[bookmark: _Toc196097064][bookmark: _Toc196098170][bookmark: _Toc196098348][bookmark: _Toc196098526]The following notes are for reference only and are not suggested for implementation into the documentation, it is provided for background purposes only. If we collectively agree, only minor adjustments to the two mitigation statements are likely needed. I don’t believe we need to incorporate the examples and text below.
6.59.2 Avoidance mechanisms for language users
To avoid the vulnerabilities or mitigate their ill effects, Java software developers can:
· Allocate tasks only for independent parallel executions.	Comment by McDonagh, Sean: Consider rewording …

Allocating tasks solely for independent parallel executions in Java is not always good advice due to several reasons, primarily concerning performance overhead, potential for inefficient resource utilization, and complexity when dealing with dependent tasks or shared state.
Reasons Against Always Allocating Tasks Only for Independent Parallel Executions:
· Task Overhead: The act of creating, managing, and scheduling a task (e.g., using Runnable, Callable, or CompletableFuture) has an inherent overhead. If tasks are very small (fine-grained) and the work they perform is minimal compared to this overhead, parallel execution can actually be slower than sequential execution.
· Resource Contention (Shared State): Truly independent tasks are rare in real-world applications. Many operations involve updating shared resources, such as a database, an in-memory cache, or an instance variable. Coordinating access to these shared resources using locks or synchronized blocks introduces serialization points, which can severely limit or even eliminate the benefits of parallelism, leading to performance bottlenecks and reduced throughput.
· Uneven Workload (Load Balancing Issues): For optimal parallel performance, tasks should be roughly equal in size and duration. If some "independent" tasks are significantly longer than others, it can lead to situations where most processor cores are idle while waiting for the few long-running tasks to complete. This uneven distribution can result in poor overall resource utilization.
· Debugging and Complexity: Parallel programming is inherently more complex than sequential programming. Debugging issues like race conditions, deadlocks, and data corruption in concurrent code can be challenging and time-consuming. If the potential performance gain from parallelism is minimal, the increased complexity and debugging effort may not be worth it.
· Difficulty with Dependent Operations: Many real-world problems involve task dependencies, where one task cannot start until another has been completed. Strictly adhering to "independent tasks only" makes it difficult to model these problems efficiently, forcing awkward workarounds or inefficient sequential handling of dependent steps. Modern Java constructs like CompletableFuture help manage dependencies, but this is a counterexample to the original strict advice.

In summary, a more balanced approach considers the granularity of tasks, the cost of coordination and communication, and the actual performance benefits relative to the increased complexity and overhead. A preferred alternative in such scenarios is to use the CompletableFuture API, which allows for managing task chains and dependencies effectively.

Consider a scenario where taskB cannot start until taskA is completed, and both run asynchronously. If you treat taskA and taskB as completely independent tasks (e.g., submitting them separately to an ExecutorService without managing their relationship), you may lose control over execution order and potential data flow, leading to race conditions or incorrect results if taskB runs before taskA finishes:

package dependanttasks;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class DependantTasks {
 public static void main(String[] args) {
 ExecutorService executor = Executors.newFixedThreadPool(2);
 // Problematic approach: tasks run independently, no guaranteed
 // order/dependency management
 executor.submit(() -> {
 System.out.println("Task A processing data...");
 // produce some result needed by Task B
 });
 executor.submit(() -> {
 // This might run before Task A finishes, leading to errors
 System.out.println("Task B needs data from Task A...");
 });
 executor.shutdown();
 }
}

Output:
Task B needs data from Task A...
Task A processing data...
BUILD SUCCESSFUL (total time: 0 seconds))

The CompletableFuture API is the preferred approach in this case because it explicitly chains the execution, ensuring taskB runs only after taskA is complete and the result is available.

package dependanttaskalternative;
import java.util.concurrent.*;

public class DependantTaskAlternative {
 public static void main(String[] args) {
 ExecutorService executor = Executors.newFixedThreadPool(2);
 // Preferred approach: chain tasks using CompletableFuture for dependency
 // management
 CompletableFuture<String> futureA = CompletableFuture.supplyAsync(() -> {
 System.out.println("Task A is producing a result.");
 return "Data from Task A";
 }, executor);

 CompletableFuture<Void> futureB = futureA.thenAcceptAsync(resultFromA -> {
 // This block executes only AFTER futureA completes, and receives its result
 System.out.println("Task B received: " + resultFromA);
 System.out.println("Task B is processing.");
 }, executor);

 // Ensure both complete
 futureB.join();
 executor.shutdown();
 }
}

Output:
Task A is producing a result.
Task B received: Data from Task A
Task B is processing.
BUILD SUCCESSFUL (total time: 0 seconds)

[bookmark: _Toc196097073][bookmark: _Toc196098179][bookmark: _Toc196098357][bookmark: _Toc196098535]6.62.2 Avoidance mechanisms for language users
To avoid the vulnerabilities or mitigate their ill effects, Java software developers can:
· If using the class ThreadGroup, use the ThreadGroup.setDefaultUncaughtExceptionHandler() method to handle unexpected exceptions raised in threads of a group.	Comment by Stephen Michell: Questionable. Bring back to next meeting.	Comment by Stephen Michell: Under discussion 8 October 2025. Continue.	Comment by McDonagh, Sean: The advice is technically correct if using ThreadGroup, but it is less relevant today because ThreadGroup itself is generally avoided. Focus on using ExecutorService and Thread.UncaughtExceptionHandler for more effective and modern thread management and exception handling.

The advice is outdated and generally considered poor practice in modern Java development.

Ref: https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/ThreadGroup.html

API Note:
“Thread groups provided a way in early Java releases to group threads and provide a form of job control for threads. Thread groups supported the isolation of applets and defined methods intended for diagnostic purposes. It should be rare for new applications to create ThreadGroups and interact with this API.”

While ThreadGroup technically provides a mechanism for uncaught exception handling, the class itself is largely obsolete, can be insecure, and many of its methods are deprecated or marked for removal in future Java versions (e.g., in JDK 25).

Here is a breakdown of why this advice is not recommended and what modern alternatives exist:
· ThreadGroup is Obsolete: The class was primarily useful in conjunction with the now-removed Security Manager and offers little real functionality in modern Java.
· Security Concerns: The original security model relying on ThreadGroup has been abandoned, as it could lead to insecure operations.
· Limited Functionality: Beyond exception handling and basic grouping, ThreadGroup provides minimal useful functionality.
· Better Alternatives Exist: The functionality needed for handling uncaught exceptions has been available through better, more flexible mechanisms since Java 5.

Modern Java Alternatives for Exception Handling
Instead of using ThreadGroup, the current best practices involve using Thread.UncaughtExceptionHandler directly or leveraging the exception handling built into modern concurrency utilities like ExecutorService.
· For individual threads: Use Thread.setUncaughtExceptionHandler. This is the modern, thread-specific way to handle exceptions. When a thread terminates due to an uncaught exception, the JVM queries the thread for its specific handler and invokes it.
· For a global default: Use Thread.setDefaultUncaughtExceptionHandler. This sets a JVM-wide default handler for any thread that does not have its own specific handler set. Note that this mechanism is not thread-safe if multiple parts of a large application try to set different global handlers concurrently, and it's generally best used for global logging or reporting mechanisms in application startup.
· For managed thread pools: Use ExecutorService with Callable and Future. When using an ExecutorService, exceptions thrown from tasks submitted via submit() are wrapped in a ExecutionException and can be retrieved when calling Future.get(). This is the standard, strong way to manage exceptions in structured concurrent programming.

In summary, modern Java applications should use the Thread.UncaughtExceptionHandler interface directly or rely on the mechanisms provided by the java.util.concurrent package for improved error management.

