Note:	SPARK	programs	that	have	been	subject	to	this	depth	of	analysis	can	be	compiled	
with	 run-time	 checks	 suppressed,	 supported	 by	 a	 body	 of	 evidence	 that	 such	 checks	
could	never	fail,	and	thus	removing	the	possibility	of	erroneous	execution.		

6.3	Bit	representations	[STR]				

6.3.1	Applicability	to	language	
In	general,	the	type	system	of	SPARK	mitigates	the	vulnerabilities	outlined	in	subclause	6.3	
of	ISO/IEC	24772-1.	The	vulnerabilities	caused	by	the	inherent	conceptual	complexity	of	bit	
level	programming	are	as	described	in	subclause	6.3	of	ISO/IEC	24772-1.		
	
For	the	traditional	approach	to	bit	level	programming,	SPARK	provides	modular	types	and	
literal	 representations	 in	 arbitrary	 bases	 from	2	 to	 16	 to	 deal	with	 numeric	 entities	 and	
correct	handling	of	the	sign	bit.		
Specifying	a	value	of	1	for	the	Component_Size	aspect	of	an	array-of-Boolean	type	provides	
a	type-safe	way	of	manipulating	bit	strings	and	eliminates	the	use	of	error-prone	arithmetic	
operations.	

6.3.2	Guidance	to	language	users		
Follow	the	guidance	of	ISO/IEC	24772-2	(Ada)	clause	6.3.2		

6.4	Floating-point	arithmetic	[PLF]				

6.4.1	Applicability	to	language	
The	vulnerability	as	described	 in	 ISO/IEC	24772-1	subclause	6.4	applies	 to	SPARK	 in	 the	
same	way	that	it	applies	to	Ada.	See	ISO/IEC	24772-2	subclause	6.4.	
	
Additionally,	 SPARK	 mitigates	 floating-point	 vulnerabilities	 through	 mandatory	 static	
verification	of	type	safety	for	all	floating-point	operations	and	conversions.	

6.4.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.4.5	of	ISO/IEC	24772-1	and	subclause	6.4.2	
of	ISO/IEC	24772-2.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 21	
	

• If	 a	 specific	 compiler	 and	 target	 system	 implement	 a	 particular	 model	 of	 floating-point	
arithmetic,	such	as	ISO/IEC	60559[3],	then	document	any	implementation-defined	choices	
(for	example,	rounding	mode)	made	by	that	implementation.	

• Verify	 and	 document	 that	 the	 SPARK	 Analyzer	 in	 use	 makes	 the	 same	 implementation-
defined	choices	for	verification	as	the	target	compiler	and	run-time	system.	

• Check	the	validity	of	floating-point	values	received	from	another	programming	language	or	
as	inputs	using	the	‘Valid		attribute.	In	particular,	Ada	requires	that	‘Valid	returns	False	
for	bit	patterns	that	do	not	represent	valid	numbers.	

6.5	Enumerator	issues	[CCB]			

6.5.1	Applicability	to	language	
The	 vulnerability	 as	 described	 in	 ISO/IEC	 24772-1	 subclause	 6.5	 is	mitigated	 by	 SPARK,	
because	SPARK	requires	mandatory	verification	of	type	safety	for	enumeration	types,	and	
through	SPARK’s	restrictions	on	the	use	of	Unchecked_Conversion.	
	
The	 vulnerability	 of	 unexpected	 but	well-defined	 program	 behaviour	 upon	 extending	 an	
enumeration	type	exists	in	SPARK.	In	particular,	subranges	or	others	choices	in	aggregates	
and	case	statements	are	susceptible	to	unintentionally	capturing	newly	added	enumeration	
values.	
	
Vulnerabilities	relating	to	the	use	of	non-standard	representation	clauses	with	enumeration	
types	do	not	apply	to	SPARK,	since	the	semantics	of	enumerations	in	SPARK	are	independent	
of	representation	values.	
	
Vulnerabilities	 relating	 to	Unchecked_Conversion	 of	 enumeration	 types	 do	 not	 apply	 to	
SPARK,	since	SPARK	limits	the	use	of	Unchecked_Conversion	to	types	which	have	exactly	
the	same	number	of	valid	values	[SRM	13.9].

6.5.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.5.5	of	ISO/IEC	24772-1	and	subclause	

6.5.2	of	ISO/IEC	24772-2.	

6.6	Conversion	errors	[FLC]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.6	does	not	apply	to	SPARK,	
because	SPARK	requires	mandatory	static	verification	of	type	safety	for	all	conversions.	

	

	

©	ISO/IEC	2021	–	All	rights	reserved	 22	
	

6.7	String	termination	[CJM]	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.7	does	not	apply	to	SPARK,	
because	strings	are	not	delimited	by	a	termination	character.	SPARK	programs	that	interface	
to	 any	 languages	 that	 use	 null-terminated	 strings	 and	 manipulate	 such	 strings	 directly	
should	apply	the	vulnerability	mitigations	recommended	for	that	language.	

6.8	Buffer	boundary	violation	[HCB]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.8	does	not	apply	to	SPARK	
(see	6.9	Unchecked	array	indexing	[XYZ]	and	6.10	Unchecked	array	copying	[XYW]).	

6.9	Unchecked	array	indexing	[XYZ]		

6.9.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.9	does	not	apply	to	SPARK,	
because	SPARK	requires	mandatory	static	verification	of	type	safety	for	all	array	indexing	
operations.	

6.9.2	Guidance	to	language	users	
Use	SPARK’s	support	for	whole	array	operations,	such	as	assignment	and	comparison,	plus	
aggregates	for	whole-array	initialization,	to	reduce	the	use	of	indexing.		

6.10	Unchecked	array	copying	[XYW]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.10	does	not	apply	to	SPARK,	
because	SPARK	requires	mandatory	static	analysis	verification	that	both	the	source	and	the	
target	of	an	array	assignment	have	matching	lengths.	

6.11	Pointer	type	conversions	[HFC]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.11	does	not	apply	to	SPARK,	
because	SPARK	forbids	type	conversion	of	access	values.	

6.12	Pointer	arithmetic	[RVG]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.12	does	not	apply	to	SPARK,	
because	SPARK	forbids	pointer	arithmetic.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 23	
	

6.13	NULL	pointer	dereference	[XYH]			

6.13.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.13	does	not	apply	to	SPARK,	
because	 SPARK	 requires	 mandatory	 static	 verification	 that	 a	 null	 value	 can	 never	 be	
dereferenced.		

6.13.2	Guidance	to	language	users	
Use	non-null	access	types	where	possible	since	it	simplifies	verification.	

6.14	Dangling	reference	to	heap	[XYK]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.14	does	not	apply	to	SPARK,	
because	 SPARK	 requires	mandatory	 static	 verification	 of	 ownership	 of	 access	 values.	 In	
particular:	

• SPARK’s	ownership	model	for	access	values,	and	transfer	of	that	ownership	on	assignments,	
mean	that	dangling	access	values	cannot	exist.	

• Allocated	memory	must	be	deallocated	before	its	owner	goes	out	of	scope.	Failure	to	do	so	
will	be	reported	by	the	static	analysis	tool	as	a	memory	leak.	

• Access	 values	 cannot	 be	 communicated	 between	 tasks	 owing	 to	 SPARK’s	 ownership	 and	
volatility	rules.	

6.15	Arithmetic	wrap-around	error	[FIF]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.15	does	not	apply	to	SPARK,	
because:	

• Modular	integer	types	exhibit	modular	arithmetic,	which	is	well-defined	in	all	circumstances,	
and	can	never	generate	an	unexpected	value,	a	negative	value,	or	an	exception.	

• Arithmetic	for	signed	integer	types	never	exhibits	wrap-around,	and	is	subject	to	mandatory	
static	verification	of	type	safety	in	SPARK.	

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.16	does	not	apply	to	SPARK,	
because:	

• Shift	 operations	 are	 limited	 to	 the	 modular	 types	 declared	 in	 the	 predefined	 package	
Interfaces.	

• Modular	types	do	not	permit	negative	values.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 24	
	

6.17	Choice	of	clear	names	[NAI]				

6.17.1	Applicability	to	language	
The	vulnerability	as	described	 in	 ISO/IEC	24772-1	subclause	6.17	applies	 to	SPARK.	This	
vulnerability	does	not	address	overloading,	which	is	covered	in	6.20	Identifier	name	reuse	
[YOW].	
	
There	 are	 two	 possible	 issues:	 the	 use	 of	 the	 identical	 name	 for	 different	 purposes	
(overloading)	and	the	use	of	similar	names	for	different	purposes.	
	
ISO/IEC	24772-1	documents	the	risk	of	confusion	by	the	use	of	similar	names	that	can	occur	
through:	

• Mixed	 casing.	 This	 is	 not	 an	 issue	 since	 SPARK	 treats	 upper-case	 and	 lower-case	
letters	 in	names	as	 identical.	Confusion	 for	 the	programmer	may	arise	 through	an	
attempt	to	use	Item	and	ITEM	as	distinct	identifiers	with	different	meanings,	but	the	
language	system	and	strong	type	checking	will	verify	appropriate	and	correct	usage.	

• Underscores	and	periods.		
o Underscores.	 SPARK	 permits	 single	 underscores	 in	 identifiers	 and	 they	 are	

significant.	Thus,	BigDog	and	Big_Dog	are	different	identifiers	and	the	language	
system	 and	 strong	 type	 checking	 will	 ensure	 appropriate	 and	 correct	 usage.	
Multiple	 underscores	 (which	 might	 be	 confused	 with	 a	 single	 underscore),	
leading	underscores,	and	trailing	underscores	are	forbidden.		

o Periods	(that	is	punctuation	stops).	Periods	in	SPARK	denote	substructures	and	
hence	are	meaningful.	

• Singular/plural	forms.	SPARK	permits	the	use	of	identifiers	which	differ	solely	in	this	
manner	 such	 as	 Item	 and	 Items.	 The	 programmer	may	 create	 plural	 and	 singular	
forms	to	identify	single	items	or	collections,	and	the	language	system	and	strong	type	
checking	will	ensure	appropriate	and	correct	usage.	

• International	 character	 sets.	 SPARK	 strictly	 conforms	 to	 the	 appropriate	
International	Standard	for	character	sets.	

• Identifier	 length.	 All	 characters	 in	 an	 identifier	 in	 SPARK	 are	 significant	 and	 an	
identifier	cannot	be	split	over	the	end	of	a	line.	The	only	restriction	on	the	length	of	
an	identifier	is	that	enforced	by	the	line	length	and	this	is	guaranteed	by	the	language	
standard	to	be	no	less	than	200.	

SPARK	permits	 the	use	of	names	 such	as	X,	XX,	 and	XXX	 (which	might	all	be	declared	as	
integers)	 and	 a	 programmer	 could	 easily,	 by	 mistake,	 write	 XX	 where	 X	 (or	 XXX)	 was	
intended.	SPARK	does	not	attempt	to	catch	such	errors	unless	the	developer:	

a. Declares	 such	 similar	 names	 to	 have	 different	 types	 in	 which	 case	 the	 type	 system	 will	
guarantee	safe	usage;	or	

b. Creates	 contracts	 that	 define	 the	 functional	 behaviour	 of	 the	 code	 module	 and	 uses	 the	
analysis	and	proof	tools	to	verify	correct	usage.	

	

	

©	ISO/IEC	2021	–	All	rights	reserved	 25	
	

6.17.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.17.5	of	ISO/IEC	24772-1.	
• Avoid	the	use	of	similar	names	to	denote	different	objects	of	the	same	type.		
• Adopt	a	project	convention	for	dealing	with	similar	names.	

6.18	Dead	store	[WXQ]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.18	does	not	apply	to	SPARK,	
because	SPARK	requires	mandatory	static	verification	of	information	flow	which	detects	and	
reports	all	dead	stores.	Additionally,	SPARK	requires	variables	that	are	used	for	output	to	
the	environment,	where	multiple	writes	 to	a	variable	without	 intervening	reads	could	be	
confused	as	dead	store,	to	be	specifically	identified	as	having	external	effects	through	the	use	
of	volatile.	In	this	case,	the	information	flow	analysis	for	such	variables	is	modified	since	it	
is	known	that	consecutive	writes	to	such	variables	might	not	constitute	a	dead	store.	

6.19	Unused	variable	[YZS]			

6.19.1	Applicability	to	language	
The	vulnerability	as	described	 in	 ISO/IEC	24772-1	subclause	6.19	 is	mitigated	by	SPARK	
analyzers	 which	 identify	 unreferenced	 variable	 declarations	 and	 ineffective	 formal	
parameters	of	subprograms.	

6.19.2	Guidance	to	language	users	
Apply	a	SPARK	Analyzer	to	verify	the	absence	of	unused	variables	and	parameters	and	take	
appropriate	action	to	remove	or	justify	any	discovered	issues.	

6.20	Identifier	name	reuse	[YOW]		

6.20.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.20	is	mitigated	by	SPARK.	
	
SPARK	permits	local	scope,	and	names	within	nested	scopes,	including	declarative	items	in	
for	loops.	Local	names	can	hide	identical	names	declared	in	an	outer	scope	if	the	two	objects	
have	the	same	or	compatible	type.	As	such	it	is	susceptible	to	the	vulnerability	described	in	
ISO/IEC	 24772-1	 subclause	 6.20.	 For	 subprograms	 and	 other	 overloaded	 entities,	 the	
problem	is	reduced	by	the	fact	that	potential	hiding	also	takes	the	signatures	of	the	entities	
into	account.	Entities	with	different	signatures	do	not	hide	each	other.	
	
Name	collisions	with	keywords	cannot	happen	in	SPARK	since	keywords	are	reserved.	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 26	
	

The	mechanism	of	failure	identified	in	subclause	6.20.3	of	ISO/IEC	24772-1	regarding	the	
declaration	of	non-unique	identifiers	in	the	same	scope	cannot	occur	in	SPARK	because	all	
characters	in	an	identifier	are	significant.	

6.20.2	Guidance	to	language	users	
Follow	the	mitigation	mechanisms	of	subclause	6.20.5	of	ISO/IEC	24772-2	(Ada).	

6.21	Namespace	issues	[BJL]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.21.	does	not	apply	to	SPARK,	
because	 the	 language	does	not	attempt	 to	disambiguate	conflicting	names	 imported	 from	
different	packages.	Use	of	a	name	with	conflicting	imported	declarations	causes	a	compile	
time	error.	The	programmer	disambiguates	such	conflicts	by	using	an	expanded	name	that	
identifies	the	exporting	package.	

6.22	Initialization	of	variables	[LAV]			

The	vulnerability	 as	described	 in	 ISO/IEC	24772-1	 subclause	6.22	does	not	 apply	within	
SPARK,	 because	 SPARK	 requires	mandatory	 static	 verification	 of	 information	 flow	which	
ensures	the	presence	of	initialization	before	use.	Additionally,	in	SPARK	a	variable	must		
be	initialized	with	a	value	which	is	legal	for	its	type	and	subtype	(if	any).	However,	variables	
that	are	declared	to	be	external	are	assumed	to	be	initialized	externally.	Such	assumptions	
need	to	be	verified	outside	of	the	SPARK	programming	environment.	

6.23	Operator	precedence	and	associativity	[JCW]			

6.23.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.23	is	mitigated	by	SPARK.	
	
Since	 this	 vulnerability	 is	 about	 “incorrect	 beliefs”	 of	 programmers,	 there	 is	 no	 way	 to	
establish	a	limit	to	how	far	incorrect	beliefs	can	go.	However,	SPARK	is	less	susceptible	to	
that	vulnerability	than	many	other	languages,	since	

• There	are	six	 levels	of	precedence,	and	associativity	 is	close	 to	common	expectations.	For	
example,	an	expression	like	A = B or	C = D	will	be	parsed	as	expected,	as	(A = B) or (C
= D).	

• Mixed	logical	operators	are	not	allowed	without	parentheses,	for	example,	“A or B or C”	is	
valid,	as	well	as	“A and B and C”,	but	“A and B or C”	is	not;	the	user	must	write	“(A and
B) or C”	or	“A and (B or C)”.	

• Assignment	is	not	an	operator.	
• Bitwise	operators	can	only	apply	to	variables	of	modular	type.	Moreover,	the	result	of	binary	

comparison	 operators	 (<,	 <=,	 >,	 >=,	 =,	 /=)	 is	 of	 type	 Boolean,	 and	 predefined	 binary	
comparison	 operators	 cannot	 be	 used	 on	 expressions	 involving	 two	 different	 types.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 27	
	

Therefore,	 the	 related	 examples	 of	 ISO/IEC	 24772-1:2019	 clause	 6.23.3	 will	 result	 in	
compilation	errors	due	to	type	mismatches	in	SPARK.	

6.23.2	Guidance	to	language	users	
• Follow	the	guidance	provided	in	ISO/IEC	24772-1	subclause	6.23.5	
• Use	parentheses	whenever	arithmetic	operators,	logical	operators,	mixed	logical	operators	

such	as	“and”	and	“and then”	and	shift	operators	are	mixed	in	an	expression.	
• Create	contracts	that	specify	the	expressions	in	mathematical	terms	and	verify	using	a	SPARK	

Analyzer.	

6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]				

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.24	does	not	apply	to	SPARK,	
because	

• SPARK	does	not	include	operators	that	have	side-effects.	
• In	SPARK,	all	functions	except	volatile	functions	(and	hence	function	calls)	are	free	from	side-

effects.	Note	that	functions	which	access	volatile	data	are	themselves	volatile	and	must	be	
declared	with	the	Volatile	aspect.	SPARK	has	rules	that	constrain	the	use	of	volatile	data	and	
volatile	functions	such	that	they	cannot	cause	unspecified	or	undefined	behaviour.	

• Assignment	is	a	statement,	not	an	expression.	
• In	 SPARK,	 expression	 evaluation	 order	 is	 unspecified,	 but	 the	 language	 design	 requires	

mandatory	 static	 verification	 that,	 for	 any	 possible	 evaluation	 order,	 all	 intermediate	
expressions	 are	 type	 safe,	 and	 the	 expression	yields	 the	 same	 result,	 except	 for	 rounding	
errors	of	floating-point	arithmetic.

6.25	Likely	incorrect	expression	[KOA]		

6.25.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.25	is	mitigated	by	SPARK.	
	
An	instance	of	this	vulnerability	consists	of	two	syntactically	similar	constructs	such	that	the	
inadvertent	substitution	of	one	for	the	other	may	result	in	a	program	which	is	accepted	by	
the	compiler	but	does	not	reflect	the	intent	of	the	author.	
	
The	examples	given	in	subclause	6.25	of	ISO/IEC	24772-1	do	not	apply	to	SPARK	because	of	
strong	typing	and	because	an	assignment	is	not	an	expression	in	SPARK.	
	
In	SPARK,	a	type-conversion	and	a	qualified	expression	are	syntactically	similar,	differing	
only	in	the	presence	or	absence	of	a	single	character:	
	

	Type_Name	(Expression)	--	a	type-conversion	
vs.	
	Type_Name'(Expression)	--	a	qualified	expression	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 28	
	

Typically,	the	inadvertent	substitution	of	one	for	the	other	results	in	either	a	semantically	
incorrect	program	which	is	rejected	by	the	compiler	or	in	a	program	which	behaves	in	the	
same	way	as	if	the	intended	construct	had	been	written.	In	the	case	of	a	constrained	array	
subtype,	the	two	constructs	differ	in	their	treatment	of	sliding	(conversion	of	an	array	value	
with	bounds	100	..	103	to	a	subtype	with	bounds	200	..	203	will	succeed;	qualification	will	
fail	static	verification).	
	
Problems	arising	from	a	failure	to	use	short-circuit	Boolean	forms	are	less	frequent	in	SPARK	
programs	because	static	verification	will	reveal	failure	to	verify	the	right-hand	side	of	such	
an	expression	if	the	successful	evaluation	of	that	expression	depends	on	the	value	of	the	left-
hand	side.	For	example,	if	a	user	correctly	writes:	
	
	 if (A /= null) and then (A.all = 0) then ...

	
then	a	SPARK	analyzer	is	required	to	verify	that	A	cannot	be	null	on	the	right-hand	side,	so	
the	expression	will	evaluate	successfully.	If	the	user	mistakenly	uses	the	non-short-circuit	
form:	
	
	 if (A /= null) and (A.all = 0) then ...

	
then	a	SPARK	Analyzer	will	report	a	potential	null	dereference	on	the	right-hand	side.	
	
6.25.2	Guidance	to	language	users	

Use	short-circuit	Boolean	operators	where	the	expression	on	the	right-hand	side	includes	a	
call	to	a	function	that	has	an	explicit	precondition	or	uses	an	operator	(such	as	division	or	
pointer	dereference)	that	has	an	implicit	precondition,	and	establish	that	precondition	on	
the	left-hand	side.	
	

6.26	Dead	and	deactivated	code	[XYQ]			

6.26.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.26	is	mitigated	by	SPARK.	
	
Although	 it	 is	 not	 strictly	 required	 by	 the	 language	 design,	 a	 SPARK	Analyzer	may	 offer	
facilities	to	detect	dead	code	through	static	verification:	

• A	dead	path	in	a	subprogram	can	be	detected	because	the	logical	condition	that	guarantees	
its	execution	is	equivalent	to	“False”.	

• Analysis	of	the	“closure”	of	a	complete	program	partition	can	reveal	subprograms	that	are	
never	called	and/or	packages	and	other	entities	that	are	never	referenced.	

6.26.2	Guidance	to	language	users	
Follow	the	mitigation	mechanisms	of	subclause	6.26.5	of	ISO/IEC	24772-2	(Ada).

	

©	ISO/IEC	2021	–	All	rights	reserved	 29	
	

6.27	Switch	statements	and	static	analysis	[CLL]			

6.27.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.27	 is	mitigated	by	SPARK,	
which	requires	that	a	case	statement	provides	exactly	one	alternative	for	each	value	of	the	
expression's	subtype.	The	others	clause	may	be	used	as	the	last	choice	of	a	case	statement	to	
capture	 any	 remaining	 values	 of	 the	 case	 expression	 type	 that	 are	 not	 covered	 by	 the	
preceding	case	choices.	Control	does	not	flow	from	one	alternative	to	the	next.	Upon	reaching	
the	end	of	an	alternative,	control	is	transferred	to	the	end	of	the	case	statement.		
	
The	sole	remaining	vulnerability	 is	 that	unexpected	values	can	be	captured	by	the	others	
clause	or	a	subrange	as	case	choice.	The	introduction	of	additional	values	may	have	been	
intended	 to	 have	 their	 own	 case	 alternatives	 but	 instead	 fall	 into	 the	 others	 category.	
Likewise,	the	inclusion	(say,	during	maintenance)	of	an	additional	value	(such	as	by	adding	
an	 enumeration	 value	 to	 an	 enumeration	 type),	 can	 unintentionally	 be	 matched	 by	 an	
existing	range	of	the	case	statement	choices.	

6.27.2	Guidance	to	language	users	

• For	case	statements	and	aggregates,	avoid	the	use	of	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	

have	been	added	anywhere.	
• When	adding	enumeration	values	to	an	enumeration	type,	review	all	of	the	places	where	if	

statements	or	case	choices	are	used	to	ensure	that	the	position	of	the	added	value	does	not	
create	logic	errors.	

6.28	Demarcation	of	control	flow	[EOJ]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.28	does	not	apply	to	SPARK,	
because	SPARK	enforces	a	clear	demarcation	of	all	branching	control	flows,	 if	statements,	
case	statements,	loops,	and	blocks.	

6.29	Loop	control	variables	[TEX]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.29	does	not	apply	to	SPARK,	
because	“for”	loops	in	SPARK	define	a	loop	control	variable	that	has	a	constant	view	in	the	
loop	body	and	cannot	be	modified	by	the	sequence	of	statements	therein.	
	
For	more	general	loops,	SPARK	provides	the	pragma Loop_Variant	annotation	that	can	be	
used	in	the	verification	of	loop	termination	for	general	loops	in	simple	cases.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 30	
	

6.30	Off-by-one	error	[XZH]			

6.30.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.30	 is	mitigated	by	SPARK,	
because	even	though	SPARK	permits	the	use	of	cardinal	numbers	for	indexing	arrays	and	
loops,	 SPARK	 provides	 alternative	 syntax	 which,	 when	 used	 dramatically	 reduces	 the	
occurrence	of	such	errors.	

Mitigating the confusion between the need for < and <= or > and >= in a test.
A	SPARK	for	loop	does	not	require	the	programmer	to	specify	a	conditional	test	for	loop	
termination.	Instead,	the	starting	and	ending	value	of	the	loop	can	be	specified	(in	terms	
of	using	a	subrange	expression)	to	define	the	object	being	iterated	over	or	using	‘First	
and	‘Last	to	eliminate	this	source	of	off-by-one	errors.	SPARK	also	provides	special	for	
loop	structures	that	iterate	through	an	entire	array	or	container.	These	avoid	the	need	
to	specify	any	bounds	for	the	iteration.		
	
A	while	loop,	however,	 lets	the	programmer	specify	the	loop	termination	expression,	
which	could	be	susceptible	to	an	off-by-one	error.	Any	off-by-one	error	that	gives	rise	to	
the	potential	for	a	buffer-overflow,	range	violation,	or	any	other	construct	that	could	give	
rise	to	a	predefined	exception,	will	be	prevented	by	mandatory	static	verification	of	type	
safety	in	SPARK.	

Mitigating the confusion as to the index range of an algorithm.
Although	there	are	language	defined	attributes	to	symbolically	reference	the	start	and	
end	 values	 for	 a	 loop	 iteration,	 SPARK	 allows	 the	 use	 of	 explicit	 values	 and	 loop	
termination	tests.	Off-by-one	errors	can	result	in	these	circumstances.	
Care	 should	 be	 taken	 when	 using	 the	 'Length	 attribute	 in	 the	 loop	 termination	
expression.	 The	 expression	 should	 generally	 be	 relative	 to	 the	 'First	 value.	 The	
mitigation	is	provided	by	the	SPARK	analyzer	which	prevents	any	off-by-one	error	that	
give	rise	to	a	type-safety	vulnerability.	

	
SPARK	does	not	use	 sentinel	 values	 to	 terminate	 arrays	 (such	 as	 strings).	 Therefore,	 the	
vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.30	related	to	space	required	for	
implicit	sentinel	values	does	not	apply	to	SPARK.	

6.30.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.30.5	of	ISO/IEC	24772-1.	
• Whenever	possible,	use	a	for	loop	instead	of	a	while	loop.	
• Whenever	possible,	use	the	form	of	iteration	that	takes	the	name	of	the	array	or	container	

and	nothing	more.	
• When	 indices	 are	 necessary,	 use	 the	 'First,	 'Last,	 and	 'Range	 attributes	 for	 loop	

termination,	for	example	for I in My_Array'Range loop….

	

©	ISO/IEC	2021	–	All	rights	reserved	 31	
	

• If	 the	'Length	 attribute	must	 be	 used,	 ensure	 that	 the	 index	 computation	 considers	 the	
starting	index	value	for	the	array.	

6.31	Unstructured	programming	[EWD]			

6.31.1	Applicability	to	language	

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.31	 is	mitigated	by	SPARK,	
because	SPARK	forbids	some	control-flow	statements,	such	as	goto	and	exception	handlers,	
and	does	not	provide	non-local	jumps	or	subprograms	with	multiple	entries.	
	
SPARK	programs	can	exhibit	some	of	the	vulnerabilities	noted	in	subclause	6.31	of	ISO/IEC	
24772-1:	leaving	a	loop	at	an	arbitrary	point,	and	multiple	exit	points	from	subprograms,	
but	these	are	mitigated	by	mandatory	static	verification	of	control-	and	information-flow.	
	

6.31.2	Guidance	to	language	users	
Follow	the	mitigation	mechanisms	of	subclause	6.31.5	of	ISO/IEC	24772-1.	

6.32	Passing	parameters	and	return	values	[CSJ]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.32	does	not	apply	to	SPARK,	
because.	The	vulnerability	is	prevented	by	the	following	language	concepts:	

• SPARK	uses	parameter	modes	in, out and in out	 to	specify	the	desired	direction	of	
information	flow	for	each	formal	parameter	of	a	subprogram.	

• Function	calls	in	SPARK	are	expressions	that	never	have	a	side-effect	as	long	as	they	do	not	
access	volatile	variables.	

• SPARK	 allows	 the	 programmer	 to	 specify	 a	 Global	 Contract	 for	 each	 subprogram	 that	
specifies	exactly	the	global	variables	(and	their	modes)	that	are	accessed	by	that	subprogram.	
If	it	is	given,	the	Global	Contract	is	verified	by	static	verification,	otherwise	it	is	derived	by	an	
analysis	of	the	unit	body	and	all	called	units.	

• SPARK	requires	mandatory	static	verification	of	the	absence	of	aliasing	[SRM	6.4.2]	between	
actual	parameters	and	global	variables	at	each	procedure	call	statement.	This	means	that	the	
semantics	of	a	procedure	call	cannot	include	aliasing	effects	as	described	in	ISO/IEC	24772-
1	subclause	6.32.	

• Function	calls	in	SPARK	are	expressions	that	never	have	a	side-effect	as	long	as	they	do	not	
access	volatile	variables.	There	are	no	checks	required	against	aliasing	in	the	set	of	actual	
parameters	and	globals,	since	in	(non-volatile)	functions	the	assignments	necessary	to	cause	
aliasing	effects	are	disallowed	in	order	to	disable	side-effects.		

• In	volatile	functions,	volatile	actual	parameters	can	be	aliased	to	each	other	or	to	a	global	of	
the	function.	Volatile	actuals	are	passed	by	reference	to	formals	of	volatile	type	and	hence	the	
formal	parameters	are	subject	 to	aliasing.	A	concurrent	external	assignment	 to	one	of	 the	
volatile	aliases	causes	an	aliasing	effect	on	all	 its	other	aliases.	However,	 the	code	already	
needs	to	deal	with	asynchronous	value	changes	of	any	volatile	variable,	hence	it	matters	little	
whether	the	value	change	is	by	a	manifest	external	assignment	or	by	an	aliasing	effect	thereof.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 32	
	

• SPARK	requires	static	verification	of	information	flow	to	verify	that	the	value	returned	from	
a	function	call	is	never	ignored.

6.33	Dangling	references	to	stack	frames	[DCM]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.33	does	not	apply	to	SPARK,	
because	SPARK	forbids	the	use	of	the	‘Address,	‘Access	and	‘Unchecked_Access	attributes,	so	
an	 access	 value	 or	 address	 values	 that	 denotes	 a	 stack-allocated	 object	 can	 never	 be	
generated.	

6.34	Subprogram	signature	mismatch	[OTR]			

6.34.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.34	does	not	apply	to	SPARK	
except	for	the	case	of	calls	to/from	subprograms	where	the	other	side	is	a	foreign	language.		
	
In	all	other	cases,	the	parameter	association	is	checked	at	compilation	time	to	ensure	that	
the	type	of	each	actual	parameter	matches	the	type	of	the	corresponding	formal	parameter.	
In	 addition,	 the	 formal	 parameter	 specification	 may	 include	 default	 expressions	 for	 a	
parameter.	 Hence,	 a	 procedure	 call	 may	 be	 constructed	 with	 some	 actual	 parameters	
missing.	In	this	case,	if	there	is	a	default	expression	for	the	missing	parameter,	then	the	call	
will	be	compiled	without	any	errors.	If	no	default	expression	exists	for	missing	parameters,	
then	a	compilation	error	is	generated.	

6.34.2	Guidance	to	language	users	

For	 calls	 to/from	 subprograms	 written	 in	 a	 foreign	 language,	 follow	 the	 mitigation	
mechanisms	of	ISO/IEC	24772-2	clause	6.34.2.		

6.35	Recursion	[GDL]		

6.35.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.35	is	mitigated	by	SPARK.	
	
SPARK	 permits	 recursion.	 The	 exception	 Storage_Error	 is	 raised	 when	 the	 recurring	
execution	results	in	insufficient	storage.	This	will	result	in	program	termination	unless	an	
exception	 handler	 is	 placed	 outside	 the	 SPARK	 portion	 of	 the	 program	 to	 handle	 the	
exception.	For	vulnerabilities	relating	to	unhandled	exceptions,	see	subclause	6.36	Ignored	
error	status	and	unhandled	exceptions	[OYB]	
SPARK	 is	 designed	 to	 be	 amenable	 to	 static	 analysis	 of	 worst-case	 stack	 usage.	 In	 the	
presence	 of	 recursion,	 a	 programmer	may	 have	 to	 supply	 additional	 information	 to	 the	
analysis	 tool	 to	 bound	 the	 depth	 of	 recursion,	 and	 therefore	memory	 consumption.	 The	
assertion	aspect	Subprogram_Variant	can	be	applied	to	recursive	subprograms	to	specify	a	

	

©	ISO/IEC	2021	–	All	rights	reserved	 33	
	

monotonically	increasing	or	decreasing	expression	that	assists	in	verifying	the	termination	
of	the	recursion.		
The	aspect	Restrictions (No_Recursion)	does not	enforce	 the	absence	of	 recursion;	 it	
merely	renders	the	program	erroneous	if	it	executes	any	recursive	call.	

6.35.2	Guidance	to	language	users	
• Apply	the	guidance	described	in	ISO/IEC	24772-1	subclause	6.35.5.	
• Use	static	analysis	to	verify	worst-case	stack	usage.	
• Assist	 the	termination	proofs	 for	recursive	subprograms	by	means	of	 the	assertion	aspect	

Subprogram_Variant.	
• Do	not	apply	the	restriction	No_Recursion to	eliminate	this	vulnerability.	

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]		

6.36.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.36	is	mitigated	by	SPARK.	
	
SPARK	 permits	 the	 declaration	 of	 exceptions,	 and	 the	 execution	 of	 the	 raise	 statement.	
SPARK	does	not	permit	exception	handlers,	which	means	that	all	SPARK	programs	must	be	
verified	 to	 be	 free	 of	 all	 predefined	 and	 user	 defined	 exceptions.	 Note	 however,	 that	
exception	handlers	can	be	declared	in	parts	of	the	program	explicitly	excluded	from	a	SPARK	
analyzer,	for	example	in	the	main	subprogram	to	handle	exceptions	generated	by	hardware	
faults	and	to	handle	program	termination	or	restart.	
	
The	’Valid	attribute	can	be	used	to	check	the	result	of	Unchecked_Conversion		or	a	value	
read	from	an	external	device,	and	to	handle	resulting	error	conditions	by	explicit	code	such	
as	an	if	statement.	
	
SPARK	checks	that	assignments	to	formal	in out	parameters	and	out	parameters	are	not	
ineffective	assignments,	and	that	function	returns	are	subsequently	read	(See	6.19	Unused	
variable	[YZS]).	Therefore,	it	is	guaranteed	that	error	codes	returned	via	a	formal	parameter	
or	as	a	result	are	inspected.	
	

6.36.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.36.5	of	ISO/IEC	24772-1.	
• Use	a	SPARK	Analyzer	to	verify	the	absence	of	exceptions	raised	by	predefined	checks.	
• Use	a	SPARK	Analyzer	to	verify	that	user-defined	exceptions	can	never	be	raised.	
• Use	the	result	of	the	'Valid	attribute	to	check	for	the	validity	of	values	delivered	to	a	SPARK	

program	from	an	external	device	or	from	Unchecked_Conversion	prior	to	use	and	explicitly	
handle	both	True	and	False	cases.	

• Consider	placing	a	top-level	exception	handler	in	the	main	program	(external	to	SPARK)	and	
in	each	task	so	that	recovery	or	notification	of	failure	can	be	performed.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 34	
	

6.37	Type-breaking	reinterpretation	of	data	[AMV]			

6.37.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.37	does	not	apply	to	SPARK,	
except	in	the	case	of	easily	identifiable	unsafe	programming.	Even	in	those	circumstances,	
SPARK	mitigates	the	resulting	vulnerabilities	as	follows:	
	
SPARK	 permits	 the	 instantiation	 and	 use	 of	 Unchecked_Conversion	 as	 in	 Ada,	 but	 limits	
instantiation	for	a	source	type	S	and	a	target	type	T	as	follows:	

• Neither	S	nor	T	or	any	component	thereof	is	of	a	limited	type,	a	tagged	type,	an	access	type,	
or	subject	to	a	predicate	or	type	invariant.	

• The	number	of	valid	values	for	S	must	be	equal	to	2**(S’Object_Size),	and	
• The	number	of	valid	values	for	T	must	be	equal	to	2**(T’Object_Size)	,and	
• S’Object_Size is	 equal	 to	 T’Object_Size,	 so	 (by	 implication	 from	 the	 above),	 the	

number	of	valid	values	for	S	and	T	is	the	same.	
Note	that	these	rules	exclude	all	 floating-point	types,	since	NaN is	not	considered	a	valid	
value.	Array	and	record	types	can	be	used	in	an	instantiation	of	Unchecked_Conversion	 if	
they	meet	 the	requirements	above,	with	the	number	of	valid	values	determined	 from	the	
types	of	the	fields	and	component	types.	
	
Hence,	a	call	to	a	legal	instantiation	of Unchecked_Conversion	cannot	generate	an	invalid	
value	 in	 SPARK.	 For	 example,	 converting	 Interfaces.Integer_16	 onto	
Interfaces.Unsigned_16	 is	 permitted,	 since	 their	 ‘Object_Size	 attribute	 is	 16	 in	 both	
cases,	 and	 both	 have	 exactly	 216	 valid	 values.	 Conversely,	 an	 instantiation	 of	
Unchecked_Conversion	from	Interfaces.Unsigned_8	to	Boolean	is	not	permitted,	since	the	
former	has	256	valid	values,	while	the	latter	only	has	2.	
	
Unchecked_Union	allows	a	discriminated,	variant	record	type	to	be	directly	compatible	with	
a	matching	declaration	of	a	“union”	type	in	C.	A	SPARK	Analyzer	is	required	to	verify	that	
access	to	fields	of	an	Unchecked_Union	object	are	only	legal	when	the	(implicit)	discriminant	
is	known	because	the	object	is	of	a	constrained	subtype.	
	
Overlaying	 two	or	more	variables	of	 different	 types	 through	 the	use	of	 common	address	
specifications	can	result	in	the	reinterpretation	of	the	data.	
	
For	the	case	of	calling	on	external	subprograms	written	in	other	languages,	see	subclause	
6.19	Unused	variable	[YZS]].	
	
Language	rules	prevent	changes	to	a	discriminant	of	a	variable	unless	the	whole	object	 is	
written,	so	reinterpreting	an	object’s	components	is	not	possible.	Record	extensions	require	
that	 the	 extension	 components	 be	written	 or	 read	 by	 subprograms	with	 visibility	 to	 the	
extensions,	hence	those	elements	will	be	correctly	interpreted.	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 35	
	

6.37.2	Guidance	to	language	users	
• Follow	the	guidelines	of	ISO/IEC	24772-1	subclause	6.37.5.	
• Limit	the	use	of	Unchecked_Union	to	units	that	must	interface	directly	with	C	code	only.	
• Consider	 applying	 the	 restrictions	 No_Use_Of_Pragma(Unchecked_Union),	

No_Use_Of_Aspect(Unchecked_Union),	and	No_Unchecked_Conversion	to	ensure	this	
vulnerability	cannot	arise.	

• Apply	‘Valid	to	the	result	of	Unchecked_Conversion	and	values	from	foreign	languages	or	
libraries	and	handle	both	outcomes.

• Ensure	that	multiple	variables	are	not	allocated	to	the	same	physical	address	by	the	use	of	
address	specifications.

6.38	Deep	vs.	shallow	copying	[YAN]			

6.38.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.38	applies	to	SPARK.	
	
In	SPARK,	the	default	semantics	of	assignment	create	a	shallow	copy,	when	applied	to	the	
root	of	a	graph	structure.	
	
Vulnerabilities	 can	 be	 mitigated	 by	 limited	 types	 (which	 have	 no	 default	 assignment	
operator),	 language	constructs	 that	allow	the	creation	of	abstractions	and	the	addition	of	
user-defined	copying	operations,	such	that	inadvertent	aliasing	problems	can	be	contained	
within	the	abstraction.	

6.38.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.38.5	of	ISO/IEC	TR	24772-1:2019.	
• Use	limited	types	and/or	user-defined	copying	operations	to	enforce	the	correct	semantics.	
• Use	predefined	Container	packages	and	types	for	linked	data	structures.	

6.39	Memory	leak	and	heap	fragmentation	[XYL]			

6.39.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.39	is	mitigated	by	SPARK.	
	
Memory	leaks	are	prevented	in	SPARK	by	mandatory	static	verification	of	the	ownership	of	
access	values	and	associated	rules	[SRM	3.10].	In	particular,	SPARK	requires	that	an	access	
value	is	null	before	it	is	Finalized	(i.e.	goes	out	of	scope),	but	the	only	way	to	set	an	access	
value	back	to	null	in	SPARK	is	to	call Unchecked_Deallocation on	it.	
	
SPARK	 does	 not	 directly	 address	 the	 issue	 of	 heap	 fragmentation,	 so	 this	 vulnerability	
remains,	especially	for	long-running	systems.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 36	
	

6.39.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.39.5	of	ISO/IEC	TR	24772-1:2019.	
• Declare	access	types	in	a	nested	scope	where	possible.	
• Consider	a	completely	static	model	where	all	storage	is	preallocated	from	global	memory	and	

explicitly	managed	under	program	control.	

6.40	Templates	and	generics	[SYM]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.40	does	not	apply	to	SPARK,	
because:	

• SPARK’s	generics	model	is	based	on	imposing	a	contract	on	the	structure	and	operations	of	
the	 types	 that	 can	 be	 used	 for	 instantiation.	 Also,	 explicit	 instantiation	 of	 the	 generic	 is	
required	for	each	particular	type	and	SPARK	generates	static	checks	for	each	instantiation	of	
the	generic.	

• A	compiler	is	able	to	check	the	generic	body	for	programming	errors,	independently	of	actual	
instantiations.	At	each	actual	instantiation,	the	compiler	will	also	check	that	the	instantiated	
type	meets	all	the	requirements	of	the	generic	contract.	

• SPARK	also	does	not	allow	for	‘special	case’	generics	for	a	particular	type,	therefore	behaviour	
is	consistent	for	all	instantiations.	

6.41	Inheritance	[RIP]			

6.41.1	Applicability	to	language		
The	vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.41	is	mitigated	by	SPARK.	
	
SPARK	allows	only	a	restricted	form	of	multiple	inheritance,	where	only	one	of	the	multiple	
ancestors	(the	parent)	is	permitted	to	implement	operations.	All	other	ancestors	(interfaces)	
can	 only	 specify	 the	 operations’	 signature,	 and	whether	 the	 operation	 is	 required	 to	 be	
overridden,	or	can	simply	do	nothing	if	never	explicitly	defined.	Therefore,	SPARK	does	not	
suffer	from	multiple	inheritance	related	vulnerabilities.	
	
SPARK	has	no	preference	 rules	 to	 resolve	 ambiguities	of	 calls	 on	primitive	operations	of	
tagged	types.	Hence	the	related	vulnerability	documented	in	ISO/IEC	TR	24772-1subclause	
6.41	does	not	apply	to	SPARK.		
	
In	SPARK,	a	user	can	specify	if	a	redefined	operation	must	be	overriding	or	must	be	not
overriding.	When	 these	 specifications	are	given,	 they	are	verified	 statically,	 so	 their	use	
prevents	vulnerabilities	relating	to	accidental	overriding	or	failure	to	override.	

	
SPARK	 also	 requires	 static	 verification	 to	 ensure	 that	 all	 data	members	 of	 an	 object	 are	
correctly	initialized	before	use,	even	when	such	initialization	is	achieved	by	delegation	to	the	
parent’s	constructor	operation	or	by	a	redispatching	call	to	a	constructor	[SRM	6.1.7].	These	
rules	also	mitigate	vulnerabilities	caused	by	operations	that	must	establish	or	maintain	a	

	

©	ISO/IEC	2021	–	All	rights	reserved	 37	
	

type	 invariant.	 See	 subclauses	6.43	Redispatching	 [PPH],	 and	6.44	Polymorphic	variables	
[BKK].	

6.41.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.41.5	of	ISO/IEC	24772-1.	
• Use	 the	 overriding	 indicators	 on	 potentially	 inherited	 subprograms	 to	 ensure	 that	 the	

intended	 set	 of	 operations	 are	 overridden,	 thus	 preventing	 the	 accidental	 redefinition	 or	
failure	to	redefine	an	operation	of	the	parent.	

• Specify	the	Global’Class and	Depends’Class		aspects	for	primitive	operations	to	ensure	
that	information-flow	requirements	as	respected	in	derived	classes	[SRM	6.1.6].	

• Specify	Pre’Class	and	Post’Class	aspects	when	a	primitive	operation	is	initially	defined,	
to	indicate	the	properties	of	inputs	that	any	overridings	must	accept,	and	the	properties	of	
outputs	that	any	overridings	must	produce.	

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model	
[BLP]					

6.42.1	Applicability	to	language		
The	vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.42	is	mitigated	by	SPARK.	
	
SPARK	extends	Ada’s	capabilities	in	this	area,	allowing	fully	static	verification	of	the	Liskov	
Substitution	 Principle	 (LSP)/Behavioural	 subtyping	 principle,	 assuming	 that	 a	 user	 has	
specified	 appropriate	 preconditions	 and	 postconditions	 on	 the	 primitive	 and	 overridden	
operations	of	tagged	types.	
SPARK	also	defines	language	rules	[SRM	6.1.6]	that	allow	the	Global	contract	of	an	overriding	
subprogram	to	be	modified	from	that	inherited	from	its	parent,	but	only	in	a	way	that	does	
not	violate	LSP.	

6.42.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.42.5	of	ISO/IEC	TR	24772-1:2019.	
• Specify	Pre’Class	and	Post’Class	for	all	primitive	operations	of	tagged	types.	
• Use	a	SPARK	Analyzer	to	verify	LSP	for	all	descendent	types.	

6.43	Redispatching	[PPH]				

6.43.1	Applicability	to	language	
The	vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.43	is	mitigated	by	SPARK.	As	
in	Ada,	calls	are	non-dispatching	by	default	in	SPARK.	
	
A	redispatching	call	can	only	occur	if	an	object	of	a	specific	type	T	is	explicitly	converted	to	
the	classwide	type	T’Class	before	being	passed	as	the	controlling	parameter	of	a	call.	Such	
conversions	 are	 only	 allowed	 in	 SPARK	 if	 the	 enclosing	 subprogram	 has	 the	

	

©	ISO/IEC	2021	–	All	rights	reserved	 38	
	

Extensions_Visible	 aspect	 applied	 to	 it.	 This	 aspect	 also	 modifies	 the	 required	 data	
initialization	rules	for	that	subprogram	so	that	hidden	components	of	the	object	cannot	be	
left	uninitialized	[SRM	6.1.7].	

6.43.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.43.5	of	ISO/IEC	TR	24772-1:2019.	
• Avoid	the	use	of	the	Extensions_Visible	aspect	if	redispatching	is	to	be	forbidden.	
• If	redispatching	is	necessary,	document	the	behaviour	explicitly.	

6.44	Polymorphic	variables	[BKK]			

6.44.1	Applicability	to	language	
The	vulnerability	documented	in	ISO/IEC	24772-1	subclause	6.44	is	mitigated	by	SPARK.	
	
There	are	three	specific	vulnerabilities	to	consider:	
	

• Unsafe	casts	are	not	permitted	in	SPARK.	
• A	downcast	in	SPARK	requires	mandatory	static	verification	that	the	tag	of	the	object	

matches	that	of	the	target	type	or	one	its	descendants.	
• An	upcast	to	a	specific	tagged	type	is	permitted	in	SPARK	and	can	never	give	rise	to	a	

runtime	error.	By	specifying	the	aspect	Type_Invariant		on	a	private	extension,	the	
programmer	can	ensure	that	the	semantic	requirements	of	the	private	extension,	as	
captured	by	the	type	invariant,	are	preserved	across	such	conversions	to	an	ancestor	
specific	type,	in	that	they	are	re-checked	after	the	construct	manipulating	the	upward	
conversion	is	complete.	If	a	type	invariant	is	specified,	then	SPARK	requires	static	
verification	that	it	is	always	preserved.	

	
As	noted	in	subclause	6.43,	an	upcast	to	a	classwide	type	is	not	permitted	in	SPARK,	unless	
the	enclosing	subprogram	has	the	Extensions_Visible	aspect	applied	it.	

6.44.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.44.5	of	ISO/IEC	TR	24772-1:2019.	
• Use	the	aspect	Type_Invariant	to	specify	and	verify	the	semantic	consistency	of	derived	

types.	

6.45	Extra	intrinsics	[LRM]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.45	does	not	apply	to	SPARK,	
because,	as	in	Ada,	all	subprograms,	whether	intrinsic	or	not,	belong	to	the	same	name	
space.	This	means	that	all	subprograms	must	be	explicitly	declared,	and	the	same	name	
resolution	rules	apply	to	all	of	them,	whether	they	are	predefined	or	user-defined.	If	two	or	
more	subprograms	with	the	same	name	and	signature	are	visible	(that	is	to	say	nameable)	
at	the	same	place	in	a	program,	then	a	call	using	that	name	will	be	rejected	as	ambiguous	by	

	

©	ISO/IEC	2021	–	All	rights	reserved	 39	
	

the	compiler,	and	the	programmer	must	specify	(for	example,	by	means	of	an	expanded	
name)	which	subprogram	is	meant.	

6.46	Argument	passing	to	library	functions	[TRJ]			

6.46.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.46	is	mitigated	by	SPARK.	
	
There	are	three	cases	to	consider,	depending	on	the	language	used	to	implement	a	
particular	library	being	called	from	SPARK:	
	

• If	the	library	is	itself	written	in	SPARK,	and	is	subject	to	mandatory	verification	of	type	
safety,	then	no	vulnerability	exists.	

• If	the	library	is	written	in	Ada	(but	not	meeting	the	rules	of	SPARK),	then	appropriate	
contracts	(for	example,	preconditions	and	parameter	subtypes)	and	runtime	checks	can	be	
used	to	mitigate	this	vulnerability.	

• If	the	library	is	written	in	a	foreign	language	other	than	SPARK	or	Ada,	then	subclause	6.47	
Interlanguage	calling	[DJS]	applies.	

6.46.2	Guidance	to	language	users	

• Exploit	the	type	and	subtype	system	of	SPARK	to	express	restrictions	on	the	values	of	
parameters	and	results.	

• Specify	explicit	preconditions	and	postconditions	for	subprograms	wherever	practical.		
• Specify	subtype	predicates	and	type	invariants	for	subtypes	and	private	types	when	

appropriate.		
• When	a	library	body	is	written	in	Ada,	follow	the	mitigation	mechanisms	of	subclause	6.46.5	

of	ISO/IEC	24772-2.	

6.47	Inter-language	calling	[DJS]			

6.47.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.47	applies	to	SPARK.	
	
SPARK	provides	mechanisms	to	interface	with	common	languages,	such	as	C,	C++,	Fortran	
and	COBOL,	so	that	vulnerabilities	associated	with	interfacing	with	these	languages	can	be	
mitigated.	Other	languages	can	also	be	called:	this	is	normally	achieved	using	the	C	calling	
convention.	
	
Additionally,	some	parts	of	a	SPARK	program	may	be	written	in	Ada	by	specifying	the	
aspect	“SPARK_Mode => Off”	for	those	units.		

6.47.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.47.5	of	ISO/IEC	24772-1.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 40	
	

• For	units	written	in	Ada	(and	therefore	not	subject	to	mandatory	static	verification	with	a	
SPARK	Analyzer),	follow	the	mitigations	in	ISO/IEC	24772-2.	In	addition,	consider	adding	a	
top-level	exception	handler	in	each	Ada	unit	to	catch	and	prevent	an	unhandled	exception	
from	propagating	into	SPARK	code.	

• Use	the	inter-language	methods	and	syntax	specified	by	SPARK	and	ISO/IEC	8652	[2]	when	
the	routines	to	be	called	are	written	in	languages	for	which	ISO/IEC	8652	[2]	specifies	an	
interface.	

• Use	interfaces	to	the	C	programming	language	where	the	other	language	system(s)	are	not	
covered	by	ISO/IEC	8652,	but	the	other	language	systems	support	interfacing	to	C.	

• Make	explicit	checks	on	all	return	values	from	foreign	system	code	artifacts,	for	example	by	
using	the	'Valid	attribute	or	by	performing	explicit	tests	to	ensure	that	values	returned	by	
inter-language	calls	conform	to	the	expected	representation	and	semantics	of	a	SPARK	
application.	

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.48	does	not	apply	to	SPARK,	
because	SPARK	supports	neither	dynamic	linking	nor	self-modifying	code.	

6.49	Library	signature	[NSQ]			

6.49.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.49	applies	to	SPARK.	
	
SPARK	provides	mechanisms	to	explicitly	interface	to	modules	written	in	other	languages.	
The	aspects	Import,	Export	and	Convention	permit	the	name	of	the	external	unit	and	the	
interfacing	convention	to	be	specified.	

Even	with	the	use	of	the	aspects	Import,	Export	and	Convention	the	vulnerabilities	stated	
in	subclause	6.49	of	ISO/IEC	24772-1	are	possible.	Names	and	number	of	parameters	
change	under	maintenance;	calling	conventions	change	as	compilers	are	updated	or	
replaced,	and	languages	for	which	SPARK	does	not	specify	a	calling	convention	may	be	
used.	

6.49.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.49.5	of	ISO/IEC	24772-1.	
• Refer	to	ISO/IEC	8652	Annex	B	(“Interfacing	to	Other	Languages”)	to	understand	how	each	

language-specific	convention	applies	to	different	types	and	parameter	modes.	
• Verify	that	a	particular	compiler	follows	the	implementation	advice	given	in	ISO/IEC	8652	

Annex	B.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 41	
	

6.50	Unanticipated	exceptions	from	library	routines	[HJW]			

6.50.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.50	applies	to	SPARK.	
	
SPARK	permits	 the	declaration	and	raising	of	exceptions,	but	does	not	support	exception	
handlers,	so	any	exception	raised	will	cause	either	the	task	that	was	subject	to	the	exception	
to	 silently	 terminate,	 or	 the	 main	 subprogram	 to	 terminate.	 For	 the	 vulnerability	 of	
unhandled	exceptions,	see	subclause	6.36	Ignored	error	status	and	unhandled	exceptions	
[OYB].	
	
Since	SPARK	is	a	subset	of	Ada,	 it	 is	possible	to	hide	the	main	body	of	a	task	or	the	main	
subprogram	 from	 SPARK	 and	 place	 an	 exception	 handler	 there	 to	 perform	 appropriate	
notifications	or	last	wishes.	
	
If	the	failure	does	not	fit	into	the	above	categories,	see	ISO/IEC	24772-1	clause	7.31.	

6.50.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.50.5	of	ISO/IEC	24772-1:2019.	
• Ensure	 that	 the	 interfaces	with	 libraries	written	 in	other	 languages	are	 compatible	 in	 the	

naming	and	generation	of	exceptions.	
• For	 calling	 libraries	 that	 can	 raise	 exceptions,	 consider	 “wrapping”	 these	 calls	 in	 an	 Ada	

subprogram	 that	 calls	 the	 desired	 subprogram,	 but	 catches	 and	 handles	 any	 exceptions	
locally	before	returning	a	suitable	error	code	to	the	SPARK	caller.	

• When	 calling	 a	 function	 in	 a	 foreign	 language	 that	 can	 raise	 an	 exception,	 handle	 that	
exception	in	the	foreign	language	unit,	rather	than	allowing	an	exception	to	propagate	from	
one	language	to	another.	

• Consider	 failure	strategies	 (see	 ISO/IEC	24772-1	clause	7.31	Failure	 tolerance	and	 failure	
strategies[REU])	and	consider	adding	Ada	code	with	Ada	exception	handlers	at	the	top	level	
of	all	tasks	and	the	main	subprogram.		

• Document	any	exceptions	that	may	be	raised	by	any	Ada	units	being	used	as	library	routines.		

6.51	Pre-processor	directives	[NMP]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.51	does	not	apply	to	SPARK,	
because	SPARK	does	not	have	a	pre-processor.	

6.52	Suppression	of	language-defined	run-time	checking	[MXB]			

6.52.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.52	is	mitigated	by	SPARK.	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 42	
	

The	vulnerability	exists	 in	SPARK	 	since	pragma	Suppress	permits	explicit	 suppression	of	
language-defined	checks	on	a	unit-by-unit	basis	or	on	partitions	or	programs	as	a	whole.	
(The	language-defined	default,	however,	is	to	perform	the	runtime	checks	that	prevent	the	
runtime	vulnerabilities.)	pragma	Suppress	can	suppress	all	 language-defined	checks	or	12	
individual	categories	of	checks	(see	subclause	11.5	of	ISO/IEC	8652	[2]).	
	
SPARK	requires	mandatory	static	verification	of	type	safety,	which	means	that	a	run-time	
check	will	never	fail,	so	this	depth	of	verification	provides	assurance	that	pragma Suppress	
can	be	applied	to	checks	that	verification	has	proven	to	be	redundant.	

6.52.2	Guidance	to	language	users	
• Verify	type	safety	using	a	SPARK	Analyzer.	
• Only	apply	pragma	Suppress	for	code	fully	verified	by	the	SPARK	analyzer	without	reliance	

on	the	Assume	pragma	(6.53	Provision	of	inherently	unsafe	operations	[SKL]).	
• Follow	the	mitigation	mechanisms	of	ISO/IEC	24772-1	subclause	6.52.5	when	SPARK	type	

safety	cannot	be	guaranteed.	

6.53	Provision	of	inherently	unsafe	operations	[SKL]			

6.53.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.53	is	mitigated	by	SPARK.	
	
Other	than	the	use	of	pragma Assume,	the	classes	of	vulnerability	identified	in	ISO/IEC	24772-
1	subclause	6.53	and	techniques	defined	as	unsafe	programming	in	clause	5.1.6	are	covered	
by	other	subclauses	of	this	document.	Specifically:	
	

• Vulnerabilities	 related	 to	unchecked	 type	conversion	are	covered	 in	 subclause	6.37	Type-
breaking	reinterpretation	of	data	[AMV].	

• Vulnerabilities	 related	 to	 deallocation	 of	 dynamically	 allocated	 memory	 are	 covered	 in	
subclause	6.14	Dangling	reference	to	heap	[XYK].	

• Vulnerabilities	 related	 to	 mixed-language	 programming	 and	 the	 use	 of	 full	 Ada	 within	 a	
SPARK	program	are	covered	in	subclause	6.47	Inter-language	calling	[DJS].	
Vulnerabilities	related	to	the	suppression	of	run-time	checking	are	covered	in	subclause	6.52	
Suppression	of	language-defined	run-time	checking	[MXB].	

6.53.2	Guidance	to	language	users	
• Use	a	SPARK	Analyzer	to	identify	inherently	unsafe	operations.	
• Avoid	the	use	of	unsafe	programming	practices,	unless	they	are	functionally	essential.	
• Carefully	scrutinize	any	code	that	refers	to	a	program	unit	explicitly	designated	to	provide	

unchecked	operations.	
• Use	the	pragma Restrictions	to	prevent	the	inadvertent	use	of	unsafe	language	constructs.	

For	example,	use	pragma Restrictions (No_Use_Of_Pragma => Assume)	to	prevent	
the	use	of	pragma Assume.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 43	
	

• Require	manual	review	to	verify	the	consistency	and	truthfulness	of	any	property	introduced	
by	pragma Assume.		

• Use	non-SPARK	units	sparingly	and	ensure	that	a	thorough	analysis	is	performed	on	the	code	
since	a	SPARK	Analyzer	will	not	be	used.	(see	clause	6.47	Interlanguage	calling)	

6.54	Obscure	language	features	[BRS]			

6.54.1	Applicability	to	language		
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.54	is	mitigated	by	SPARK.	
	
SPARK	is	designed	to	offer	unambiguous	semantics,	where	a	SPARK	program	that	is	verified	
with	a	SPARK	Analyzer	exhibits	no	undefined	behaviour	and	no	dependence	on	unspecified	
behaviour.	
	
Nonetheless,	SPARK	provides	facilities	for	a	wide	range	of	application	areas.	Because	some	
areas	are	specialized,	it	is	likely	that	a	programmer	not	versed	in	such	a	specific	area	might	
misuse	 features	 for	 that	 area.	 For	 example,	 the	 use	 of	 tasking	 features	 for	 concurrent	
programming	requires	knowledge	of	this	domain.	
	
In	 SPARK,	 assertions	 can	 be	 used	 as	 a	 superior	 alternative	 to	 comments	 to	 improve	
readability.	The	correctness	of	an	assertion,	as	opposed	to	that	of	a	comment,	is	checked	by	
the	SPARK	tools.	

6.54.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.54.5	of	ISO/IEC	24772-1.	
• Use	pragma Restrictions	 to	 prevent	 the	 use	 of	 obscure	 features	 of	 the	 language.	 For	

example,	a	project	might	decide	to	completely	 forbid	 floating	point	 types,	access	 types,	or	
tasking.	

• Use	the	language-defined	pragma Restrictions (No_Dependence => …)	to	prevent	the	
use	of	specified	predefined	or	user-defined	libraries.	

• Use SPARK assertions wherever possible in preference to comments to let the SPARK prover verify
asserted properties of the code.	

6.55	Unspecified	behaviour	[BQF]			

6.55.1	Applicability	to	language		
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.55	is	mitigated	by	SPARK.	
	
The	 design	 intent	 of	 SPARK	 is	 to	 either	 prevent	 or	 remove	 dependence	 on	 unspecified	
behaviour.	For	example,	expression	evaluation	order	is	unspecified,	but	the	rules	of	SPARK	
and	static	verification	ensure	that	any	legal	sequentially	consistent	evaluation	order	always	
yields	the	same	result,	except	for	rounding	errors	of	real	arithmetic..	
	

	

©	ISO/IEC	2021	–	All	rights	reserved	 44	
	

Bounded	errors	are	entirely	prevented	by	mandatory	static	verification.	
	
Four	cases	remain:	

• Rounding	errors	in	real	arithmetic	can	affect	the	results	of	a	calculation.	
• The	result	of	S’Machine_Rounding(X)	is	unspecified	if	X	lies	exactly	halfway	between	two	

integers.	
• Results	of	certain	operations	within	language-defined	generic	packages	are	unspecified	if	the	

actual	 subprogram	 associated	with	 a	 particular	 formal	 subprogram	does	 not	meet	 stated	
expectations	(such	as	“=”	providing	a	true	equality	relationship)	

• Functions	declared	in	the	predefined	units	Ada.Numerics.Generic_Complex_Types	and	
Ada.Numerics.Generic_Complex_Elementary_Functions	 exhibit	 unspecified	
behaviour	relating	to	overflow	(and	thus	raising	of	exceptions)	for	certain	arguments.	

6.55.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.55.5	of	ISO/IEC	24772-1.	
• Verify	 and	document	 the	 behaviour	 of	S’Machine_Rounding for	 both	 the	 compiler	 and	

SPARK	 Analyzer.	 Alternatively,	 forbid	 the	 use	 of	 this	 attribute	 using	 the	
No_Use_Of_Attribute	restriction	identifier.	

• For	 situations	 involving	 generic	 formal	 subprograms,	 ensure	 that	 the	 actual	 subprogram	
satisfies	all	the	stated	expectations.	

• Document	 the	 behaviour	 of	 a	 particular	 implementation	 with	 respect	 to	 the	
Ada.Numerics.Generic_Complex_Elementary_Functions	 and	
Ada.Numerics.Generic_Complex_Types	 packages,	 and	 add	 user-defined	 Assertions	 in	
calling	units	 to	verify	 the	absence	of	unspecified	behaviour	and	exceptions	 from	any	such	
calls.	 Alternatively,	 forbid	 the	 use	 of	 these	 units	 using	 the	 pragma	
Restrictions(No_Dependence => 	restriction	identifier).	

6.56	Undefined	behaviour	[EWF]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.56	does	not	apply	to	SPARK,	
because	undefined	behaviour	is	prevented	by	mandatory	static	verification,	as	described	in	
section	5.1.5	of	this	document.	Note	that	ISO/IEC	8652	and	SPARK	use	the	term	“erroneous	
behaviour”	with	the	same	meaning	as	“undefined	behaviour”	used	in	ISO/IEC	24772-1.	

6.57	Implementation–defined	behaviour	[FAB]			

6.57.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.57	applies	to	SPARK.	
	
There	 are	 a	 number	 of	 situations	 in	 SPARK	 where	 the	 language	 semantics	 are	
implementation-defined,	to	allow	the	implementation	to	choose	an	efficient	mechanism,	or	
to	match	the	capabilities	of	the	target	environment.	Each	of	these	situations	is	identified	in	
Annex	M	 of	 ISO/IEC	 8652,	 and	 implementations	 are	 required	 to	 provide	 documentation	

	

©	ISO/IEC	2021	–	All	rights	reserved	 45	
	

associated	with	 each	 item	 in	Annex	M	 to	 provide	 the	 programmer	with	 guidance	 on	 the	
implementation	choices.	
	
A	failure	can	occur	in	a	SPARK	application	due	to	implementation-defined	behaviour	if	the	
programmer	presumed	the	implementation	made	one	choice,	when	in	fact	it	made	a	different	
choice	 that	 affected	 the	 results	 of	 the	 execution.	 In	many	 cases,	 a	 compile-time	 error	 or	
warning,	or	a	run-time	exception	will	indicate	the	presence	of	such	a	problem.	For	example,	
the	range	of	integers	supported	by	a	given	compiler	is	implementation	defined.	However,	if	
the	programmer	specifies	a	 range	 for	an	 integer	 type	 that	exceeds	 that	 supported	by	 the	
implementation,	then	a	compile-time	error	will	be	indicated,	and	if	at	run	time	a	computation	
exceeds	the	base	range	of	an	integer	type,	then	Constraint_Error	is	raised.	
	
Programmers	 must	 verify	 that	 the	 implementation-defined	 choices	 made	 by	 a	 compiler	
exactly	match	those	made	by	a	SPARK	Analyzer.	The	most	notable	example	is	the	ranges	of	
the	predefined	 Integer	 types,	 since	 these	 ranges	 impact	 the	verification	of	 the	absence	of	
arithmetic	 overflow	 in	 expressions.	 Similarly,	 bounds	 of	 some	 user-defined	 types	 (for	
example,	"type	T	is	range	1	..	10;")	are	specified	by	the	user,	but	their	base-type	bounds	are	
implementation-defined.	This	makes	a	difference	for	overflow	checking.	
	
Many	 implementation-defined	 limits	 have	 associated	 constants	 declared	 in	 language-
defined	packages,	generally	package	System.	In	particular,	the	maximum	range	of	integers	is	
given	by	System.Min_Int	..	System.Max_Int,	and	other	limits	are	indicated	by	constants	such	
as	 System.Max_Binary_Modulus,	 System.Memory_Size,	 and	 System.Max_Mantissa.	 Other	
implementation-defined	limits	are	implicit	in	normal	‘First	and	‘Last	attributes	of	language-
defined	 (sub)	 types,	 such	 as	 System.Priority'First	 and	 System.Priority'Last.	
Furthermore,	the	implementation-defined	representation	aspects	of	types	and	subtypes	can	
be	queried	by	language-defined	attributes.	These	constants	can	be	referenced	in	the	program	
and	 in	 proofs	 of	 correctness	 to	 determine	 statically	 that	 the	 implementation-specified	
characteristics	result	in	correct	programs.	
	
Thus,	code	can	be	parameterized	to	adjust	 to	 implementation-defined	properties	without	
modifying	the	code.	

6.57.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.57.5	of	ISO/IEC	24772-1.	
• Minimize	use	of	any	predefined	numeric	types,	as	the	ranges	and	precisions	of	these	are	all	

implementation	defined.	Instead,	declare	your	own	numeric	types	to	match	your	particular	
application	needs.	

• Be	aware	of	the	contents	of	Annex	M	of	ISO/IEC	8652	[2]	and	avoid	implementation-defined	
behaviour	whenever	possible.	

• Verify	that	the	values	of	implementation-defined	constants	used	by	a	SPARK	Analyzer	exactly	
match	those	used	by	the	compiler.	

• Make	use	of	the	constants	and	subtype	attributes	provided	in	package	System	and	elsewhere	
to	avoid	exceeding	implementation-defined	limits.		

	

©	ISO/IEC	2021	–	All	rights	reserved	 46	
	

6.58	Deprecated	language	features	[MEM]			

6.58.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.58	 is	mitigated	by	SPARK.	
SPARK,	 like	 Ada,	 provides	 a	pragma Restrictions (No_Obsolescent_Features)	 that	
prevents	the	use	of	any	obsolescent	features	within	a	program.	
	
If	obsolescent	language	features	are	used,	then	the	mechanism	of	failure	for	the	vulnerability	
is	as	described	in	subclause	6.58.3	of	ISO/IEC	24772-1	

6.58.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.58.5	of	ISO/IEC	24772-1.	
• Use	 pragma Restrictions (No_Obsolescent_Features)	 to	 prevent	 the	 use	 of	 any	

obsolescent	features.	
• Refer	to	Annex	J	of	the	ISO/IEC	8652	to	determine	whether	a	feature	is	obsolescent.	

6.59	Concurrency	–	Activation	[CGA]			

6.59.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.59	 is	mitigated	by	SPARK,	
because	SPARK’s	concurrency	is	restricted	to	Ada’s	Ravenscar	Tasking	Profile[4].	Under	this	
profile,	all	tasks	are	declared	in	library-level	packages	and	are	elaborated	before	the	main	
program	begins.	
	
Assuming	that	mandatory	static	verification	has	been	performed	on	all	task	bodies,	a	single	
failure	mode	remains:	unexpected	termination	of	a	library	level	task	owing	to	an	exception	
being	 raised	 during	 its	 activation.	 In	 that	 case,	 the	 behaviour	 is	 implementation-defined.	
Possible	behaviours	include:	

• Termination	of	the	whole	program,	or	
• A	user-defined	action,	such	as	reset	or	restart	of	the	target	computer,	or	
• The	program	keeps	running	but	missing	one	or	more	tasks.	

6.59.2	Guidance	to	language	users	
• Perform	static	analysis	of	worst-case	stack	usage	for	all	tasks	to	ensure	that	memory	space	

allocated	to	all	tasks’	stacks	is	sufficient.	
• In	 the	 case	 of	 unexpected	 task	 termination	 during	 activation,	 verify	 and	 document	 the	

implementation-defined	behavior	of	the	implementation.	

6.60	Concurrency	–	Directed	termination	[CGT]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.60	does	not	apply	to	SPARK,	
because	SPARK	ensures	that	no	tasks	terminate.		

	

©	ISO/IEC	2021	–	All	rights	reserved	 47	
	

6.61	Concurrent	data	access	[CGX]			

6.61.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.61	is	mitigated	by	SPARK.	
	
SPARK’s	concurrency	is	restricted	to	Ada’s	Ravenscar	Tasking	Profile	[4].	Under	this	profile	
and	SPARK,	 tasks	communicate	exclusively	using	atomic	objects,	 suspension	objects,	or	a	
limited	form	of	protected	objects.	A	SPARK	analyzer	is	required	to	enforce	these	restrictions,	
and	therefore	prevent	data	destruction	because	of	a	data	race.		
	
More	specifically,	Ada’s	Ravenscar	Tasking	Profile	[4]	does	not	prevent	unsafe	concurrent	
access	to	an	unsynchronized	global	variable.	The	SPARK	analyzer	ensures	that	the	multiple	
tasks	cannot	access	a	given	global	variable	unless	all	of	them	are	only	reading	(as	opposed	
to	modifying)	the	variable,	or	the	object	is	protected	or	atomic.	
	
Nevertheless,	it	is	still	possible	for	a	program	to	exhibit	a	race	condition	with	Atomic	objects.	
Consider	code	that	increments	an	Atomic	Integer	variable	X,	and	X	is	shared:	
	
 X := X + 100;

This	statement	involves	reading,	incrementing,	and	writing	the	object.	While	the	read	and	
write	operations	are	individually	Atomic,	this	sequence	of	actions	can	still	suffer	interference	
from	another	task.	
	
Such	interference	can	be	avoided	by	placing	the	statement	inside	a	protected	subprogram	or	
entry,	 which	 guarantee	mutually	 exclusive	 access	 to	 all	 the	 protected	 data	 for	 an	 entire	
sequence	of	statements.	

6.61.2	Guidance	to	language	users	
• Follow	the	mitigation	mechanisms	of	subclause	6.61.5	of	ISO/IEC	24772-1.	
• Use	 protected	 objects	 in	 preference	 to	 other	 forms	 of	 synchronization	 such	 as	 atomic	

variables.	
• Use	 a	 SPARK	 Analyzer	 to	 statically	 ensure	 that	 no	 unprotected	 data	 is	 used	 without	

synchronization	by	more	than	one	task.	
• Use	 protected	 objects	 where	 atomic	 access	 to	 a	 simple	 object	 is	 not	 sufficient	 or	 not	

supported.	
• Use	the	aspects	Atomic	and	Atomic_Components	to	ensure	that	all	updates	to	objects	and	

components	happen	atomically.	

Use	 the	 aspects	 Volatile	 and	 Volatile_Components	 to	 ensure	 that	 all	 tasks	 see	
updates	to	the	associated	objects	or	array	components	in	the	same	order.	

	

©	ISO/IEC	2021	–	All	rights	reserved	 48	
	

6.62	Concurrency	–	Premature	termination	[CGS]		

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.62	does	not	apply	to	SPARK	
because	SPARK	ensures	that	tasks	do	not	terminate.	The	mechanisms	that	might	lead	to	task	
termination	in	some	other	 languages	(e.g.,	 task	abortion,	reaching	the	end	of	a	task	body,	
failure	of	a	run-time	check)	are	prevented	statically	in	SPARK.	

6.63	Lock	protocol	errors	[CGM]		

6.63.1	Applicability	to	language	
The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.63	is	mitigated	by	SPARK.	
	
SPARK	is	open	to	the	errors	identified	in	this	vulnerability	but	supports	a	number	of	features	
that	aid	mitigation.	

• Concurrent	programming	in	SPARK	is	limited	to	Ada’s	Ravenscar	Profile	[4].	
• SPARK	provides	 protected	 objects	 that	 provide	 single-threaded	 access	 to	 shared	 data	

contained	 in	 those	objects	 as	well	 as	providing	 scheduling	mechanism	 for	 tasks	 to	be	
suspended	upon	a	‘protected	entry’	

• The	protocol	for	controlling	access	to	protected	objects	is	implemented	by	the	run-time	
library	and/or	the	underlying	operating	system,	and	is	not	visible	to	the	programmer.	

• SPARK	 and	 the	 Ravenscar	 Profile	 employ	 a	 regime	 for	 task	 scheduling	 and	 priority	
assignment	 that	 is	 guaranteed	 to	 be	 free	 from	 circular	waits	 for	 resources,	 however,	
circular	waits	between	partitions	or	collections	of	tasks	and	protected	entries	is	possible	
and	will	not	be	diagnosed	by	SPARK	.	

• SPARK	programs	using	the	Ravenscar	Profile	are	amenable	to	static	verification	of	worst-
case	execution	time,	response	time,	and	schedulability.	

6.63.2	Guidance	to	language	users	

• Follow	the	mitigation	mechanisms	of	subclause	6.63.5	of	ISO/IEC	24772-1.	
• Make	use	of	loosely	coupled	communication	using	protected	objects.	
• Stay	within	the	constraints	defined	by	the	Ravenscar	Tasking	profile	[2].	
• Use	well	documented	design	patterns	for	creating	groups	of	tasks	executing	known	protocols	

using	Ravenscar	[5].	

6.64	Uncontrolled	format	string	[SHL]				

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.64	does	not	apply	to	SPARK,	
because	neither	SPARK	nor	any	of	its	predefined	libraries	use	format	strings.	

6.65	Modifying	constants	[UJO]			

The	vulnerability	as	described	in	ISO/IEC	24772-1	subclause	6.65	does	not	apply	to	SPARK,	
because	 SPARK	 does	 not	 permit	 constant	 objects	 to	 be	 modified	 after	 they	 have	 been	

	

©	ISO/IEC	2021	–	All	rights	reserved	 49	
	

initialized.	SPARK	does	not	permit	the	modification	of	a	variable	that	has	been	passed	into	a	
subprogram	by	 reference	 as	 “in-mode”	 parameter.	 In	 particular,	 the	Ada	 vulnerability	 of	
modifying	 constants	 via	 access	 discriminants	 on	 limited	 types	 does	 not	 exist	 in	 SPARK	
because	access	discriminants	are	not	permitted.		
	 	

	

©	ISO/IEC	2021	–	All	rights	reserved	 50	
	

	
Bibliography

[1]	 SPARK	2014	Reference	Manual	Release	2020.	AdaCore	and	Altran	UK,	April	2020.	
Available	from	https://www.adacore.com/papers/spark-2014-reference-manual-
release-2020	

[2]	 ISO/IEC	8652:2012,	Information	technology	—	Programming	languages	—	Ada.	
Available	from	http://www.ada-auth.org/standards/ada12_w_tc1.html	

[3]	 ISO/IEC	60559:2020,	Information	Technology	—	Microprocessor	Systems	—	Floating-
point	arithmetic.	

[4]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	
Guide	for	the	use	of	the	Ada	Ravenscar	Profile	in	high	integrity	systems.	

[5]	 Concurrent	and	Real-Time	Programming	In	Ada.	Alan	Burns	and	Andy	Wellings.	
Cambridge	University	Press,	2007.	ISBN	978-0521866972.

	

	 	

	

©	ISO/IEC	2021	–	All	rights	reserved	 51	
	

Index

	

	
absent	vulnerabilities	
arithmetic	wrap-around	error	[FIF],	23	
buffer	boundary	violation	[HCB],	22	
concurrency	–	directed	termination	[CGT],	47	
concurrency	–	premature	termination	[CGT],	48	
conversion	error	[FLC],	21	
dangling	reference	to	heap	[XYK],	23	
dangling	references	to	stack	frames	[DCM],	31	
dead	store	[WXQ],	25	
demarcation	of	control	flow	[EOJ],	29	
dynamically-linked	and	self-modifying	code	
[NYY],	40	

extra	intrinsics	[LRM],	38	
initialization	of	variables	[LAV],	26	
loop	control	variables	[TEX],	29	
modifying	constants	[UJO],	49	
namespace	issues	[BJL],	26	
null	pointer	dereference	[XYH],	23	
passing	parameters	and	return	values[CSJ],	31	
pointer	arithmetic	[RVG],	22	
pointer	type	conversions[XFC],	22	
pre-processor	directives	[NMP],	41	
side-effects	and	order	of	evaluation	of	operands	
[SAM],	27	

string	termination	[CJM],	22	
subprobprogram	signature	mismatch	[OTR],	32	
templates	and	generics	[SYM],	35	
unchecked	array	copying	[XYW],	22	
unchecked	array	indexing	[XYZ],	22	
uncontrolled	format	string	[SHL],	48	
undefined	behaviour	[EWF],	44	
using	shift	operations	for	multiplication	and	
division	[PIK],	23	

access	types,	15,	35	
access	value	
observer,	16	
owner,	16	

applicable	vulnerabilities	
choice	of	clear	names	[NAI],	24	
deep	vs	shallow	copying	[YAN],	35	
floating-point	arithmetic	[PLF],	20	
implementation-defined	behaviour	[FAB],	44	
inter-language	calling	[DJS],	39	
library	signature	[NSQ],	40	
unanticipated	exceptions	from	library	routines	
[HJW],	41	

argument	passing	to	library	functions,	39	
arithmetic	wrap-around	error,	23	
aspects	
atomic,	47	
atomic_components,	47	
convention,	40	
depends’class,	36	
export,	40	
extensions_visible,	37	
extensions_visible,	37	
extensions_visible,	38	
global’class,	36	
import,	40	
post’class,	37	
pre’class,	37	
type_invariant,	38	
volatile,	48	
volatile_components,	48	

assertion,	17	
atomic,	47	
attributes	
'access,	31	
'address,	31	
'first,	30	
'first,	17	
'last,	30,	45	
'last,	17	
'length,	30	
'length,	17	
'range,	30	
'range,	17	
'unchecked_access,	31	
'valid,	21,	33	
’first,	45	
’valid,	40	

	
bit	representation,	20	
buffer	boundary	violation,	22	
	
case	statement,	21	
Case	statement,	29	
casts	
downcast,	38	
unsafe	cast,	38	
upcast,	38	

	

©	ISO/IEC	2021	–	All	rights	reserved	 52	
	

choice	of	clear	names,	24	
concurrency	–	activation,	46	
concurrency	–	directed	termination,	47	
concurrency	–	premature	termination,	48	
concurrent	data	access,	47	
conversion	error,	21	
	
dangling	reference	to	heap,	23	
dangling	references	to	stack	frames,	31	
dead	and	deactivated	code,	28	
dead	store,	25	
deep	vs	shallow	copying,	35	
demarcation	of	control	flow,	29	
deprecated	language	features,	46	
dynamically-linked	and	self-modifying	
code,	40	

	
enumerator	issues,	21	
exception,	41	
Exception,	41,	45	
Constraint_Error,	45	

exceptions	
storage_error,	32	

extra	intrinsics,	38	
	
False	negative,	12	
floating-point	arithmetic,	20	
	
Identifier	length,	24	
identifier	name	reuse,	25	
ignored	error	status	and	unhandled	
exceptions,	33	

implementation-defined	behaviour,	44	
inheritance,	36	
initialization	of	variables,	26	
inter-language	calling,	39	
International	character	sets,	24	
	
library	signature,	40	
likely	incorrect	expression,	27	
lock	protocol	errors,	48	
loop	control	variables,	29	
	
memory	leak	and	heap	fragmentation,	35	
mitigated	vulnerabilities	

argument	passing	to	library	functions	[TRJ],	39	
bit	representation	[STR],	20	
concurrency	–	activation	[CGA],	46	
concurrent	data	access	[CGX],	47	
dead	and	deactivated	code	[XYQ],	28	
deprecated	language	features	[MEM],	46	
enumerator	issues	[CCB],	21	
identifier	name	reuse	[YOW],	25	
ignored	error	status	and	unhandled	exceptions	
[OYB],	33	

inheritance	[RIP],	36	
likely	incorrect	expression	[KOA],	27	
lock	protocol	errors,	48	
memory	leak	and	heap	fragmentation	[XYL],	35	
obscure	language	features	[BRS],	43	
off-by-one	error	[XZH],	30	
operator	precedence	and	associativity	[JCW],	
26	

polymorphic	variables	[BKK],	38	
provision	of	inherently	unsafe	operations	[SKL],	
42	

recursion	[GDL],	32	
redispatching	[PPH],	37	
suppression	of	language-defined	runtime	
checks	[MXB],	41	

switch	statements	and	static	analysis	[CLL],	29	
type	system	[IHN],	19	
type-breaking	reinterpretation	of	data	[AMV],	
33	

unspecified	behaviour	[BQF],	43	
unstructured	programming	[EWD],	31	
unused	variables	[YZS],	25	
violations	of	the	Liskov	substitution	principle	or	
the	contract	model	[BLP],	37	

Mixed	casing,	24	
modifying	constants,	49	
	
namespace	issues,	26	
null	pointer	dereference,	23	
	
obscure	language	features,	43	
off-by-one	error,	30	
operator	precedence	and	associativity,	26	
	
passing	parameters	and	return	values,	31	
pointer	arithmetic,	22	
pointer	type	conversions,	22	
polymorphic	variables,	38	
postcondition,	17	
Postconditions,	39	

	

©	ISO/IEC	2021	–	All	rights	reserved	 53	
	

pragma,	42	
pragma	restrictions,	42	

Pragma	
pragma	Restrictions,	46	

pragma	assume,	17	
pragma	restrictions,	17	
no	recursion,	32	
no_unchecked_conversion,	34	
no_use_of_aspect(unchecked_union),	34	
no_use_ofpragma(unchecked_union),	34	

pragma	RestrictionsL	no_dependence,	43	
pragmas	
assume,	17	
pragma	Restrictions,	43	
restrictions,	17	
suppress,	42	

precondition,	17	
Preconditions,	39	
pre-processor	directives,	41	
provision	of	inherently	unsafe	operations,	
42	

	
ravenscar	tasking	profile,	46	
recursion,	32	
redispatching,	37	
	
side-effects	and	order	of	evaluation	of	
operands,	27	

Singular/plural	forms,	24	
Soundness,	12	
SPARK	analyzer,	13	
static	analysis	failure	modes,	14	
Static	type	safety,	14	
static	verification,	31	
string	termination,	22	
subprogram	signature	mismatch,	32	
suppression	of	language-defined	runtime	
checks,	41	

switch	statements	and	static	analysis,	29	
	
templates	and	generics,	35	
type	invariant,	17	
type	invariants,	39	
type	system,	19	
type-breaking	reinterpretation	of	data,	33	

	
unanticipated	exceptions	from	library	
routines,	41	

unchecked	array	copying,	22	
unchecked	array	indexing,	22	
unchecked_conversion,	33	
uncontrolled	format	string,	48	
undefined	behaviour,	44	
Underscores	and	periods,	24	
unsafe	programming,	14,	15,	19,	33,	42	
unspecified	behaviour,	43	
unstructured	programming,	31	
unused	variables,	25	
using	shift	operations	for	multiplication	
and	division,	23	

	
valid,	17	
violations	of	the	Liskov	substitution	
principle	or	the	contract	model,	37	

volatile,	48	
vulnerability	list	
AMV	–	type-breaking	reinterpretation	of	data,	
33	

BJL	–	namespace	issues,	26	
BKK	–	polymorphic	variables,	38	
BLP	–	violations	of	the	Liskov	substitution	
principle	or	the	contract	model,	37	

BQF	–	unspecified	behaviour,	43	
BRS	–	obscure	language	features,	43	
CCB	–	enumerator	issues,	21	
CGA	–	concurrency	–	activation,	46	
CGM	–	lock	protocol	errors,	48	
CGS	–	concurrency	–	premature	termination,	48	
CGT	–	concurrency	–	directed	termination,	47	
CGX	–	concurrent	data	access,	47	
CJM	–	string	termination,	22	
CLL	–	switch	statements	and	static	analysis,	29	
CSJ	–	passing	parameters	and	return	values,	31	
DCM	–	dangling	references	to	stack	frames,	31	
DJS	–	inter-language	calling,	39	
EOJ	–	demarcation	of	control	flow,	29	
EWD	–	unstructured	programming,	31	
EWF	–	undefined	behaviour,	44	
FAB	–	implementation-defined	behaviour,	44	
FIF	–	arithmetic	wrap-around	error,	23	
FLC	–	conversion	error,	21	
GDL	–	recursion,	32	
HCB	–	buffer	boundary	violation,	22	

	

©	ISO/IEC	2021	–	All	rights	reserved	 54	
	

HJW	–	unanticipated	exceptions	from	library	
routines,	41	

IHN	–	type	system,	19	
JCW	–	operator	precedence	and	associativity,	
26	

KOA	–	likely	incorrect	expression,	27	
LAV	–	initialization	of	variables,	26	
LRM	–	extra	intrinsics,	38	
MEM	–	deprecated	language	features,	46	
MXB	–	suppression	of	language-defined	
runtime	checks,	41	

NAI	–	choice	of	clear	names,	24	
NMP	–	pre-processor	directives,	41	
NSQ	–	library	signature,	40	
NYY	–	dynamically-linked	and	self-modifying	
code,	40	

OTR	–	subprobprogram	signature	mismatch,	32	
OYB	–	ignored	error	status	and	unhandled	
exceptions,	33	

PIK	–	using	shift	operations	for	multiplication	
and	division,	23	

PLF	–	floating-point	arithmetic,	20	
PPH	–	redispatching,	37	
RIP	–	inheritance,	36	
RVG	–	pointer	arithmetic,	22	
SAM	–	side-effects	and	order	of	evaluation	of	
operands,	27	

SHL	–	uncontrolled	format	string,	48	
SKL	–	provision	of	inherently	unsafe	operations,	
42	

STR	–	bit	representation,	20	
SYM	–	templates	and	generics,	35	
TEX	–	loop	control	variables,	29	
TRJ	–	argument	passing	to	library	functions,	39	
UJO	–	modifying	constants,	49	
WXQ	–	dead	store,	25	
XFC	–	pointer	type	conversions,	22	
XYH	–	null	pointer	dereference,	23	
XYK	–	dangling	reference	to	heap,	23	
XYL	–	memory	leak	and	heap	fragmentation,	35	
XYQ	–	dead	and	deactivated	code,	28	
XYW	–	unchecked	array	copying,	22	
XYZ	–	unchecked	array	indexing,	22	
XZH	–	off-by-one	error,	30	
YAN	–	deep	vs	shallow	copying,	35	
YOW	–	identifier	name	reuse,	25	
YZS	–	unused	variables,	25	

	

©	ISO/IEC	2021	–	All	rights	reserved	 55	
	

	

