Date: 2023-12-18
ISO/IEC/JTC 1/SC 22/WG 23 N1359
ISO/IEC WD 24772-2
Edition 1
ISO/IEC JTC 1/SC 22/WG 23
[bookmark: CVP_Secretariat_Location]Secretariat: ANSI
Programming languages — Avoiding vulnerabilities in programming languages – Part 2: Vulnerability descriptions for the programming language Ada

Document type: International standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

Langages de programmation — Conduite pour éviter les vulnérabilités dans les langages de programmation — Partie 2: Description des vulnérabilités pour le langage de programmation Ada

Warning
This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice
This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester:
ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

	
Contents
Foreword	vi
Introduction	vii
1. Scope	8
2. Normative references	8
3. Terms and definitions, symbols and conventions	8
4 Using this document	13
5 General language concepts and primary avoidance mechanisms	14
5.1 General Ada language concepts	14
6 Specific guidance for Ada	21
6.1 General	21
6.2 Type system [IHN]	21
6.3 Bit representation [STR]	22
6.4 Floating-point arithmetic [PLF]	22
6.5 Enumerator issues [CCB]	23
6.6 Conversion errors [FLC]	24
6.7 String termination [CJM]	25
6.8 Buffer boundary violation (buffer overflow) [HCB]	25
6.9 Unchecked array indexing [XYZ]	25
6.10 Unchecked array copying [XYW]	25
6.11 Pointer type conversions [HFC]	26
6.12 Pointer arithmetic [RVG]	26
6.13 Null pointer dereference [XYH]	26
6.14 Dangling reference to heap [XYK]	27
6.15 Arithmetic wrap-around error [FIF]	27
6.16 Using shift operations for multiplication and division [PIK]	27
6.17 Choice of clear names [NAI]	28
6.18 Dead store [WXQ]	29
6.19 Unused variable [YZS]	29
6.20 Identifier name reuse [YOW]	30
6.21 Namespace issues [BJL]	30
6.22 Missing initialization of variables [LAV]	30
6.23 Operator precedence and associativity [JCW]	32
6.24 Side-effects and order of evaluation of operands [SAM]	32
6.25 Likely incorrect expression [KOA]	33
6.26 Dead and deactivated code [XYQ]	34
6.27 Switch statements and static analysis [CLL]	34
6.28 Non-demarcation of control flow [EOJ]	35
6.29 Loop control variable abuse [TEX]	35
6.30 Off-by-one error [XZH]	35
6.31 Unstructured programming [EWD]	36
6.32 Passing parameters and return values [CSJ]	37
6.33 Dangling references to stack frames [DCM]	37
6.34 Subprogram signature mismatch [OTR]	38
6.35 Recursion [GDL]	39
6.36 Ignored error status and unhandled exceptions [OYB]	39
6.37 Type-breaking reinterpretation of data [AMV]	40
6.38 Deep vs. shallow copying [YAN]	40
6.39 Memory leak and heap fragmentation [XYL]	41
6.40 Templates and generics [SYM]	41
6.41 Inheritance [RIP]	42
6.42 Violations of the Liskov substitution principle or the contract model [BLP]	42
6.43 Redispatching [PPH]	43
6.44 Polymorphic variables [BKK]	43
6.45 Extra intrinsics [LRM]	44
6.46 Argument passing to library functions [TRJ]	44
6.47 Inter-language calling [DJS]	45
6.48 Dynamically-linked code and self-modifying code [NYY]	45
6.49 Library signature [NSQ]	45
6.50 Unanticipated exceptions from library routines [HJW]	46
6.51 Pre-processor directives [NMP]	46
6.52 Suppression of language-defined run-time checking [MXB]	47
6.53 Provision of inherently unsafe operations [SKL]	47
6.54 Obscure language features [BRS]	47
6.55 Unspecified behaviour [BQF]	48
6.56 Undefined behaviour [EWF]	49
6.57 Implementation-defined behaviour [FAB]	50
6.58 Deprecated language features [MEM]	51
6.59 Concurrency – Activation [CGA]	51
6.60 Concurrency – Directed termination [CGT]	51
6.61 Concurrent data access [CGX]	52
6.62 Concurrency – Premature termination [CGS]	52
6.63 Lock protocol errors [CGM]	53
6.64 Reliance on external format strings [SHL]	54
6.65 Modifying constants [UJO]	54
7 Language specific vulnerabilities for Ada	54
8 Implications for standardization	55
Bibliography	56
Index	58

[bookmark: _5.1_General_Ada][bookmark: _Toc443470358][bookmark: _Toc450303208][bookmark: _Toc358896355][bookmark: _Toc85562606][bookmark: _Toc86990512]
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International Organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use
of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by ISO/IEC/JTC 1 Information Technology, Subcommittee SC 22, Programming Languages
A list of all parts of ISO IEC 24772 can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

[bookmark: _Toc443470359][bookmark: _Toc450303209]
[bookmark: _Toc358896356][bookmark: _Toc85562607][bookmark: _Toc86990513]Introduction
This document is part of a series of documents that describe how vulnerabilities arise in programming languages. ISO/IEC 24772-1 addresses vulnerabilities that can arise in any programming language and hence is language independent. The other parts of the series, including this document, are dedicated to individual languages.
This document provides guidance for the programming language Ada, so that application developers considering Ada or using Ada will be better able to avoid the programming constructs that can lead to vulnerabilities in software written in the Ada language and their attendant consequences. This document can also be used by developers to select source code evaluation tools that can identify and eliminate some constructs that could lead to vulnerabilities in their software. This document can also be used in comparison with companion documents and with the language-independent standard, ISO/IEC 24772-1 Programming Languages — Avoiding vulnerabilities in programming languages — Part 1: Language-independent catalogue of vulnerabilities to select a programming language that provides the appropriate level of confidence that potential problems can be avoided.
It should be noted that this document is inherently incomplete. It is not possible to provide a complete list of programming language vulnerabilities because new weaknesses are discovered continually. Any such document can only describe those that have been found, characterized, and determined to have sufficient probability and consequence.

	
	ISO/IEC WD 24772-2(E)

	© ISO/IEC 2021 – All rights reserved
		

viii
	
			© ISO/IEC 2021 – All rights reserved

ix
	© ISO/IEC
2022 – All rights reserved
	

Programming Languages — Avoiding vulnerabilities in programming languages – Part 2: Vulnerability descriptions for the programming language Ada

[bookmark: _Toc358896357][bookmark: _Toc85562608][bookmark: _Toc86990514][bookmark: _Toc443461091][bookmark: _Toc443470360][bookmark: _Toc450303210][bookmark: _Toc192557820][bookmark: _Toc336348220]1. Scope	Comment by Stephen Michell: From SB: p.1
 "Avoidance mechanisms for avoiding vulnerabilities ..." sounds redundant.

p. 18
 For Detect_Blocking, we get rid of "A configuration pragma that", but
 for Restrictions we add that same text. That seems odd, but not wrong.

p.20
 We use the term "avoidance mechanism" all over the place (including in
 the title of the document), but we shy away from it ithe heading for the
 middle column of the table. Why?

p. 24
 Looks like a typo: Consult a numeric analyst 24 hen

p.33
 Maybe some text still needs to be written? [discuss 'junk initialization']
 More about this on the next page:
 [move rationale for junk initialization avoidance to 6.22.1]

p.40
 Do we care about inconsistent decisions about whether to replace
 "Follow" with "follow", vs. just replacing "F" with "f" and leaving
 the "ollow" unchanged? Probably unimportant, but it caught my eye
 when done both ways on the same page.

p.54
 This new wording seems awkward:
 Some erroneous execution situations are less common, but clearly in any
 given Ada application, care is required when using features such as

 Perhaps
 All erroneous execution situations are to be avoided, but special
 care should be exercised particularly when using these features:
 ?	Comment by Stephen Michell: Finished.
This document specifies software programming language vulnerabilities to be avoided in the development of systems where assured behaviour is required for security, safety, mission-critical and business-critical software. In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.
Vulnerabilities described in this document record the way that the vulnerability described in the language-independent document ISO/IEC ISO/IEC 24772-1:2022 are manifested in Ada.
[bookmark: _Toc358896358][bookmark: _Toc85562609][bookmark: _Toc86990515][bookmark: _Toc443461093][bookmark: _Toc443470362][bookmark: _Toc450303212][bookmark: _Toc192557830]2. Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 80000–2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be use in the natural sciences and technology
[bookmark: _Toc358896359][bookmark: _Toc443461094][bookmark: _Toc443470363][bookmark: _Toc450303213][bookmark: _Toc192557831]
ISO/IEC 24772-1:2022, Programming languages - Avoiding vulnerabilities in programming languages - Part 1: Language-independent catalogue of vulnerabilities

ISO/IEC 8652:2022 Programming languages – Programming language Ada
[bookmark: _Toc85562610][bookmark: _Toc86990516]3. Terms and definitions	Comment by Stephen Michell: From TT:
On Fri, Dec 22, 2023 at 5:22 PM Stephen Baird <baird@adacore.com> wrote:
...
p.1
 "Avoidance mechanisms for avoiding vulnerabilities ..." sounds redundant.

Agreed. How about simply: Mechanisms for avoiding vulnerabilities ..."

Or if you want the term "avoidance mechanisms" in the title, then perhaps:

"Avoidance mechanisms for mitigating vulnerabilities ..."
 or

"Avoidance mechanisms for addressing vulnerabilities ..."

 or

"Avoidance mechanisms applicable to vulnerabilities ..."

p. 18
 For Detect_Blocking, we get rid of "A configuration pragma that", but
 for Restrictions we add that same text. That seems odd, but not wrong.

And Normalize_Scalars also still says "A configuration pragma that ...". Is there a rhyme or reason for the inconsistency?

p.20
 We use the term "avoidance mechanism" all over the place (including in
 the title of the document), but we shy away from it ithe heading for the
 middle column of the table. Why?

Furthermore, the term is used in the caption for the table itself.

p. 24
 Looks like a typo: Consult a numeric analyst 24 hen

This is on page 23 in my copy...

p.33
 Maybe some text still needs to be written? [discuss 'junk initialization']
 More about this on the next page:
 [move rationale for junk initialization avoidance to 6.22.1]

Right. Perhaps this part of the text should be moved from 6.22.2 to 6.22.1:
Initializing a variable with an inappropriate default value such as zero can result in hiding underlying problems, because the compiler or other static analysis tools will then be unable to detect that the variable has been used prior to receiving a correctly computed value.

p.40
 Do we care about inconsistent decisions about whether to replace
 "Follow" with "follow", vs. just replacing "F" with "f" and leaving
 the "ollow" unchanged? Probably unimportant, but it caught my eye
 when done both ways on the same page.

Page 39 in my copy...

p.54
 This new wording seems awkward:
 Some erroneous execution situations are less common, but clearly in any
 given Ada application, care is required when using features such as

 Perhaps
 All erroneous execution situations are to be avoided, but special
 care should be exercised particularly when using these features:
 ?

Agreed. Steve's suggestion seems like an improvement.	Comment by Stephen Michell: Finished.
[bookmark: _Toc358896360]3.1 General
For the purposes of this document, the terms and definitions given in ISO/IEC 2382–1, in ISO/IEC 24772-1, and the following apply. Other terms are defined where they appear in italic type.
3.2 abnormal state
state of an object whose initialization or assignment has been disrupted by an abort or the failure of a language-defined check	Comment by Stephen Michell: Since we have no symbols and conventions, we now have only one level of subclauses. We have the opportunity to organize them by category. 	Comment by Stephen Michell: Done.
3.3 access-to-object
pointer to an object.
3.4 access-to-subprogram
pointer to a subprogram (function or procedure).
3.5 access type
type for objects that designate (point to) objects or subprograms that is often called a pointer type in other languages
3.6 access value
value of an access type that is either null or designates another object or subprogram
3.7 allocator
construct that allocates storage from the heap or from a storage pool
3.8 aspect
specifiable property of an entity
3.9 atomic
characteristic of a volatile object that guarantees that every access to the object is an indivisible access to the entity in memory
3.10 attribute
characteristic of a declared entity that can be queried by special syntax to return a value corresponding to the requested characteristic
3.11 bit ordering
implementation defined value that is either High_Order_First or Low_Order_First that permits the specification or query of the way that memory bits are numbered within a representation clause
3.12 bounded error
error that need not be detected either prior to or during execution, but if not detected falls within a bounded range of possible effects
3.13 case statement
statement that provides multiple paths of execution dependent upon the value of the selecting expression, but which will have only one of the alternative sequences selected
3.14 case expression
expression that provides multiple paths of execution dependent upon the value of the selecting expression, but which will have only one of the alternative dependent expressions evaluated
3.15 case choices
alternatives defined in the case statement or case expression which are required to be of the same type as the type of the selecting expression in the case statement or case expression, and by which all possible values of the selecting expression must be covered
3.16 compilation unit
smallest Ada syntactic construct that can be submitted to the compiler and that is usually held in a single compilation file
3.17 configuration pragma
directive to the compiler that is used to select partition-wide or system-wide options and that applies to all compilation units appearing in the compilation or all future compilation units compiled into the same environment
3.18 controlled type
type descended from the language-defined type controlled or limited_controlled which is a specialized type in Ada where the declarer can tightly control the initialization, assignment, and finalization of objects of the type
3.19 dead store
assignment to a variable that is not used in subsequent instructions
3.20 default expression
expression that is used to initialize a component, formal object, or formal parameter when an explicit expression, actual object, or actual parameter is not provided
3.21 discrete type
integer type or enumeration type
3.22 discriminant
parameter for a composite type that is used at elaboration of each object of the type to configure the object
3.23 endianness
byte ordering
3.24 enumeration representation clause
clause used to specify the internal codes for enumeration literals
3.25 enumeration type
discrete type defined by an enumeration of its values, which are named by identifiers or character literals, including the types Character and Boolean
3.26 erroneous execution
unpredictable result of an execution arising from an error that is not bounded by the language, but that need not be detected by the implementation either prior to or during run-time
3.27 exception
mechanism to detect an exceptional situation by explicit user code or by language-defined checks to initiate processing dedicated to recover from the exceptional situation
3.28 expanded name
name that is disambiguated from other identical names by prepending the name with the name of the enclosing scope
3.29 fixed-point types
real-valued types with a specified error bound (called the ‘delta’ of the type) that provide arithmetic operations carried out with fixed precision rather than the relative precision of floating-point types
3.30 generic formal subprogram
parameter to a generic package used to specify a subprogram or operator
3.31 hiding
process where a declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its scope
3.32 homograph
property of two declarations such that they have the same name, and do not overload each other according to the rules of the language
3.33 identifier
simplest form of a name.
3.34 idempotent behaviour
behaviour that is a property of an operation that has the same effect whether applied just once or multiple times
3.35 implementation defined
defined by a set of possible effects of a construct where the implementation can choose to implement any effect in the set of effects
3.36 invalid representationn
representation of an object that does not represent any valid value of the object’s subtype
3.37 modular type
integer type with values in the range 0.. modulus – 1 with wrap-around semantics for arithmetic operations, bit-wise “and” and “or” operations, and when defined in package Interfaces, arithmetic and logical shift operations
3.38 obsolescent feature
language feature that has been declared to be obsolescent or deprecated and which is documented in Annex J of ISO/IEC 8652
3.39 operational and representation attributes
values of certain implementation-dependent characteristics obtained by querying the applicable attributes and possibly specified by the user
3.40 overriding indicator
indicator that specifies the intent that an operation does or does not override ancestor operations by the same name, and used by the compiler to verify that the operation does (or does not) override an ancestor operation
3.41 partition
part of a program that consists of a set of library units such that each partition is permitted to execute in a separate address space, possibly on a separate computer, and can execute concurrently with and communicate with other partitions
3.42 pointer
access object or access value
3.43 pragma
a directive to the compiler
3.44 range check
run-time check that ensures the result of an operation is contained within the range of allowable values for a given type or subtype, such as the check done on the operand of a type conversion.
3.45 record representation clause
a mechanism to specify the layout of components within records, that is, their order, position, and size
3.46 scalar type
any one of numeric, Boolean, enumeration, character and access types
3.47 selecting expression
discrete expression that is part of a case statement or a case expression and that determines which choice is taken in executing the case statement or evaluating the case expression
3.48 static expression
expression with statically known operands that is computed with exact precision by the compiler
3.49 storage place attribute
integer attributes that specify, for a component of a record, the component position and size within the record
3.50 storage pool
named location in an Ada program where all objects of a single access type will be allocated
3.51 storage subpool
separately reclaimable subdivision of a storage pool that is identified by a subpool handle
3.52 subtype declaration
construct that allows programmers to declare a named entity that defines a possibly restricted subset of values of an existing type or subtype, typically by imposing a constraint, such as specifying a smaller range of values
3.53 task
separate thread of control that proceeds independently and concurrently between the points where it interacts with other tasks from the same program
3.54 unused variable
variable that is declared but neither read nor written to in the program
3.55 volatile
characteristic of an object that guarantees that updates to the object are always seen in the same order by all tasks, and all reads are directly from memory
[bookmark: _4_Language_concepts][bookmark: _Toc85562611][bookmark: _Toc86990517][bookmark: _Ref336413302][bookmark: _Ref336413340][bookmark: _Ref336413373][bookmark: _Ref336413480][bookmark: _Ref336413504][bookmark: _Ref336413544][bookmark: _Ref336413835][bookmark: _Ref336413845][bookmark: _Ref336414000][bookmark: _Ref336414024][bookmark: _Ref336414050][bookmark: _Ref336414084][bookmark: _Ref336422881][bookmark: _Toc358896485]4 Using this document
ISO/IEC 24772-1:2022 subclause 4.2 documents the process of creating software that is safe, secure and trusted within the context of the system in which it is fielded. The Ada programming language was explicitly designed for safety, security and the early elimination of errors from Ada programs. Nevertheless, as this document shows, vulnerabilities exist in the Ada programming environment, and organizations are responsible for understanding and addressing the programming language issues that arise in the context of the real-world environment in which the program will be fielded.
Organizations following this document, in addition to following subclause 4.2 of ISO/IEC 24772-1 can:
1. Identify and analyze weaknesses in the product or system, including systems, subsystems, modules, and individual components;
2. Identify and analyze sources of programming errors;
3. Determine acceptable programming paradigms and practices to avoid vulnerabilities using guidance drawn from clauses 5.3 and 6 in this document;
4. Determine avoidance and mitigation mechanisms using clause 6 of this document as well as other technical documentation;
5. Map the identified acceptable programming practices into coding standards;
6. Select and deploy tooling and processes to enforce coding rules or practices;
7. Implement controls (in keeping with the requirements of the safety, security and general requirements of the system) that enforce these practices and procedures to ensure that the vulnerabilities do not affect the safety and security of the system under development.
Tool vendors can use this document by providing tools that diagnose the vulnerabilities described in this document. They can also document to their users those vulnerabilities that cannot be diagnosed by the tool.
Programmers and software designers can use this document by following the architectural and coding guidelines of their organization that implement recommendations from this document.
[bookmark: _Toc85562612][bookmark: _Toc86990518]5 General language concepts and primary avoidance mechanisms
[bookmark: _5.1_General_Ada_1][bookmark: _Toc85562613][bookmark: _Toc86990519]5.1 General Ada language concepts
5.1.1 Ada language design
Ada has been designed with emphasis on software engineering principles that support the development of high-integrity applications. For example, Ada is strongly typed thereby preventing vulnerabilities associated with type mismatch. Similarly, Ada includes boundary checking on arrays as part of the standard language which prevents buffer overflow vulnerabilities. Most of the language can be used to develop applications without known vulnerabilities. Other views of avoiding programming mistakes and design flaws are addressed by the Ada Quality Style and Guide [1], Barnes [2] [3], the Common Weakness Enumeration (CWE) [6], [26] and [29]. For specific guidance regarding programming in safety and/or security environments see [5], [6], [11], [12], [18], [19], [24], and [25].
5.1.2 Enumeration type
The defining identifiers and defining character literals of an enumeration type are required to be distinct. The predefined order relations between values of the enumeration type follow the order of corresponding position numbers.
5.1.3 Exception
There is a set of predefined exceptions in Ada in package Standard: Constraint_Error, Program_Error, Storage_Error, and Tasking_Error; one of them is raised when certain language-defined checks fail. The standard libraries also define several exceptions that are raised when checks in the libraries fail. User code can define, raise and handle exceptions explicitly.
5.1.4 Hiding
Where hidden from all visibility, a declaration is not visible at all (neither using a direct_name nor a selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using an expanded name is still possible.
5.1.5 Implementation defined
Implementations are required to document their behaviour in implementation-defined situations.
5.1.6 Type conversions
Ada uses a strong type system based on name equivalence rules. It distinguishes types, which embody statically checkable equivalence rules, and subtypes, which associate static or dynamic properties with types, for example, index ranges for array subtypes or value ranges for numeric subtypes. Subtypes are not types and their values are implicitly convertible to all other subtypes of the same type. All subtype and type conversions ensure by static or dynamic checks that the converted value is within the value range of the target type or subtype. If a static check fails, then the program is rejected by the compiler. If a dynamic check fails, then an exception Constraint_Error is raised.
To affect a transition of a value from one type to another, three kinds of conversions can be applied in Ada:
a) Implicit conversions: there are few situations in Ada that allow for implicit type conversions. An example is the assignment of a value of a type to a polymorphic variable of an encompassing class. In all cases where implicit type conversions are permitted, neither static nor dynamic type safety or application type semantics (see below) are endangered by the conversion.
b) Explicit conversions: various explicit conversions between related types are allowed in Ada. All such conversions ensure by static or dynamic rules that the converted value is a valid value of the target type. Violations of subtype properties cause an exception to be raised by the conversion.
c) Unchecked conversions: Conversions that are obtained by instantiating the generic subprogram Unchecked_Conversion are unsafe and enable all vulnerabilities mentioned in subclause 6.3 as the result of a breach in a strong type system. Unchecked_Conversion is occasionally needed to interface with type-less data structures, for example, hardware registers.
A guiding principle in Ada is that, with the exception of using instances of Unchecked_Conversion, no undefined semantics can arise from conversions and the converted value is a valid value of the target type.
5.1.7 Operational and Representation Attributes
Some attributes can be specified by the user; for example:
· X’Alignment: allows the alignment of objects on a storage unit boundary at an integral multiple of a specified value.
· X’Size: denotes the size in bits of the representation of the object.
· X’Component_Size: denotes the size in bits of components of the array type X.
5.1.8 User-defined types
Ada allows the usual user-defined types such as records, classes (called tagged records), or access types. In addition, Ada allows for user-defined scalar types which permit specification of value ranges, value constraints. In addition to these properties , Ada allows for the specification of precision for floating-point and fixed-point types.
More advanced typing capabilities of Ada allow the user to specify types for communicating concurrently executing entities (tasks) and for synchronized data structures (protected objects).
The typing rules of the language prevent intermixing of objects and values of distinct types.
5.1.9 Compiler directives
Ada supports compiler directives in the form of aspect specifications, aspect clauses, and configuration pragmas. As an obsolescent feature, certain aspects can be specified by similarly named pragmas as well. We summarize below the aspects and configuration pragmas that are relevant to this document.
5.1.9.1 Aspect Atomic
Specifies that all reads and updates of an object are indivisible.
5.1.9.2 Aspect Atomic_Components
Specifies that all reads and updates of an element of an array are indivisible.
5.1.9.3 Aspect Convention
Specifies that an Ada entity should use the conventions of another language.
5.1.9.4 Pragma Detect_Blocking
Specifies that all potentially blocking operations within a protected operation shall be detected, resulting in the Program_Error exception being raised.
5.1.9.5 Pragma Discard_Names
Specifies that storage used at run-time for the names of certain entities, particularly exceptions and enumeration literals, can be reduced by removing name information from the executable image.
5.1.9.6 Aspect Export
Specifies an Ada entity to be accessed by a foreign language, thus allowing an Ada subprogram to be called from a foreign language, or an Ada object to be accessed from a foreign language.
5.1.9.7 Aspect Import
Specifies an entity defined in a foreign language that then can be accessed from an Ada program, thus allowing a foreign-language subprogram to be called from Ada, or a foreign-language variable to be accessed from Ada.
5.1.9.8 Pragma Normalize_Scalars:
Specifies that an otherwise uninitialized scalar object is set to a predictable value, but out of range if possible.
5.1.9.9 Aspect Packk
Specifies that storage minimization should be the main criterion when selecting the representation of a composite type.
5.1.9.10 Pragma Restrictions
Specifies that certain language features are not to be used in a given application. For example, the pragma Restrictions (No_Obsolescent_Features) prohibits the use of any deprecated features.
5.1.9.11 Pragma Suppress
Specifies that a run-time check need not be performed because the programmer asserts it will always succeed.
5.1.9.12 Aspect Unchecked_Unionn
Specifies an interface correspondence between a given discriminated type and some C union. The aspect, if True, specifies that the associated type will be given a representation that leaves no space for its discriminant(s).
5.1.9.13 Aspect Volatile
Applicable to a type, an object, or a component, and specifies that the associated objects are volatile.
5.1.9.14 Aspect Volatile_Components
Applicable to an array type or an array object, and specifies that the associated components are volatile.
5.1.10 Separate Compilation
Ada requires that calls on libraries are checked for invalid situations as if the called routine were part of the current compilation.
5.1.11 Storage Pool
A storage pool can be sized exactly to the requirements of the application by allocating only what is needed for all objects of a single type without using the centrally managed heap. Exceptions raised due to memory failures in a storage pool will not adversely affect storage allocation from other storage pools or from the heap. Storage pools for types whose values are of equal length do not suffer from fragmentation. Storage pools can be divided into subpools, to allow efficient reclamation of a portion of a storage pool.
The configuration pragma Default_Storage_Pool(null): can be used to prohibit allocators for access types that do not specify their own Storage_Pool or Storage_Size. In addition, the following Ada restrictions disallow the use of allocators in various contexts:
pragma Restrictions(No_Allocators): prevents the use of all allocators.
Pragma Restrictions(No_Standard_Allocators_After_Elaboration): prevents the use of allocators after the main program has commenced.
Pragma Restrictions(No_Local_Allocators): prevents the use of allocators except within expressions that are evaluated as part of library-unit elaboration.
Pragma Restrictions(No_Implicit_Heap_Allocations): prevents the implicit use of heap allocation by the Ada implementation, but allows explicit allocators.
Pragma Restrictions(No_Anonymous_Allocators): prevents the use of allocators having an anonymous type.
Pragma Restrictions(No_Access_Parameter_Allocators): prevents the use of allocators as the actual parameter for an access parameter.
Pragma Restrictions(No_Coextensions): prevents the use of allocators as the initial value for an access discriminant.
Pragma Restrictions(No_Unchecked_Deallocations): prevents allocated storage from being deallocated and hence effectively enforces storage pool memory approaches or a completely static approach to access types. Storage pools are not affected by this restriction as explicit routines to free memory for a storage pool can be created
5.1.12 Unsafe programming
[bookmark: _Toc358896486]In recognition of the occasional need to step outside the type system or to perform “risky” operations, Ada provides clearly identified language features to do so. Examples include the generic Unchecked_Conversion for unsafe type conversions, Unchecked_Deallocation for the deallocation of heap objects regardless of the existence of surviving references to the object, and Address_To_Access_Conversions for converting addresses into access values. If unsafe programming is employed in a unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointer to a local object, using the Unchecked_Access attribute. A Restriction pragma can be used to disallow uses of these language-defined generic units, as well as Unchecked_Access. The pragma Suppress allows an implementation to omit certain run-time checks.
5.2 Primary avoidance mechanisms
The avoidance mechanisms of this subclause are restatements of recommendations from clause 6 that have been identified as the most frequent or noteworthy recommendations from clause 6. Table 1 identifies the most relevant avoidance mechanisms to be used to prevent vulnerabilities in Ada.
In addition to the generic programming avoidance mechanisms from ISO/IEC 24772-1:2022 subclause 5.4, additional avoidance mechanisms from this subclause apply specifically to the Ada programming language. Clause 6 of this document provides avoidance mechanisms to mitigate against known vulnerabilities in Ada.
Table 1: Primary Ada avoidance mechanisms for software developers
	Number
	Avoidance mechanism
	Applicable vulnerabilities

	1
	Specify pre- and postconditions on subprograms.
	6.32 [CSJ], 6.34 [OTR],
6.46 [TRJ]

	2
	Avoid the use of the abort statement.
	6.56 [EWF], 6.60 [CGT],
6.62 [CGS]

	3
	Prohibit the use of features explicitly identified as unsafe, such as Unchecked_Deallocation, Unchecked_Conversion, or Unchecked_Access, unless absolutely necessary and then with extreme caution.
	6.2 [IHN], 6.3 [STR],
6.11 [HFC], 6.14 [XYK],
6.33 [DCM], 6.53 [SKL],
6.56 [EWF], 6.3 [STR]

	4
	Use user-defined types in preference to predefined types, including range and precision as needed.
	6.2 [IHN], 6.4 [PLF],
6.6 [FLC], 6.57 [FAB]

	5
	Protect all data shared between tasks within a protected object, or use Atomic operations to synchronize cooperating tasks
	6.3 [STR], 6.56 [EWF],
6.61 [CGX]

	6
	Exploit the type and subtype system of Ada, and pre- and postconditions, to express constraints on the values of parameters.
	6.46 [TRJ]

	7
	Whenever possible, use the ‘First, ‘Last, and ‘Range attributes for loop termination. If the ‘Length attribute is used then extra care is necessary to ensure that the length expression considers the starting index value for the array.
	6.14 [XYK], 6.30 [XZH]

	8
	Use objects of controlled types to ensure that resources are properly released if a scope is exited prematurely.
	6.14 [XYK], 6.22 [LAV],
6.39 [XYL], 6.60 [CGT], 6.62 [CGS]

	9
	Specify type invariants.
	6.44 [BKK], 6.46 [TRJ]

	10
	Prohibit the suppression of checks provided by the language unless the absence of the errors checked against has been verified by static analysis tools.
	6.6 [FLC], 6.9 [XYZ]
6.33 [DCM], 6.52 [MXB],
6.56 [EWF]

	11
	Use static analysis tools to detect erroneous or undefined behaviours and to preclude the raising of implicit exceptions.
	6.6 [FLC], 6.18 [WXQ],
6.19 [YZS], 6.20 [YOW],
6.24 [SAM], 6.25 [KOA],
6.52 [MXB], 6.56 [EWF]

	12
	Use Ada’s support for whole-array operations, such as for assignment and comparison, plus aggregates for whole-array initialization, to reduce the use of indexing.
	6.9 [XYZ], 6.10 [XYW],
6.30 [XZH]

	13
	Include exception handlers for every task, so that their unexpected termination can be handled and possibly communicated to the execution environment.
	6.36 [OYB], 6.60 [CGT],
6.62 [CGS]

	14
	Avoid the others choice in case statements and aggregates.
	6.5 [CCB], 6.27 [CLL]

These vulnerability guidelines can be categorized into several functional groups. Items 3, 10 and 11 are applicable to Exceptional and Erroneous Behaviours. Mitigation methods associated with Types, Subtypes, and Contracts include Items 1, 4, 6, and 9. Those techniques appropriate for Statements and Operations consist of Items 7, 12, and 14. Finally, Items 2, 5, and 8 are pertinent to Concurrency in applications.

[bookmark: _Toc85562614][bookmark: _Toc86990520]6 Specific avoidance mechanisms for Ada
[bookmark: _Toc85562615][bookmark: _Toc86990521]6.1 General
This subclause provides information specific to the Ada programming language about the possible presence of vulnerabilities as described in ISO/IEC 24772-1:2022 and provides specific avoidance mechanisms for Ada code. This subclause mirrors ISO/IEC 24772-1:2024 clause 6 in that, for example, the vulnerability “Type System [IHN]” is found in subclause 6.2 of that document, and the matching Ada specific guidance is found in subclause 6.2 of this document.
[bookmark: _Ref86271451][bookmark: _Ref86272120][bookmark: _Toc85562616][bookmark: _Toc86990522]6.2 Type system [IHN]
6.2.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.2 applies to Ada.
Implicit conversions cause no application vulnerability, as long as the resulting exceptions are properly handled.
Assignment between types cannot be performed except by using an explicit conversion.
Failure to apply correct unit conversion factors when explicitly converting among types for different units will result in application failures due to incorrect values.
When interfacing with type-less systems or after applying Unchecked_Conversion, the ‘Valid attribute can be used to ascertain the validity of obtained values.
Failure to handle the exceptions raised by failed checks of dynamic subtype properties causes the execution of the whole system, a task, or an inner nested scope to halt abruptly.
Unchecked conversions circumvent the type system and therefore can cause unspecified behaviour (see 6.37 Type-breaking reinterpretation of data [AMV]).
6.2.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.2.5 of ISO/IEC 24772-1:2024.
· Apply the predefined ‘Valid attribute for a given subtype and to any value as needed to ascertain whether the value is valid for the subtype.
· Consider restricting explicit conversions to the bodies of user-provided conversion functions that are then used as the only means to effect the transition between unit systems, and review these bodies critically for proper conversion factors.
· Handle exceptions raised by type and subtype conversions.
· Consider using the restriction No_Dependence(Ada.Unchecked_Conversion) to prevent circumventing the type system.
[bookmark: _Toc358896487][bookmark: _Ref86271482][bookmark: _Ref86272028][bookmark: _Toc85562617][bookmark: _Toc86990523]6.3 Bit representation [STR]
6.3.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerabilities described in ISO/IEC 24772-1 subclause 6.3 are mitigated by the type system in Ada.
The vulnerabilities caused by the inherent conceptual complexity of bit level programming are as described in subclause 6.3 of ISO/IEC 24772-1.
Ada provides mechanism to individually access individual bits without having to individually count or mask neighbouring bits.
For the traditional approach to bit level programming, Ada provides modular types and literal representations in arbitrary base from 2 to 16 to deal with numeric entities and correct handling of the sign bit. The use of pragma Pack on arrays of Booleans provides a type-safe way of manipulating bit strings and eliminates the use of error-prone arithmetic operations.
6.3.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.3.5 of ISO/IEC 24772-1:2022.
· Use record and array types with the appropriate representation specifications added so that the objects are accessed by their logical structure rather than their physical representation. These representation specifications address order, position, and size of data components and fields.
· Query the default object layout chosen by the compiler to determine the expected behaviour of the final representation.
· Use the restriction No_Dependence (Ada.Unchecked_Conversion) to prevent circumventing the type system.
[bookmark: _Ref336422984][bookmark: _Toc358896488][bookmark: _Toc85562618][bookmark: _Toc86990524]6.4 Floating-point arithmetic [PLF]
6.4.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2022 subclause 6.4 applies to Ada. Accuracy of data representation can be specified independently of any implementation characteristics. Ada provides binary and decimal fixed-point arithmetic as an alternative to floating points. Attributes are provided to access mantissa and exponents of values, thus reducing the need for bit manipulations. An implementation that conforms to the (optional) Annex G of the Ada standard provides guarantees on the accuracy of arithmetic operations and of the standard mathematical functions. For additional information on floating-point arithmetic, see [21].
6.4.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.4.5 of ISO/IEC 24772-1:2024.
· Rather than using predefined types, such as Float and Long_Float, whose precision can vary according to the target system, declare floating-point types that specify the required precision (for example, digits 10). Additionally, specifying ranges of a floating-point type enables constraint checks which prevents the propagation of infinities and NaNs.
· Forbid comparing floating-point values for equality. Instead, use comparisons that account for the approximate results of computations.
· Make use of static arithmetic expressions and static constant declarations when possible, since static expressions in Ada are computed at compile time with exact precision.
· Use Ada’s standardized numeric libraries (for example, Generic_Elementary_Functions) for common mathematical operations (trigonometric operations, logarithms, and others).
· Use an Ada implementation that supports the Numerics Annex of ISO/IEC 8652 and employ the “strict mode” of that Annex in cases where additional accuracy requirements shall be met by floating-point arithmetic and the operations of predefined numerics packages, as defined and guaranteed by the Numerics Annex.
· Forbid direct manipulation of bit fields of floating-point values, since such operations are generally target-specific and error-prone. Instead, make use of Ada’s predefined floating-point attributes (such as ‘Exponent).
· In cases where absolute precision is needed, consider replacement of floating-point types and operations with fixed-point types and operations.
[bookmark: _Ref336423044][bookmark: _Toc358896489][bookmark: _Toc85562619][bookmark: _Toc86990525]6.5 Enumerator issues [CCB]
6.5.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.5 applies to Ada.
Enumeration representation specifications are used to specify non-default representations of an enumeration type, for example when interfacing with external systems, or to confirm the default representation of a type. Ada specifies that all of the values in the enumeration type shall be defined in the enumeration representation specification and that the numeric values of the representation shall preserve the original order. For example:
type IO_Types is (Null_Op, Open, Close, Read, Write, Sync);
for IO_Types use (Null_Op => 0, Open => 1, Close => 2,
 Read => 4, Write => 8, Sync => 16);
An array can be indexed by such a type. Ada does not prescribe the implementation model for arrays indexed by an enumeration type with non-contiguous values. Two options exist: Either the array is represented “with holes” and indexed by the values of the enumeration type, or the array is represented contiguously and indexed by the position of the enumeration value rather than the value itself. In the former case, the vulnerability described in subclause 6.5 of ISO/IEC 24772-1:2022 exists only if unsafe programming is applied to access the array or its components outside of (?) the protection of the type system. Within the type system, the semantics are well defined and safe. The vulnerability of unexpected but well-defined program behaviour upon extending an enumeration type exists in Ada. In particular, subranges or others choices in aggregates and case statements are susceptible to unintentionally capturing newly added enumeration values.
6.5.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.5.5 of ISO/IEC 24772-1:2024;
· Avoid use the others choice for case statements and aggregates;
· For case statements and aggregates, mistrust subranges as choices after enumeration literals have been added anywhere but the beginning or the end of the enumeration type definition.
[bookmark: _Toc358896490][bookmark: _Ref86271920][bookmark: _Toc85562620][bookmark: _Toc86990526]6.6 Conversion errors [FLC]
[bookmark: _Toc462231218]6.6.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.6 is mitigated by Ada.
Ada does not permit implicit conversions between different numeric types, hence cases of implicit loss of data due to truncation cannot occur as they can in languages that allow type coercion between types of different sizes.
Ada permits the definition of subtypes of existing types that can impose a restricted range of values, and implicit conversions can occur for values of different subtypes belonging to the same type, but such conversions still involve range checks that prevent any loss of data or violation of the bounds of the target subtype.
In the case of explicit conversions, Ada language rules prevent numeric conversion errors by applying range bound checks, which raise an exception if the operand of the conversion exceeds the bounds of the target type or subtype.
Precision is lost only on explicit conversion from a real type to an integer type or a real type of less precision.
As Ada permits a type distinction to be made among numeric or composite values in different unit systems, e.g., meters and feet, complex numbers or intervals of real numbers, explicit conversions between such types may not be consistent with application semantics for the types, unless accompanied with conversion factors.
On structured data, implicit conversions preserve all values. Explicit value conversions omit components not present in the target type where such differences are allowed in conversions. See in particular (implicit) upcasts and (explicit) downcasts for OOP in subclause 6.44 Polymorphic variables [BKK].
[bookmark: _Toc462231219]6.6.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.6.5 of ISO/IEC 24772-1:2024;
· Use Ada’s capabilities for user-defined scalar types and subtypes to avoid accidental mixing of logically incompatible value sets;
· Forbid range check suppression on conversions involving scalar types and subtypes to prevent generation of invalid data;
· Use static analysis tools during program development to verify that conversions cannot violate the range of their target.

[bookmark: _6.7_String_Termination][bookmark: _Ref336423082][bookmark: _Toc358896491][bookmark: _Toc85562621][bookmark: _Toc86990527]6.7 String termination [CJM]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.7 does not apply to Ada.
Strings in Ada are not delimited by a termination character. Ada programs that interface to languages that use null-terminated strings and manipulate such strings directly should apply the vulnerability mitigations recommended for that language.
[bookmark: _Toc358896492][bookmark: _Toc86990528][bookmark: _Toc85562622]6.8 Buffer boundary violation (buffer overflow) [HCB]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.8 does not apply to Ada (see 6.9 Unchecked array indexing [XYZ] and 6.10 Unchecked array copying [XYW]).
[bookmark: _Ref336413403][bookmark: _Toc358896493][bookmark: _Toc85562623][bookmark: _Toc86990529]6.9 Unchecked array indexing [XYZ]
6.9.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.9 does not apply to Ada.
All array indexing is checked automatically in Ada, and an Ada program raises an exception when indexes are out of bounds. This is checked in all cases of indexing, including when arrays are passed to subprograms.
An explicit suppression of the run-time checks can be requested by use of pragma Suppress, in which case the vulnerability would apply; however, such suppression is easily detected, and generally reserved for tight time-critical loops, even in production code.
6.9.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.9.5 of ISO/IEC 24772-1:2024;
· Use Ada’s support for whole-array operations, such as for assignment and comparison, plus aggregates for whole-array initialization, to reduce the use of indexing;
· Write explicit bounds tests to prevent exceptions for indexing out of bounds.
[bookmark: _Ref336413426][bookmark: _Toc358896494][bookmark: _Toc85562624][bookmark: _Toc86990530]6.10 Unchecked array copying [XYW]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.10 does not apply to Ada.
Ada allows arrays to be copied by simple assignment (“:=”). The rules of the language ensure that no overflow can happen; instead, the exception Constraint_Error is raised if the target of the assignment is not able to contain the value assigned to it. The rules also ensure that overlapping source and target slices are handled correctly, i.e., the target slice receives the original value of the source slice. Since array copy is provided by the language, Ada does not provide unsafe functions to copy structures by address and length.
[bookmark: _Toc358896495][bookmark: _Ref86272214][bookmark: _Toc85562625][bookmark: _Toc86990531]6.11 Pointer type conversions [HFC]
6.11.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.11 does not apply to Ada. The mechanisms available in Ada to alter the type of a pointer value are unchecked type conversions and type conversions involving pointer types derived from a common root type. In addition, uses of the unchecked address taking capabilities can create pointer values that misrepresent the true type of the designated entity (see subclause 13.10 of ISO/IEC 8652).
Checked type conversions that affect the application semantics adversely are possible. For example, when a pointer to a class-wide type is changed to a pointer to a specific type in the class, a run-time check is required.

6.11.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.11.5 of ISO/IEC 24772-1:2024;
· Forbid the use of features explicitly identified as unsafe.;
· Use ‘Access which is always type safe;
· Consider using the restriction No_Dependence(Ada.Unchecked_Conversion), No_Use_Of_Attribute(Address), No_Specification_of_Aspect(Address), and No_Unchecked_Access to prevent circumventing the type system.
[bookmark: _Toc358896496][bookmark: _Toc86990532][bookmark: _Toc85562626]6.12 Pointer arithmetic [RVG]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.12 does not apply to Ada.
[bookmark: _Toc358896497][bookmark: _Toc85562627][bookmark: _Toc86990533]6.13 Null pointer dereference [XYH]
6.13.1 Applicability to the language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in subclause 6.13 of ISO/IEC 24772-1 is mitigated by Ada. The vulnerability is mitigated by compile-time or run-time checks that ensure that no null value can be dereferenced. Any attempt to dereference a null pointer results in the Constraint_Error exception being implicitly raised. Vulnerabilities associated with unhandled exceptions are addressed in 6.36 Ignored error status and unhandled exceptions [OYB].
6.13.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.13.5 of ISO/IEC 24772-1:2024;
· Use non-null access types where possible;
· Handle exceptions raised by attempts to dereference null values.
[bookmark: _Toc358896498][bookmark: _Ref86270750][bookmark: _Ref86272362][bookmark: _Toc85562628][bookmark: _Toc86990534]6.14 Dangling reference to heap [XYK]
6.14.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.14 applies to Ada. Use of Unchecked_Deallocation can cause dangling references to the heap when this feature is used, since Unchecked_Deallocation can be applied even though there are outstanding references to the deallocated object.
Ada provides a model in which whole collections of heap-allocated objects can be deallocated safely, automatically and collectively when the scope of the root access type or the scope of any associated storage pool object ends.
For global access types, unless storage pools are used, allocated objects can only be deallocated through an instantiation of the generic procedure Unchecked_Deallocation.
6.14.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.14.5;
· Use local access types where possible;
· Avoid Unchecked_Deallocation and apply
 pragma Restriction (No_Unchecked_Deallocation) to enforce this;
· Use controlled types and reference counting;
· Consider the use of storage pools and subpools.
[bookmark: _Ref336423281][bookmark: _Toc358896499][bookmark: _Toc85562629][bookmark: _Toc86990535]6.15 Arithmetic wrap-around error [FIF]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.15 does not apply to Ada as wrap-around arithmetic in Ada is limited to modular types. Arithmetic operations on such types use modulo arithmetic, and thus no such operation can create an invalid value of the type.
The vulnerability associated with inappropriate shifts does not exist in Ada since there is no confusion between logical and arithmetic shifts.
For non-modular arithmetic, Ada raises the predefined exception Constraint_Error whenever a wrap-around occurs but implementations are allowed to refrain from doing so when a correct final value is obtained. Vulnerabilities associated with unhandled exceptions are addressed in 6.36 “Ignored error status and unhandled exceptions [OYB”].The exception can be generally avoided by using arbitrary precision arithmetic from the subsystem Ada.Numerics.Big_Numbers.

[bookmark: _Ref336424688][bookmark: _Toc358896500][bookmark: _Toc85562630][bookmark: _Toc86990536]6.16 Using shift operations for multiplication and division [PIK]
[bookmark: _Hlk81890256]With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.16 does not apply to Ada as shift operations in Ada are limited to the modular types declared in the standard package Interfaces, which are not signed entities.
[bookmark: _Ref336423311][bookmark: _Toc358896502][bookmark: _Toc85562631][bookmark: _Toc86990537]6.17 Choice of clear names [NAI]
6.17.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.17 applies to Ada. There are two possible issues: the use of the identical name for different purposes (overloading) and the use of similar names for different purposes.
This vulnerability does not address overloading, which is covered in 6.20 Identifier name reuse [YOW].
The risk of confusion by the use of similar names can occur through:
· Mixed casing. Ada treats upper case and lower-case letters in names as identical. Thus, no confusion can arise through an attempt to use Item and ITEM as distinct identifiers with different meanings.
· Underscores and periods. Ada permits single underscores in identifiers and they are significant. Thus, BigDog and Big_Dog are different identifiers. But multiple underscores (which can be confused with a single underscore) are forbidden, thus Big__Dog is forbidden. Leading and trailing underscores are also forbidden. Periods are not permitted in identifiers at all.
· Singular/plural forms. Ada does permit the use of identifiers which differ solely in this manner such as Item and Items. However, Ada lets the programmer use the identifier Item for a single object of a type T and the identifier Items for an object denoting an array of items that is of a type array (…) of T. The use of Item where Items was intended or vice versa will be detected by the compiler because of the type violation and the program rejected so no vulnerability would arise.
· International character sets. Ada compilers strictly conform to the appropriate International Standard for character sets.
· Identifier length. All characters in an identifier in Ada are significant. Thus Long_IdentifierA and Long_IdentifierB are always different. An identifier cannot be split over the end of a line. The only restriction on the length of an identifier is that enforced by the line length and this is guaranteed by the language standard to be no less than 200.
Ada permits the use of names such as X, XX, and XXX (which can all be declared as integers) and a programmer can easily, by mistake, write XX where X (or XXX) was intended. Ada does not attempt to catch such errors.
The use of the wrong name will typically result in a failure to compile so no vulnerability will arise. But, if the wrong name has the same type as the intended name, then an incorrect executable program will be generated.
The “incorrect executable” can also happen when the two confused names have different types, but occur in a context where the type does not matter, for example X’Address or X’Size, or in a context where the type matters but only leads to the selection of a different overloaded entity, for example Foo(X) can be legal for both Integer X and Boolean X, if Foo is overloaded for both types.

6.17.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.17.5;	Comment by Stephen Michell: Get rid all uses of “subclause” throughout the document.
· Avoid the use of similar names to denote different objects of the same type.;
· Adopt a project convention for dealing with similar names;
· Follow the Ada Quality and Style Guide [1].
[bookmark: _Toc358896503][bookmark: _Toc86990538][bookmark: _Ref86272430][bookmark: _Toc85562632]6.18 Dead store [WXQ]
6.18.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.18 applies to Ada.
Ada compilers exist that detect and generate compiler warnings for dead stores.
The error in ISO/IEC 24772-1 subclause 6.18.3 that the planned reader misspells the name of the store is possible but highly unlikely in Ada since the language specifies that all objects shall be declared and typed, and the existence of two objects with almost identical names and compatible types (for assignment) in the same scope would be readily detectable.
6.18.2 Avoidance mechanisms for Language Users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.18.5 of ISO/IEC 24772-1:2024;
· Use Ada compilers that detect and generate compiler warnings for dead stores;
· Use static analysis tools to detect such problems.
[bookmark: _Ref336423432][bookmark: _Toc358896504][bookmark: _Toc85562633][bookmark: _Toc86990539]6.19 Unused variable [YZS]
6.19.1 Applicability to language
The vulnerability as described in subclause 6.19 of ISO/IEC 24772-1 applies to Ada. Ada compilers exist that detect and generate compiler warnings for unused variables.
6.19.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.19.5;
· Avoid the declaration of variables of the same type with similar names; instead use distinctive identifiers and the strong typing of Ada (for example through declaring specific types as in
 type Pig_Counter is range 0 .. 1000;
 Pig : Pig_Counter;
rather than just
 Pig: Integer;
) to reduce the number of variables of the same type;
· Use Ada compilers that detect and generate compiler warnings for unused variables.
[bookmark: _Ref336414331][bookmark: _Toc358896505][bookmark: _Toc85562634][bookmark: _Toc86990540]6.20 Identifier name reuse [YOW]
6.20.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.20 applies to Ada. Ada is a language that permits local scope, and names within nested scopes can hide identical names declared in an outer scope. As such it is susceptible to the vulnerability. For subprograms and other overloaded entities the problem is reduced by the fact that hiding also takes the signatures of the entities into account. Entities with different signatures, therefore, do not hide each other.
Ada names exist within the context of larger regions, such as packages, and can often be referenced using the simple name, or by a name that includes the name of the enclosing scope, called the expanded name.
Name collisions with keywords cannot happen in Ada because keywords are reserved.
The mechanism of failure identified in subclause 6.20.3 of ISO/IEC 24772-1:2022 regarding the declaration of non-unique identifiers in the same scope cannot occur in Ada because all characters in an identifier are significant.
6.20.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.20.5 of ISO/IEC 24772-1:2024;
· Use expanded names whenever confusion is possible;
· Use Ada compilers or static analysis tools that generate warnings for declarations in inner scopes that hide declarations in outer scopes.
[bookmark: _Ref336423347][bookmark: _Toc358896506][bookmark: _Toc85562635][bookmark: _Toc86990541]6.21 Namespace issues [BJL]
The vulnerability as described in ISO/IEC 24772-1 subclause 6.21 does not apply to Ada, since Ada does not attempt to disambiguate conflicting names imported from different packages. Instead, use of a name with conflicting imported declarations causes a compile-time error. The programmer can disambiguate the name usage by using an expanded name that identifies the exporting package.
[bookmark: _6.22_Initialization_of][bookmark: _Ref336414149][bookmark: _Toc358896507][bookmark: _Toc85562636][bookmark: _Toc86990542]6.22 Missing initialization of variables [LAV]
6.22.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.22 applies to Ada. As in many languages, it is possible in Ada to make the mistake of using the value of an uninitialized variable. However, as described below, Ada prevents some of the most harmful possible effects of using the value.
The vulnerability does not exist for pointer variables (or constants). Pointer variables are initialized to null by default, and every dereference of a pointer that is not null-excluding is checked for a null value.
The checks mandated by the type-system apply to the use of uninitialized variables as well. When the context for using a value imposes a subtype with a restricted set of values, then values of the type that are outside of the subtype will fail the check required in such contexts.
[bookmark: _Hlk81889924]Use of an out-of-bounds value in most contexts raises an exception, regardless of the origin of the faulty value. Vulnerabilities associated with unhandled exceptions are addressed in 6.36 Ignored error status and unhandled exceptions [OYB]. In the case of values originating from an uninitialized variable that are not detected by such a subtype check (such as when the context does not impose a subtype constraint, the value is within the subtype’s set of values, or the value does not belong to the type itself), execution can proceed with that value, but use of such values will not lead to out-of-bounds memory modifications. In particular, use of uninitialized values will not result in writing outside of the bounds of array objects, and will not lead to wild jumps when used as the selecting value of a case statement or case expression.
For scalar types, the Default_Value aspect can be specified to provide a default initial value for otherwise uninitialized objects of the type.
For record types, default initializations can be specified as part of the type definition. For record types, aggregate values can be used to initialize an object to ensure that all components of the object have been initialized with a value.
For controlled types (those descended from the language-defined type Controlled or Limited_Controlled), the user can also specify an Initialize procedure which is invoked on all default-initialized objects of the type.
The pragma Normalize_Scalars can be used to ensure that scalar variables are always initialized by the compiler in a repeatable fashion. This pragma is designed to initialize variables to an out-of-range value if there is one, to avoid hiding errors.
Initializing a variable with an inappropriate default value (specious initialization) such as zero can result in hiding underlying problems, because the compiler or other static analysis tools will then be unable to detect that the variable has been used prior to receiving a correctly computed value.
Lastly, the user can query the validity of a given value. The expression X’Valid yields true if the value of the scalar variable X conforms to the subtype of X and false otherwise. Thus, the user can protect against the use of out-of-bounds uninitialized or otherwise corrupted scalar values.
6.22.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.22.5;
· If the compiler has a mode that detects use before initialization, enable this mode and treat any such warnings as errors;
· Where appropriate, specify explicit initializations or default initializations;
· Use the pragma Normalize_Scalars to cause out-of-range default initializations for scalar variables;
· Use the ‘Valid attribute to identify out-of-range scalar values caused by the use of uninitialized variables, without incurring the raising of an exception. Note that an implementation is permitted to raise an exception for an Unchecked_Conversion in this case.
· Consider avoiding specious initialization of variables.
[bookmark: _Ref336423389][bookmark: _Toc358896508][bookmark: _Toc85562637][bookmark: _Toc86990543]6.23 Operator precedence and associativity [JCW]
6.23.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.23 applies to Ada. Since this vulnerability is about “incorrect beliefs” of programmers, there is no way to establish a limit to how far incorrect beliefs can go. However, Ada is less susceptible to that vulnerability than many other languages, since
· Ada only has six levels of precedence and associativity is closer to common expectations. For example, an expression like A = B or C = D will be parsed as expected, as (A = B) or (C = D).
· Mixed logical operators are not allowed without parentheses, for example, “A or B or C” is valid, as well as “A and B and C”, but “A and B or C” is not; the user must write “(A and B) or C” or “A and (B or C)”.
· Assignment is not an operator in Ada.
6.23.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can follow the mitigation mechanisms of ISO/IEC 24772-1:2024 6.23.5.
[bookmark: _6.24_Side-effects_and][bookmark: _Ref336414351][bookmark: _Toc358896509][bookmark: _Toc85562638][bookmark: _Toc86990544]6.24 Side-effects and order of evaluation of operands [SAM]
6.24.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.24 applies to Ada. There are no operators in Ada with direct side effects on their operands using the language-defined operations, especially not the increment and decrement operation. Ada does not permit multiple assignments in a single expression or statement, except in the case of initialization of multiple variables by a single expression. In this case, the declaration is equivalent to a sequence of initializing declarations placed in the order of the variables in the list.
There is the possibility though to have side effects through function calls in expressions where the function modifies globally visible variables or in out or out parameters. Ada disallows multiple uses of the same variable within a single expression if one or more of the uses are as in out or out parameters. Operators in Ada are functions with only in parameters, so, when defined by the user, although they cannot modify their own operands, they can modify global state and therefore have side effects.
Ada allows the implementation to choose the order of evaluation of expressions with operands of the same precedence level, the order of association is left-to-right. The operands of a binary operation are also evaluated in an arbitrary order, as happens for the parameters of any function call. In the case of user-defined operators with side effects on global state, this implementation dependency can cause unpredictability of the side effects.
6.24.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of of ISO/IEC 24772-1:2024 6.24.5;
· Make use of one or more programming guidelines which prohibit functions that modify global state, and can be enforced by static analysis;
· Minimize use of in out and out parameters for functions;
· Always use brackets to indicate order of evaluation of operators of the same precedence level.
[bookmark: _Ref336424769][bookmark: _Toc358896510][bookmark: _Toc85562639][bookmark: _Toc86990545]6.25 Likely incorrect expression [KOA]
6.25.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.25 applies to Ada. An instance of this vulnerability consists of two syntactically similar constructs such that the inadvertent substitution of one for the other can result in a program which is accepted by the compiler but does not reflect the intent of the author.
The examples given in ISO/IEC 24772-1:2024 6.25 are not problems in Ada because of Ada’s strong typing and because an assignment is not an expression in Ada.
In Ada, a type conversion and a qualified expression are syntactically similar, differing only in the presence or absence of a single character:
Type_Name (Expression) – a type conversion
vs
Type_Name’(Expression) – a qualified expression

Typically, the inadvertent substitution of one for the other results in either a semantically incorrect program which is rejected by the compiler or in a program which behaves in the same way as if the intended construct had been written. In the case of a constrained array subtype, the two constructs differ in their treatment of sliding (conversion of an array value with bounds 100 .. 103 to a subtype with bounds 200 .. 203 will succeed; qualification will fail a run-time check).
Similarly, a timed entry call and a conditional entry call with an else-part that happens to begin with a delay statement differ only in the use of “else” vs “or” (or even “then abort” in the case of an asynchronous_select statement).
Probably the most common correctness problem resulting from the use of one kind of expression where a syntactically similar expression should have been used has to do with the use of short-circuit vs. non-short-circuit Boolean-valued operations (for example, “and then” and “or else” vs and and or), as in
if (P /= null) and (P.all.Count > 0) then ... end if;	Comment by Stephen Michell: Correct all courier font to preserve Ada keyword representation throughout the document
-- should have used “and then” to avoid dereferencing null

Errors resulting from the incorrect use of short-circuit forms are much less common, but it can make it more difficult to express the distinction between the cases where short-circuited evaluation is known to be needed (either for correctness or for performance) and those where it is not.

6.25.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:	Comment by Stephen Michell: Aside: I note that this document does not directly address what happens if someone uses the unicode characters LTR andRTL in Ada comments or strings.
· Apply the mitigation mechanisms of ISO/IEC 24772-1 6.25.5;
· Consider using short-circuit forms by default.
[bookmark: _Ref336424817][bookmark: _Toc358896511][bookmark: _Toc85562640][bookmark: _Toc86990546]6.26 Dead and deactivated code [XYQ]
6.26.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.26 applies to Ada. Ada allows the usual sources of dead code as described in subclause 6.26 of ISO/IEC 24772-1 and [22] that are common to most conventional programming languages.
In some cases, pragmas such as Restrictions, Suppress, or Discard_Names can be used to inform the compiler that some code whose generation would normally be required for certain constructs would be dead because of properties of the overall system, and that therefore the code need not be generated. For example:
package Pkg is
 type Enum is (Aaa, Bbb, Ccc);
 pragma Discard_Names(Enum);
end Pkg;

If Pkg.Enum’Image and related attributes (e.g., Value, Wide_Image) of the type Enum are never used, and if the implementation normally builds a table of the enumeration literals, then the pragma allows the elimination of the table.
6.26.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1 6.26.5;
· Apply pragmas to inform the compiler that some code is dead because of properties of the overall system, and that therefore the code need not be generated.
· Use implementation-specific mechanisms, if provided, to support the elimination of dead code.
[bookmark: _Ref336424846][bookmark: _Toc358896512][bookmark: _Toc85562641][bookmark: _Toc86990547]6.27 Switch statements and static analysis [CLL]
6.27.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts) and the use of default cases, the vulnerability as described in ISO/IEC 24772-1 subclause 6.27 does not apply to Ada.
Ada ensures that a case statement or a case expression provide exactly one alternative for each value of the selecting expression’s subtype. This restriction is enforced at compile time. An others choice can be used in the last alternative of a case statement or case expression to capture any remaining values of the selecting_expression subtype that are not covered by the preceding case choices. If the value of the expression is outside of the range of this subtype (e.g., due to an uninitialized variable), then the resulting behaviour is well-defined (if an others choice is present, that alternative can be selected, otherwise Constraint_Error is raised). Control does not flow from one alternative to the next. Upon reaching the end of an alternative, control is transferred to the end of the case statement.
The remaining vulnerability is that unexpected values are captured by the others clause or a subrange as case choice. For example, when the range of the type Character was extended from 128 characters to the 256 characters in the Latin-1 character type, an others clause for a case statement with a Character type case expression originally written to capture cases associated with the 128 characters type now also captures the 128 additional cases introduced by the extension of the type Character. Some of the new characters needed to be covered by the existing case choices or new case choices.
6.27.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Avoid the use of the others choice for case statements, case expressions and aggregates;	Comment by Stephen Michell: NOTE This case is somewhat specialized but is important, since enumerations are the one case where subranges turn bad on the user.
· Mistrust enumeration subranges as choices after enumeration literals have been added anywhere but the beginning or the end of the enumeration type definition.
[bookmark: _Ref336424940][bookmark: _Toc358896513][bookmark: _Toc85562642][bookmark: _Toc86990548]6.28 Non-demarcation of control flow [EOJ]
The vulnerability as described in ISO/IEC 24772-1 subclause 6.28 does not apply to Ada. The Ada syntax describes several types of compound statements that are associated with control flow including if statements, loop statements, case statements, select statements, and extended return statements. Each of these forms of compound statements require unique syntax that marks the end of the compound statement.
[bookmark: _Ref336424963][bookmark: _Toc358896514][bookmark: _Toc85562643][bookmark: _Toc86990549]6.29 Loop control variable abuse [TEX]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1:2024 6.29 does not apply to Ada. Ada defines a for loop where the number of iterations is controlled by a loop control variable (called a loop parameter). This value has a constant view and cannot be updated within the sequence of statements of the body of the loop.
[bookmark: _Ref336424988][bookmark: _Toc358896515][bookmark: _Toc85562644][bookmark: _Toc86990550]6.30 Off-by-one error [XZH]
6.30.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.30 is mitigated by Ada.
Confusion between the need for < and <= or > and >= in a test.
A for … loop in Ada does not require the programmer to specify a conditional test for loop termination. Instead, the starting and ending value of the loop are specified which eliminates this source of off-by-one errors. There are also special for … loop structures that iterate through an entire array or container. These avoid the need to specify any bounds for the iteration. A while … loop however, lets the programmer specify the loop termination expression, which can be susceptible to an off-by-one error.
Confusion as to the index range of an algorithm.
Although there are language defined attributes to symbolically reference the start and end values for a loop iteration, the language does allow the use of explicit values and loop termination tests. Off-by-one errors can result in these circumstances.
Care should be taken when using the ‘Length attribute in the loop termination expression. The expression should generally be relative to the ‘First value.
The strong typing of Ada eliminates the potential for buffer overflow associated with this vulnerability. If the error is not statically caught at compile time, then a run-time check generates an exception if an attempt is made to access an element outside the bounds of an array.
Failing to allow for storage of a sentinel value.
Ada does not use language-defined sentinel values to terminate arrays. There is no need to account for the storage of a sentinel value, therefore this particular vulnerability concern does not apply to Ada.
6.30.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.30.5;
· Whenever possible, use a for … loop instead of a while … loop;
· Whenever possible, use Ada constructs that eliminate the need for loop statements, such as array aggregates, qualified expressions, and reduction expressions;
· Whenever possible, use the form of iteration that takes the name of the array or container and nothing more;
· When indices are necessary, use the ‘First, ‘Last, and ‘Range attributes for loop termination, e.g. for I in MyArray’Range loop…;
· If the ‘Length attribute is used, ensure that the index computation considers the starting index value for the array.
[bookmark: _Ref336414195][bookmark: _Toc358896516][bookmark: _Toc85562645][bookmark: _Toc86990551]6.31 Unstructured programming [EWD]
6.31.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.31 applies to Ada. Ada programs can exhibit many of the vulnerabilities documented, such as leaving a loop at an arbitrary point, local jumps (goto), and multiple exit points from subprograms.
Ada however does not suffer from non-local jumps and multiple entries to subprograms.
6.31.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can follow the mitigation mechanisms of ISO/IEC 24772-1:2024 6.31.5.
[bookmark: _Toc358896517][bookmark: _Ref86271223][bookmark: _Toc85562646][bookmark: _Toc86990552]6.32 Passing parameters and return values [CSJ]
6.32.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.32 does not apply to Ada, except when parameter passing by reference is used. Ada employs the mechanisms (for example, modes in, out and in out) that are recommended in subclause 6.32 of ISO/IEC 24772-1:2022. These mode definitions are not optional, mode in being the default.
6.32.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can follow the mitigation mechanisms of ISO/IEC 24772-1:2024 6.32.5.
[bookmark: _Ref336414367][bookmark: _Toc358896518][bookmark: _Toc85562647][bookmark: _Toc86990553]6.33 Dangling references to stack frames [DCM]
6.33.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.35 does not apply to Ada, except when the ‘Address or ‘Unchecked_Access attributes are used.
In Ada, the attribute ‘Address yields a value of some system-specific type that is not equivalent to a pointer. The attribute ‘Access provides an access value (what other languages call a pointer). Addresses and access values are not automatically convertible, although a predefined set of generic functions can be used to convert one into the other. Access values are typed, that is to say, they can only designate objects of a particular type or class of types.
As in other languages, it is possible to apply the ‘Address attribute to a local variable, and to make use of the resulting value outside of the lifetime of the variable. However, ‘Address is very rarely used in this fashion in Ada. Most commonly, programs use ‘Access to designate objects and subprograms, and the language enforces accessibility checks whenever code attempts to use this attribute to provide access to a local object outside of its scope. These accessibility checks eliminate the possibility of dangling references.
As for all other language-defined checks, accessibility checks can be disabled over any portion of a program by using pragma Suppress. The attribute Unchecked_Access produces values that are exempt from accessibility checks.
6.33.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.33.5;
· Use only the ‘Address attribute on static objects (for example, a register address);
· Prohibit the use of ‘Address to provide indirect untyped access to an object;
· Prohibit the conversion between ‘Address and access types;
· Use access types in all circumstances when indirect access is needed.
· Prohibit the suppression of accessibility checks;
· Avoid use of the attribute ‘Unchecked_Access;
· Use ‘Access attribute in preference to ‘Address;
· Consider applying the restriction No_Use_Of_Attribute(Address) to prohibit use of ‘Address;
· Consider applying the restriction No_Unchecked_Access to enforce that ‘Unchecked_Access is not used;
[bookmark: _Ref336425045][bookmark: _Toc358896519][bookmark: _Toc85562648][bookmark: _Toc86990554]6.34 Subprogram signature mismatch [OTR]
6.34.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.34 applies to Ada.
There are two concerns identified with this vulnerability. The first is the corruption of the execution stack due to the incorrect number or type of actual parameters. The second is the corruption of the execution stack due to calls to externally compiled modules. Ada does not support variadic subprograms, which eliminates a common source for this vulnerability. The case of calls to libraries written in other languages is covered in 6.47.
In Ada, at compilation time, the parameter association is checked to ensure that the type of each actual parameter matches the type of the corresponding formal parameter. In addition, the formal parameter specification can include default expressions for a parameter. Hence, the procedure can be called with some actual parameters missing. In this case, if there is a default expression for the missing parameter, then the call will be compiled without any errors. If default expressions are not specified, then the procedure call with insufficient actual parameters will be flagged as an error at compilation time.
Caution is advised when specifying default expressions for formal parameters, as their use can result in successful compilation of subprogram calls with an unintended signature. The execution stack will not be corrupted in this event, but the program can be executing with unexpected values. The most appropriate use of default expressions is when, without them, there would end up being an overloading of the same name with fewer parameters that performed essentially the same operation. When calling externally compiled modules that are Ada program units, the type matching and subprogram interface signatures are monitored and checked as part of the compilation and linking of the full application. When calling externally compiled modules in other programming languages, additional steps are needed to ensure that the number and types of the parameters for these external modules are correct.
6.34.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.34.5;
· Minimize the use of default expressions for formal parameters.
[bookmark: _Toc358896520][bookmark: _Toc85562649][bookmark: _Toc86990555]6.35 Recursion [GDL]
6.35.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.35 is mitigated by Ada as the exception Storage_Error is raised when the recursive execution results in insufficient storage. It is also possible to use a recursion-depth counter to control recursive behavior.
6.35.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.35.5;
· If recursion is used, then add a Storage_Error exception handler to handle insufficient storage errors due to recursive execution;
· Use a recursion-depth counter to put a limit on recursion depth (for example raising an exception if the check fails);
· Consider using the asynchronous control construct to time the execution of a recursive call and to terminate the call if the time limit is exceeded.
[bookmark: _6.36_Ignored_Error][bookmark: _Toc358896521][bookmark: _Ref447978130][bookmark: _Ref86272852][bookmark: _Toc85562650][bookmark: _Toc86990556]6.36 Ignored error status and unhandled exceptions [OYB]
6.36.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 6.36 applies to Ada. Ada offers a set of predefined exceptions for error conditions that are detected by checks that are compiled into a program. In addition, the programmer can define exceptions that are appropriate for their application.
Exceptions are handled using an exception handler. Exceptions can be handled in the scope where the exception occurs, or they are propagated to an enclosing scope or the caller. However, exceptions that are not handled by a task body result in silent task termination. Similarly, exceptions that occur during the elaboration of a library-level package result in program termination.
[bookmark: _Ref336425085]6.36.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1 6.36.5;
· Use the result of the ‘Valid attribute to check for the validity of values delivered to an Ada program from an external device prior to use;
· Consider using the call
 Ada.Task_Termination.Set_Dependents_Fallback_Handler
to install a handler that will be invoked whenever a task terminates, including due to exception propagation;
· Consider including an exception handler in the outermost block of the main subprogram and each task body to use as a last-chance exception handler;
· Document any exceptions that are expected to be propagated out of a given subprogram or the elaboration of a library-level package.
[bookmark: _Ref336413236][bookmark: _Toc358896523][bookmark: _Toc85562651][bookmark: _Toc86990557]6.37 Type-breaking reinterpretation of data [AMV]
6.37.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 6.37 only applies to Ada if the mechanisms of Unsafe Programming (5.1 Language concepts) are used.
Unchecked_Conversion can be used to bypass the type-checking rules, and its use is thus unsafe, as is its equivalent in any other language. The same applies to the use of Unchecked_Union, even though the language specifies various inference rules that the compiler shall use to catch statically detectable constraint violations. The fact that Unchecked_Conversion is a generic function that must be instantiated explicitly (and given a meaningful name) hinders its undisciplined use and places a loud marker in the code wherever it is used. Well-written Ada code will have a small set of instantiations of Unchecked_Conversion. Most implementations require the source and target types to have the same size in bits, to prevent accidental truncation or missing sign extensions.
Similarly, address overlays achieved by means of address clauses can be abused to reinterpret data unsafely. If the types of the objects are the same, a renaming declaration is safe, and therefore preferable. ;	Comment by Stephen Michell: Review needed on this. It does not belong as a prohibition but maybe goes into 6.37.1?
Type reinterpretation is a universal programming need, and no usable programming language can exist without some mechanism that bypasses the type model. Ada provides these mechanisms with some additional safeguards, and makes their use purposely verbose, to alert the writer and the reader of a program to the presence of an unchecked operation. Ada also provides the pragma Restriction to prevent the use of unsafe mechanisms.
6.37.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of subclause 6.37.5 of ISO/IEC 24772-1:2024;
· Use Unchecked_Union only in multi-language programs that need to communicate data between Ada and C or C++; otherwise the use of discriminated types prevents “punning” between values of two distinct types that happen to share storage;
· Prohibit the use of the Address aspect or address clauses to obtain overlays, including avoiding Address_to_Access_Conversions.
· Consider applying
 pragma Restrictions (No_Specification_Of_Aspect => Unchecked_Union),
 pragma Restrictions (No_Use_Of_Attribute => Address), and
 pragma Restrictions (No_Dependence => System.Address_to_Access_Conversions)
 to ensure this vulnerability cannot arise.
[bookmark: _6.38_Deep_vs.][bookmark: _Toc85562652][bookmark: _Toc86990558][bookmark: _Ref336414390][bookmark: _Toc358896524]6.38 Deep vs. shallow copying [YAN]
6.38.1 Applicability to language
The vulnerability described in of ISO/IEC 24772-1 6.38 applies to Ada. The default semantics of assignment create a shallow copy, when applied to the root of a graph structure. Ada provides mitigations such as language constructs that allow the creation of abstractions and the addition of user-defined copying operations, such that inadvertent aliasing problems can be contained within the abstraction.
6.38.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1 6.38.5;
· Use controlled types and appropriate redefinitions of the Initialize, Adjust, and Finalize operation to create deep copies when needed;
· Use a pre-existing Container type for graphs.
[bookmark: _Ref86271054][bookmark: _Toc85562653][bookmark: _Toc86990559]6.39 Memory leak and heap fragmentation [XYL]
6.39.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.39 applies to Ada. For objects that are allocated from the heap without the use of reference counting, the memory leak vulnerability is possible in Ada. For objects that allocate from a storage pool, the vulnerability is present but is restricted to this single pool, which makes it easier to detect memory leaks by verification. Subpools can be used to further reduce the possibility for memory leaks. For objects of a controlled type that uses referencing counting and that are not part of a cyclic reference structure, the vulnerability does not exist.
Ada ensures that objects designated by an access type declared in a nested scope are finalized when execution leaves the nested scope, however, it is implementation defined whether storage is reclaimed for this case. Associating an access type with a storage pool can ensure that the storage reclamation takes place.
Ada does not mandate the use of a garbage collector, but Ada implementations are free to provide such memory reclamation. For applications that use and return memory on an implementation that provides garbage collection, the issues associated with garbage collection exist in Ada.
6.39.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.39.5;
· Use controlled types and reference counting to implement explicit storage management systems that cannot have storage leaks;
· Declare access types in a nested scope where possible;
· Consider the use of predefined container libraries where possible;
· Consider the use of user-defined storage pools and subpools;
· Use a completely static model where all storage is allocated from global memory and explicitly managed under program control.
[bookmark: _Toc358896525][bookmark: _Toc85562654][bookmark: _Toc86990560]6.40 Templates and generics [SYM]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.40 does not apply to Ada as the Ada generics model is based on imposing a contract on the structure and operations of the types that can be used for instantiation. Also, explicit instantiation of the generic is required for each particular type.
Therefore, the compiler can check the generic body for programming errors, independently of actual instantiations. At each actual instantiation, the compiler will also check that the instantiated type meets all the requirements of the generic contract.
Ada also does not allow for ‘special case’ generics for a particular type, therefore behaviour is consistent for all instantiations.
[bookmark: _Ref336414406][bookmark: _Toc358896526][bookmark: _Toc85562655][bookmark: _Toc86990561]6.41 Inheritance [RIP]
6.41.1 Applicability to language
The vulnerability documented in ISO/IEC 24772-1:2024 6.41 applies to Ada.
Ada allows only a restricted form of multiple inheritance, where only one of the multiple ancestors (the parent) is permitted to implement operations. All other ancestors (interfaces) can only specify the operations’ signature, and whether the operation is required to be overridden, or can simply do nothing if never explicitly defined. Therefore, Ada does not suffer from multiple inheritance related vulnerabilities.
Ada has no preference rules to resolve ambiguities of calls on primitive operations of tagged types. Hence the related vulnerability documented in ISO/IEC 24772-1:2022 subclause 6.41 does not apply to Ada.
6.41.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.41.5;
· Use the overriding indicators on potentially inherited subprograms to ensure that the intended set of operations are overridden, thus preventing the accidental redefinition or failure to redefine an operation of the parent;
· Specify Pre’Class and Post’Class aspects when a primitive operation is initially defined, to indicate the properties of inputs that any overridings shall accept, and the properties of outputs that any overridings shall produce.

[bookmark: _Toc85562656][bookmark: _Toc86990562][bookmark: _Ref336425131][bookmark: _Toc358896527]6.42 Violations of the Liskov substitution principle or the contract model [BLP]
6.42.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.42 applies to Ada. The vulnerabilities can be mitigated by the use of language concepts of specified/enforced pre- and postconditions of methods.
When defining one type as a descendant of another and overriding existing primitive operations of the ancestor type, the Liskov Substitution Principle (LSP) argues for ensuring that the important properties of the operations are preserved in the descendant types, according to the rules of behavioural subtyping. In Ada, this can be enforced by specifying these properties using the Pre’Class and Post’Class aspects when the operation is first defined, to define the relevant pre- and postconditions (respectively) which are to apply to the operations and any overridings. Run-time checks will be provided by the Ada implementation on all calls of these operations and their overridings, to verify that the inputs provided by the caller satisfy the required preconditions, and that the outputs produced by the operation satisfy the required postconditions. Ada allows these aspects to be refined in overridings, but only in ways that are consistent with LSP, meaning that the effective class-wide preconditions can only be relaxed in overridings, never made more stringent, and the effective class-wide postconditions can only be tightened, never made looser. This ensures that if a caller is reaching an operation of a descendant type while being only aware of the Pre’Class and Post’Class aspects of an ancestor operation, any input that satisfies the ancestor Pre’Class will still satisfy the descendant effective Pre’Class, and any output that satisfies the descendant effective Post’Class will also satisfy the ancestor’s Post’Class.
6.42.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.42.5.
· Specify Pre’Class and Post’Class aspects for all primitive operations of tagged types.
[bookmark: _Toc85562657][bookmark: _Toc86990563]6.43 Redispatching [PPH]
6.43.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.43 applies to Ada. The default behaviour of the relevant calls is non-dispatching in Ada, which is not subject to this vulnerability, but upon explicitly coding a redispatching call, this vulnerability can occur.
Ada distinguishes between a specific type T and a class-wide type T’Class. If dispatching is being performed within a routine on a particular formal parameter, it is preferable that the parameter be declared as class-wide to document this internal use of dispatching. Ada permits an explicit conversion from a specific type to a class-wide type to perform re-dispatching, but this should be avoided when possible, and documented explicitly when necessary.
6.43.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.43.5.
· If redispatching is necessary, document the behaviour explicitly.
[bookmark: _6.44_Polymorphic_variables][bookmark: _Ref86271730][bookmark: _Toc85562658][bookmark: _Toc86990564]6.44 Polymorphic variables [BKK]
6.44.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability described in ISO/IEC 24772-1 subclause 6.44 is mitigated by Ada as run-times checks identify faulty uses.
Ada checks all conversions to descendant tagged types (downward conversions) to be sure the run-time tag of the object being converted matches that of the target type, or one of its descendants. To avoid the failure of such a tag check, the programmer should use a class-wide membership test (“Obj in Target’Class”) or rely on a dispatching call to perform the appropriate downward conversion implicitly.
Although conversions up to ancestors are always structurally safe (upward conversions), in that the ancestor has a subset of the data components of any descendant, a conversion to a specific (as opposed to class-wide) ancestor type can violate semantic requirements of the descendant type, particularly if the descendant type is a private extension of the ancestor and has certain desired relationships between components of the extension and those inherited from the ancestor. By specifying a Type_Invariant aspect on a private extension, the programmer can ensure that the semantic requirements of the private extension, as captured by the type invariant, are preserved across such conversions to an ancestor specific type, in that they are re-checked after the construct manipulating the upward conversion is complete.
6.44.2 Avoidance mechanisms for language Users
To avoid the vulnerability or mitigate its ill effects Ada software developers can follow the mitigation mechanisms of ISO/IEC 24772-1:2024 6.44.5.
[bookmark: _Toc85562659][bookmark: _Toc86990565]6.45 Extra intrinsics [LRM]
The vulnerability as described in ISO/IEC 24772-1:2024 6.45 does not apply to Ada. In Ada, all subprograms, whether intrinsic or not, belong to the same name space. Ada specifies that all subprograms shall be explicitly declared, and the same name resolution rules apply to all of them, whether they are predefined or user defined. If two subprograms with the same name and signature are visible (that is to say nameable) at the same place in a program, then a call using that name will be rejected as ambiguous by the compiler, and the programmer will have to specify (for example, by means of an expanded name) which subprogram is meant.
[bookmark: _Ref336414420][bookmark: _Toc358896528][bookmark: _Toc85562660][bookmark: _Toc86990566]6.46 Argument passing to library functions [TRJ]
6.46.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.46 applies to Ada. Ada parameters can have values precluded by preconditions of the called routine.
To the extent that the preclusion of values can be expressed as part of the type system of Ada, however, the preconditions are checked by the compiler statically or dynamically and thus are no longer vulnerabilities. For example, any range constraint on values of a parameter can be expressed in Ada by means of type or subtype declarations. Type violations are detected at compile time, subtype violations cause run-time exceptions. In addition, preconditions, postconditions, type invariants, and subtype predicates can be specified explicitly to express more complex restrictions to be observed by callers. These are checked at run-time depending on the Assertion_Policy in effect, and can be recognized by other static analysis tools as part of program verification.
6.46.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.46.5.
· Exploit the type and subtype system of Ada to express restrictions on the values of parameters and results.
· Specify explicit preconditions and postconditions for subprograms wherever practical.
· Specify subtype predicates and type invariants for subtypes and private types when appropriate.
· Specify the exception raised or other response to values that do not satisfy the precondition.
[bookmark: _Ref336425160][bookmark: _Toc358896529][bookmark: _Toc85562661][bookmark: _Toc86990567]6.47 Inter-language calling [DJS]
6.47.1 Applicability to Language
The vulnerability as described in ISO/IEC 24772-1:2024 6.47 is mitigated by Ada as Ada provides mechanisms to interface with common languages, such as C, C++, Fortran and COBOL, so that vulnerabilities associated with interfacing with these languages can be avoided.

6.47.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.47.5.
· Use the inter-language methods and syntax specified by ISO/IEC 8652 when the routines to be called are written in languages that ISO/IEC 8652 specifies an interface with, including aspects Import, Export, and Convention.
· Use interfaces to the C programming language where the other language system(s) are not covered by ISO/IEC 8652, but the other language systems have interfacing to C.
· Make explicit checks on all return values from foreign system code artifacts, for example by using the 'Valid attribute or by performing explicit tests to ensure that values returned by inter-language calls conform to the expected representation and semantics of the Ada application.
· Consider handling any exceptions raised in Ada code before returning to a routine from a foreign language, to prevent possible stack corruption if the foreign language cannot handle exceptions raised in Ada code.
[bookmark: _Ref336425206][bookmark: _Toc358896530][bookmark: _Toc85562662][bookmark: _Toc86990568]6.48 Dynamically-linked code and self-modifying code [NYY]
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability described in ISO/IEC 24772-1:2024 6.48 does not apply to Ada as Ada does not support either dynamic linking or self-modifying code. The latter is possible only by exploiting other vulnerabilities of the language in the most malicious ways and even then it is still very difficult to achieve.
[bookmark: _Ref336414438][bookmark: _Ref336425269][bookmark: _Toc358896531][bookmark: _Toc85562663][bookmark: _Toc86990569]6.49 Library signature [NSQ]
6.49.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.49 applies to Ada. Ada provides mechanisms to explicitly interface to modules written in other languages. Aspects Import, Export, and Convention permit the name of the external unit and the interfacing convention to be specified.
Even with the use of aspects Import, Export, and Convention, the vulnerabilities stated in ISO/IEC 24772-1:2024 6.49 are possible. Names and number of parameters change under maintenance; calling conventions change as compilers are updated or replaced, or languages are used for which Ada does not specify a calling convention.
6.49.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can follow the mitigation mechanisms of ISO/IEC 24772-1:2024 6.49.5.
[bookmark: _Ref336425300][bookmark: _Toc358896532][bookmark: _Toc85562664][bookmark: _Toc86990570]6.50 Unanticipated exceptions from library routines [HJW]
6.50.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.50 applies to Ada. Ada programs are capable of handling exceptions at any level in the program, as long as any exception naming and delivery mechanisms are compatible between the Ada program and the library components. In such cases the normal Ada exception handling processes will apply, and either the calling unit or some subprogram or task in its call chain will catch the exception and take appropriate programmed action. If no action is taken to handle the exception, the task or program where the exception occurred will terminate.
If the library convention is to report errors by means of error codes and not by exceptions, then if the library components themselves are written in Ada, then Ada's exception handling mechanisms let all called units trap any exceptions that are generated and return error codes instead.
If the interface between the Ada units and the library routine being called does not adequately address the issue of naming, generation and delivery of exceptions across the interface, then the vulnerabilities as expressed in subclause 6.50 of ISO/IEC 24772-1:2022 apply.
6.50.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.50.5.
· Ensure that the interfaces with libraries written in other languages are compatible in the naming and generation of exceptions.
· Put appropriate exception handlers in all routines that call library routines, including the catch-all exception handler when others =>.
· Put appropriate exception handlers in all routines that are called by library routines, including the catch-all exception handler when others =>.
· Document any exceptions raised by any Ada units being used as library routines.
[bookmark: _Ref336425330][bookmark: _Toc358896533][bookmark: _Toc85562665][bookmark: _Toc86990571]6.51 Pre-processor directives [NMP]
The vulnerability as described in ISO/IEC 24772-1:2024 6.51 does not apply to Ada as Ada does not have a pre-processor.
[bookmark: _Toc358896534][bookmark: _Ref86272910][bookmark: _Toc85562666][bookmark: _Toc86990572]6.52 Suppression of language-defined run-time checking [MXB]
6.52.1 Applicability to Language
The vulnerability as described in ISO/IEC 24772-1 6.52 applies to Ada. The Ada pragma Suppress() permits explicit suppression of language-defined checks on a unit-by-unit basis or on partitions or programs as a whole. (The language-defined default, however, is to perform the run-time checks that prevent run-time vulnerabilities.) Pragma Suppress can suppress all language-defined checks or individual categories of checks (see subclause 11.5 of ISO/IEC 8652).
6.52.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.52.5.
[bookmark: _Ref336425360][bookmark: _Toc358896535][bookmark: _Toc85562667][bookmark: _Toc86990573]6.53 Provision of inherently unsafe operations [SKL]
6.53.1 Applicability to Language
The vulnerability as described in ISO/IEC 24772-1:2024 6.53 applies to Ada. In recognition of the occasional need to step outside the type-system or to perform “risky” operations, Ada provides clearly identified language features to do so. Examples include the generic Unchecked_Conversion for unsafe type conversions or Unchecked_Deallocation for the deallocation of heap objects regardless of the existence of surviving references to the object. If unsafe programming is employed in a unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially unsafe units. Similarly, there are ways to create a potentially unsafe global pointer to a local object, using the Unchecked_Access attribute.
6.53.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of of ISO/IEC 24772-1:2024 6.53.5.
· [bookmark: here]Prohibit the use of unsafe programming practices by using the pragma Restrictions() to prevent the inadvertent use of unsafe language constructs.
· Carefully scrutinize any code that refers to a program unit explicitly designated to provide unchecked operations.
[bookmark: _Toc358896536][bookmark: _Toc85562668][bookmark: _Toc86990574]6.54 Obscure language features [BRS]
6.54.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.54 applies to Ada. Ada is a rich language and provides facilities for a wide range of application areas. Because some areas are specialized, it is likely that a programmer not versed in a special area can misuse features for that area. For example, the use of tasking features for concurrent programming requires knowledge of this domain. Similarly, the use of exceptions and exception propagation and handling requires a deeper understanding of control flow issues than some programmers possess.
6.54.2 Avoidance mechanisms for language users
To avoid the vulnerability or mitigate its ill effects Ada software developers can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.54.5.
· Use the pragma Restriction() to prevent the use of obscure features of the language.
· Avoid features in a Specialized Needs Annex of ISO/IEC 8652 unless the application area concerned is well-understood.
· Apply the restriction No_Dependence to prevent the use of specified pre-defined or user-defined libraries.
[bookmark: _Ref336414226][bookmark: _Toc358896537][bookmark: _Toc85562669][bookmark: _Toc86990575]6.55 Unspecified behaviour [BQF]
6.55.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.55 applies to Ada. In Ada, there are two main categories of unspecified behaviour, one having to do with unspecified aspects of normal run-time behaviour, and one having to do with bounded errors, errors that need not be detected at run-time but for which there is a limited number of possible run-time effects (though always including the possibility of raising Program_Error exception).
For the normal behaviour category, there are several distinct aspects of run-time behaviour that can be unspecified, including:
· Order in which certain actions are performed at run-time;
· Number of times a given element operation is performed within an operation invoked on a composite or container object;
· Results of certain operations within a language-defined generic package if the actual associated with a particular formal subprogram does not meet stated expectations (such as “<” providing a strict weak ordering relationship);
· Whether distinct instantiations of a generic or distinct invocations of an operation produce distinct values for tags or access-to-subprogram values.
The index entry in ISO/IEC 8652 for unspecified provides the full list. Similarly, the index entry for bounded error provides the full list of references to places in ISO/IEC 8652 where a bounded error is described.
Failure can occur due to unspecified behaviour when the programmer did not fully account for the possible outcomes, and the program is executed in a context where the actual outcome was not one of those handled, resulting in the program producing an unintended result.
6.55.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.55.5.
· For situations involving generic formal subprograms, ensure that the actual subprogram satisfies all of the stated expectations.
· For situations involving unspecified values, avoid depending on equality between potentially distinct values.
· For situations involving bounded errors, avoid the problem completely by ensuring in other ways that all requirements for correct operation are satisfied before invoking an operation that can result in a bounded error. See subclause 6.22 Initialization of variables [LAV] for a discussion of uninitialized variables in Ada, a common cause of a bounded error.
[bookmark: _Ref336414272][bookmark: _Toc358896538][bookmark: _Toc85562670][bookmark: _Toc86990576]6.56 Undefined behaviour [EWF]
6.56.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.56 applies to Ada. In Ada, undefined behaviour is called erroneous execution, and can arise from certain errors that are not required to be detected by the implementation, and whose effects are not in general predictable.
There are various kinds of errors that can lead to erroneous execution, including:
· Changing a discriminant of a record (by assigning to the record as a whole) while there remain active references to subcomponents of the record that depend on the discriminant;
· Referring via an access value, task id, or tag, to an object, task, or type that no longer exists at the time of the reference;
· Referring to an object whose assignment was disrupted by an abort statement, prior to invoking a new assignment to the object;
· Sharing an object between multiple tasks without adequate synchronization;
· Suppressing a language-defined check that is in fact violated at run-time;
· Specifying the address or alignment of an object in an inappropriate way;
· Using Unchecked_Conversion, Address_To_Access_Conversions, or calling an imported subprogram to create a value, or reference to a value, that has an invalid representation.
The full list is given in the index of ISO/IEC 8652 under erroneous execution.
Any occurrence of erroneous execution represents a failure situation, as the results are unpredictable, such as overwriting of memory, jumping to unintended locations within memory, and other uncontrolled events. All erroneous execution situations are to be avoided, but care should be exercised particularly when using the following features
· abort;
· Unchecked_Conversion;
· Address_To_Access_Conversions;
· The results of imported subprograms;
· Discriminant-changing assignments to global variables.

6.56.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.56.5.
· Ensure that all data shared between tasks are either private within a protected object or marked atomic;
· Upon any use of Unchecked_Deallocation, carefully check to be sure that there are no remaining references to the object;
· Use pragma Suppress sparingly, and only after the code has undergone extensive verification;
· Ensure the absence of erroneous execution.
[bookmark: _Ref336414530][bookmark: _Toc358896539][bookmark: _Toc85562671][bookmark: _Toc86990577]
6.57 Implementation-defined behaviour [FAB]
6.57.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.57 applies to Ada. There are a number of situations in Ada where the language semantics are implementation defined, to allow the implementation to choose an efficient mechanism, or to match the capabilities of the target environment. Each of these situations is identified in Annex M of ISO/IEC 8652, and implementations are required to provide documentation associated with each item in Annex M to provide the programmer with guidance on the implementation choices.
A failure can occur in an Ada application due to implementation-defined behaviour if the programmer presumed the implementation made one choice, when in fact it made a different choice that affected the results of the execution. In many cases, a compile time message or a run-time exception will indicate the presence of such a problem. For example, the range of integers supported by a given compiler is implementation defined. However, if the programmer specifies a range for an integer type that exceeds that supported by the implementation, then a compile time error will be indicated, and if at run-time a computation exceeds the base range of an integer type, then Constraint_Error is raised.
As indicated above, many such failures are indicated by compile time error messages or run-time exceptions. However, there are cases where the implementation-defined behaviour can be silently misconstrued, such as if the implementation presumes Ada.Exceptions.Exception_Information returns a string with a particular format, when in fact the implementation does not use the expected format. If a program is attempting to extract information from Ada.Exceptions.Exception_Information for the purposes of logging propagated exceptions, then the log can result in misleading or useless information if there is a mismatch between the programmer’s expectation and the actual implementation-defined format.
Many implementation-defined limits have associated constants declared in language-defined packages, generally package System. In particular, the maximum range of integers is given by System.Min_Int .. System.Max_Int, and other limits are indicated by constants such as System.Max_Binary_Modulus, System.Memory_Size, System.Max_Mantissa, and similar. Other implementation-defined limits are implicit in normal ‘First and ‘Last attributes of language-defined (sub) types, such as System.Priority'First and System.Priority'Last. Furthermore, the implementation-defined representation aspects of types and subtypes can be queried by language-defined attributes. Thus, code can be parameterized to adjust to implementation-defined properties without modifying the code.
6.57.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.57.5.
· Be aware of the contents of Annex M of ISO/IEC 8652 and avoid implementation-defined behaviour whenever possible.
· Make use of the constants and subtype attributes provided in package System and elsewhere to avoid exceeding implementation-defined limits.
· Minimize use of any predefined numeric types, as the ranges and precisions of these are all implementation defined and instead declare explicit numeric types to match the particular application needs.
· When there are implementation-defined formats for strings, such as Exception_Information, localize any necessary processing in packages with implementation-specific variants.
[bookmark: _Ref336425434][bookmark: _Toc358896540][bookmark: _Toc85562672][bookmark: _Toc86990578]6.58 Deprecated language features [MEM]
6.58.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 6.58 applies to Ada. Ada has obsolescent features that can be used but provides a strong mitigation, in the form of the compilation pragma Restrictions (No_Obsolescent_Features) which prevents the use of any of these features.
6.58.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.58.5.
· Use pragma Restrictions (No_Obsolescent_Features) to prevent the use of any obsolescent features.
· Refer to Annex J of the ISO/IEC 8652 to determine whether a feature is obsolescent.
[bookmark: _Toc358896436][bookmark: _Toc86990579][bookmark: _Toc85562673][bookmark: _Ref336425443][bookmark: _Toc358896541]6.59 Concurrency – Activation [CGA]
6.59.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.59 applies to Ada. Ada is open to this vulnerability but provides features for its mitigation. A task failing during activation will always raise an exception in the activating task (i.e., Tasking_Error). The activating task does not continue executing until all its dependent tasks have completed activation. A task can always check that another task has successfully activated.
6.59.2 Avoidance mechanisms for language users
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.59.5.
· Provide a handler to catch activation failures of local tasks.
· If possible, declare all tasks statically at the library level and use language-provided mechanisms to verify successful activation.
[bookmark: _Toc358896437][bookmark: _Ref411808169][bookmark: _Ref411809401][bookmark: _Ref86271119][bookmark: _Toc85562674][bookmark: _Toc86990580]6.60 Concurrency – Directed termination [CGT]
6.60.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.60 applies to Ada. Ada defines abort-deferred regions in which task termination will not occur. On a single processor, abort is defined to be immediate if the task is not in such a region. On multiprocessors, even if the abort is not immediate, it will be before any synchronization (dispatching) point.
6.60.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of ISO/IEC 24772-1:2024 6.60.5.
· Use the 'Terminated and 'Callable attributes to check that a task has terminated.
· Minimize the size of any abort-deferred region.
· Remove any possibility of unbounded loops in abort-deferred regions.
· Where possible, apply pragma Restrictions (No_Abort_Statements) to eliminate the use of this construct.
[bookmark: _Toc358896438][bookmark: _Ref358977270][bookmark: _Ref86271629][bookmark: _Toc85562675][bookmark: _Toc86990581]6.61 Concurrent data access [CGX]
6.61.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1:2024 6.61 applies to Ada. Ada allows tasks to access unprotected shared variables. However, the standard Ada means of programming data that is shared between tasks is to use a protected object that enforces serial access. Atomic accesses on some simple types are supported (if supported by the hardware).
6.61.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of subclause 6.61.5 of ISO/IEC 24772-1:2022.
· Prefer protected objects for shared data in preference to atomic, volatile or unmarked data.
· Statically determine that no unprotected data is used directly by more than one task.
· [bookmark: _Toc358896439][bookmark: _Ref411808187][bookmark: _Ref411808224][bookmark: _Ref411809438]When shared variables are used, employ model checking or equivalent methodologies to prove the absence of race conditions.
· Use pragma Atomic and pragma Atomic_Components to ensure that all accesses to shared objects and components happen atomically.
· Use pragma Volatile and pragma Volatile_Components to ensure that all tasks see writes to the associated objects or array components in the same order.
[bookmark: _Ref86271159][bookmark: _Ref86273214][bookmark: _Toc85562676][bookmark: _Toc86990582]6.62 Concurrency – Premature termination [CGS]
6.62.1 Applicability to language
The vulnerability as described in ISO/IEC 24772-1 subclause 6.62 applies to Ada. An Ada task can terminate silently, however in general the tasking model is robust and a number of features are available to mitigate against this vulnerability – see guidance below.
6.62.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of subclause 6.62.5 of ISO/IEC 24772-1:2022.
· If possible, apply pragma Restrictions (No_Abort_Statements) to eliminate the use of this construct.
· Ensure that all tasks contain an exception handler at the outer level to prevent silent termination due to unhandled exceptions.
· Make use of package Ada.Task_Termination to force a handler to be executed when a task terminates.
· Use attributes 'Terminated and 'Callable to confirm that a task has not terminated (although care is needed here as a task can terminate immediately after this call is made).
· Ensure that all accesses and updates to data that are vulnerable to premature task termination are executed in abort-deferred regions (e.g., protected operations).
· Make use of timed task communication that will time-out if the called task does not respond.
[bookmark: _Toc358896440][bookmark: _Toc85562677][bookmark: _Toc86990583]6.63 Lock protocol errors [CGM]
6.63.1 Applicability to language
With the exception of unsafe programming (see 5.1 Language concepts), the vulnerability as described in ISO/IEC 24772-1 subclause 6.63 is mitigated by Ada. Locks are implicit in Ada protected objects, and explicit locks (like semaphores or mutexes) can be implemented by coding protected objects or tasks with explicit “lock” and “unlock” operations. For explicitly coded locks, any of the well-known lock protocol errors can occur. For the locks implicit in protected objects, protocol errors can occur in the following ways:
· By an “external” call, or “external” requeue, to a protected object that is already locked by the caller. A call or requeue to a protected object is “external” when the callee object is not statically known to be the “current object”, which means that the call or requeue tries to acquire the implicit lock of the callee object.
· By directly or indirectly invoking any other potentially blocking operation, such as a delay statement, during a protected action (that is, from code executed in a protected object).
· By a call from a task that has a priority higher than the ceiling priority of the callee protected object, when locking is implemented by ceiling priorities (the Ceiling_Locking policy).
The first two cases, invoking potentially blocking operations, are by default bounded errors that are not required to be detected, neither at compile time nor at run-time. If not detected, the result can be deadlock or violation of mutual exclusion. Different implementations of Ada can behave differently and unpredictably. However, using the pragma Detect_Blocking forces a run-time check, which raises the Program_Error exception in case of failure. For the last case, ceiling priority violation, such a run-time check is always performed.
In general, whether an Ada program risks any of these errors can be determined only by a global analysis of the program, including the full caller-callee relationship. Such an analysis becomes much harder, and often impossible, if callees are defined dynamically by access values or if task priorities or ceiling priorities are modified dynamically.
6.63.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of subclause 6.63.5 of ISO/IEC 24772-1:2022.
· Make use of loosely coupled communication using protected objects.
· Where possible stay within the constraints defined by the Ravenscar tasking profile [19][24].
· Use pragma Detect_Blocking to ensure blocking errors are detected.
· If synchronous communication (rendezvous) is employed, use model checking or equivalent to prove that the program is free from deadlocks etc.
· Always handle exceptions that can arrive from rendezvous or protected objects (unless they can be proved to not be raised).
· Guard against protocol failures by using timed communication, watchdog timers (programmed using Ada’s timed events) and time-stamped data (using Ada’s clock facilities).
· Prohibit the use of unprotected shared data for synchronization between tasks.
[bookmark: _Toc85562678][bookmark: _Toc86990584][bookmark: _Toc358896443]6.64 Reliance on external format strings [SHL]
The vulnerability as described in ISO/IEC 24772-1 subclause 6.63 does not apply to Ada, because Ada does not provide format strings.
[bookmark: _Toc85562679][bookmark: _Toc86990585]6.65 Modifying constants [UJO]
6.65.1 Applicability to language
The vulnerability described in ISO/IEC 24772-1 applies to Ada. Certain kinds of types in Ada permit the creation of a self-reference during object initialization, even for a constant. For such types (immutably limited and controlled types), the potential for the errors identified in this vulnerability exists, but there are various ways to mitigate this potential – see guidance below. With the exception of unsafe programming (see 5.1 Language concepts), this vulnerability is prevented in other cases by rules that prevent obtaining a reference with update access given a constant view of an object.
6.65.2 Avoidance mechanisms for language users
Ada software developers can avoid the vulnerability or mitigate its ill effects in the following ways. They can:
· Apply the mitigation mechanisms of subclause 6.65.5 of ISO/IEC 24772-1:2022.
· Prohibit the use of the Access attribute to create a self-reference with update access when initializing an immutably limited type.
· Prohibit the use of the Unchecked_Access attribute when it could create a self-reference with update access during an initialization routine, or the Adjust procedure of a controlled type.
· If a self-reference with update access is important to the functionality of a given (private) type, ensure that all primitive operations of the type use “in out” mode for parameters of the type, if they make any use of this self-reference to potentially update the parameter to ensure that constants are not inadvertently altered by such a primitive operation.

[bookmark: _Toc85562681][bookmark: _Toc86990587]7 Implications for standardization
Future standardization efforts should consider the following items to address vulnerability issues identified earlier in this Annex:
· Pragma Restrictions can be extended to statically constrain dubious uses of control structures (see 6.31 Unstructured programming [EWD]).
· When appropriate, language-defined checks should be added to reduce the possibility of multiple outcomes from a single construct, such as by disallowing side-effects in cases where the order of evaluation can affect the result, similar to those specified for use of “in out” or “out” parameters of functions (see 6.24 Side-effects and order of evaluation [SAM] and 6.55 Unspecified behaviour [BQF]).
· When appropriate, language-defined checks should be added to reduce the possibility of erroneous execution, such as by disallowing unsynchronized access to shared variables (see 6.56 Undefined behaviour [EWF]).
· Language standards should specify relatively tight boundaries on implementation-defined behaviour whenever possible, and the standard should highlight what levels represent a portable minimum capability on which programmers can rely. For languages like Ada that allow user declaration of numeric types, the number of predefined numeric types should be minimized (for example, strongly discourage or disallow declarations of Byte_Integer, Very_Long_Integer, and similar, in package Standard) (see 6.57 Implementation-defined behaviour [FAB]).
· Ada can define a pragma Restrictions identifier No_Hiding that forbids the use of a declaration that result in a local homograph (see 6.20 Identifier name reuse [YOW]).
· Ada can add the ability to declare in the specification of a function that it is pure, that is, it has no side effects (see 6.24 Side-effects and order of evaluation [SAM]).
· Pragma Restrictions can be extended to restrict the use of 'Address attribute to library level static objects (see 6.33 Dangling references to stack frames [DCM]).
· Future standardization of Ada should consider implementing a language-provided reference counting storage management mechanism for dynamic objects (see 6.38 Deep vs. shallow copying [YAN]).

[bookmark: _Toc443470372][bookmark: _Toc450303224]

[bookmark: _Toc358896893][bookmark: _Toc85562682][bookmark: _Toc86990588]Bibliography
[1]	AQSG, Ada Quality and Style Guide, Guidelines for Professional Programmers. Available from: https://en.wikibooks.org/wiki/Ada_Style_Guide.
[2]	Barnes, John, High Integrity Software - the SPARK Approach to Safety and Security. Addison-Wesley. 2002.
[3] 	Barnes, John, Lecture Notes on Computer Science 8338, Ada 2012 Rationale: The Language—The Standard Libraries, Springer, 2013.
[5]	Christy, Steve, Vulnerability Type Distributions in CVE, V1.0, 2006/10/04
[6]	CWE. The Common Weakness Enumeration (CWE) Initiative, MITRE Corporation, (http://cwe.mitre.org/)
[11]	Holzmann, Gerard J., Computer, vol. 39, no. 6, pp 95-97, Jun., 2006, The Power of 10: Rules for Developing Safety-Critical Code
[12]	IEC 61508 Parts 1-7, Functional safety: safety-related systems. 1998. (Part 3 is concerned with software).
[18]	ISO/IEC TR 15942:2000, Information technology — Programming languages — Guide for the use of the Ada programming language in high integrity systems	Comment by Stephen Michell: Renumber bibliography and make the document consistent.
[19]	ISO/IEC TR 24718:2005, Information technology — Programming languages — Guide for the use of the Ada Ravenscar Profile in high integrity systems
[21]	IEC/IEEE 60559:2011, Information technology – Microprocessor Systems – Floating-Point arithmetic (3 parts)
[22]	ISO/IEC 15408: 1999 Information technology. Security techniques. Evaluation criteria for IT security.
[24]	Lundqvist, K and Asplund, L., “A Formal Model of a Run-Time Kernel for Ravenscar”, The 6th International Conference on Real-Time Computing Systems and Applications – RTCSA 1999
[25]	RTCA SC167 DO178-C/EUROCAE ED-12C, Software Considerations in Airborne Systems and Equipment Certification. Issued in the USA by the Requirements and Technical Concepts for Aviation) and in Europe by the European Organization for Civil Aviation Electronics. December 1992.
[26]	Sebesta, Robert W., Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0,
ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008
[29]	Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Constraint Violation Detection in Safety-Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering, 109 - 116.

[bookmark: _Toc358896894][bookmark: _Toc85562683][bookmark: _Toc86990589]Index

	International Standard
	ISO/IEC 24772-2:2019(E)

	© ISO/IEC 2016 – All rights reserved
			10

	60
	© ISO/IEC 2022 – All rights reserved

	© ISO/IEC 2022 – All rights reserved
	61

abort, 35, 51, 53, 54
access type, 18
Access type, 11
Access value, 11
Access-to-object, 11
Access-to-subprogram, 11
Allocator, 11
AMV – Type-breaking Reinterpretation of Data, 42
Aspect specification, 11
Atomic, 11, 15, 51, 54
attribute
'Valid, 41
Attribute, 11
'Access, 39
'Address, 39, 40, 57
'Alignment, 18
'Component_Size, 18
'Exponent, 25
'First, 38, 52
'Image, 36
'Last, 38, 52
'Length, 38
'Range, 38
'Size, 18
'Unchecked_Access, 21, 39, 40, 49
'Valid, 47
‘Access, 28, 40
‘Callable, 54, 55
‘Terminated, 54, 55
‘Valid, 23
’Valid, 33

Bit ordering, 11, 12
BJL – Namespace Issues, 32
Bounded Error, 11
BQF – Unspecified Behaviour, 50
BRS – Obscure Language Features, 49

Case choices, 12
Case expression, 12
Case statement, 11, 25, 26, 37
CCB – Enumerator Issues, 25
CGA – Concurrency – Activation, 53
CGM – Protocol Lock Errors, 55
CGS – Concurrency – Premature Termination, 54
CGT – Concurrency – Directed termination, 53
CGX – Concurrent Data Access, 54
CJM – String Termination, 27
CLL – Switch Statements and Static Analysis, 36
Compilation unit, 12
Configuration pragma, 12, 19
Controlled type, 12
CSJ – Passing Parameters and Return Values, 39

DCM – Dangling References to Stack Frames, 39
Dead store, 12
Default expression, 12
Discrete type, 12
Discriminant, 12, 51
DJS – Inter-language Calling, 47

Endianness, 12
Enumeration Representation Clause, 12
Enumeration type, 12, 16
EOJ – Demarcation of Control Flow, 37
Erroneous execution, 13
EWD – Structured Programming, 38
EWF – Undefined Behaviour, 51
Exception, 13, 16, 17, 18, 20, 23, 26, 27, 33, 38, 41, 46, 47, 48, 49, 52, 53, 55, 56
Constraint_Error, 16, 17, 28, 29, 36, 52
Program_Error, 16, 18, 50
Storage_Error, 16, 41
Tasking_Error, 16, 53
Exception Information, 52
Expanded name, 13
Explicit conversions, 17, 23

FAB – Implementation-Defined Behaviour, 52
FIF – Arithmetic Wrap-around Error, 29
Fixed-point types, 13
FLC – Numeric Conversion Errors, 26

GDL – Recursion, 41
Generic formal subprogram, 13

HCB – Buffer Boundary Violation (Buffer Overflow), 27
HFC – Pointer Type Conversions, 28
Hiding, 13, 17, 57
hidden from all visibility, 17
hidden from direct visibility, 17
HJW – Unanticipated Exceptions from Library Routines, 48
Homograph, 13

Idempotent behaviour, 13
Identifier, 13
Identifier length, 30
IHN–Type System, 23
Implementation defined, 13, 17
Implicit conversions, 17, 23
International character sets, 30
invalid representation, 51
Invalid representation, 13

JCW – Operator Precedence/Order of Evaluation, 34
Junk initialization, 33

KOA – Likely Incorrect Expression, 35

Language concepts, 24, 26, 27, 28, 29, 36, 37, 41, 42, 43, 45, 47, 55, 56
Language Vulnerabilities
Argument Passing to Library Functions [TRJ], 44, 45, 46
Arithmetic Wrap-around Error [FIF], 29
Bit Representation [STR], 24
Buffer Boundary Violation (Buffer Overflow) [HCB], 27
Choice of Clear Names [NAI], 30
Concurrency – Activation [CGA], 53
Concurrency – Directed termination [CGT], 53
Concurrency – Premature Termination [CGS], 54
Concurrent Data Access [CGX], 54
Dangling Reference to Heap [XYK], 29
Dangling References to Stack Frames [DCM], 39
Dead and Deactivated Code [XYQ], 36
Dead store [WXQ], 22, 31
Demarcation of Control Flow [EOJ], 37
Deprecated Language Features [MEM], 53
Dynamically-linked Code and Self-modifying Code [NYY], 47
Enumerator Issues [CCB], 25
Extra Intrinsics [LRM], 46
Floating-point Arithmetic [PLF], 24
Identifier Name Reuse [YOW], 32
Ignored Error Status and Unhandled Exceptions [OYB], 41
Implementation-Defined Behaviour [FAB], 52
Inheritance [RIP], 44
Initialization of Variables [LAV], 32
Inter-language Calling [DJS], 47
Library Signature [NSQ], 47
Likely Incorrect Expression [KOA], 35
Loop Control Variables [TEX], 37
Memory Leak [XYL], 43
Namespace Issues [BJL], 32
Numeric Conversion Errors [FLC], 26
Obscure Language Features [BRS], 49
Off-by-one Error [XZH], 37
Operator Precedence/Order of Evaluation [JCW], 34
Passing Parameters and Return Values [CSJ], 39
Pointer Arithmetic [RVG], 28
Pointer Type Conversions [HFC], 28
Protocol Lock Errors [CGM], 55
Provision of Inherently Unsafe Operations [SKL], 49
Recursion [GDL], 41
Reliance on external format strings [SHL], 56
Side-effects and Order of Evaluation [SAM], 34
String Termination [CJM], 27
Structured Programming [EWD], 38
Subprogram Signature Mismatch [OTR], 40
Suppression of Language-defined Run-time Checking [MXB], 49
Switch Statements and Static Analysis [CLL], 36
Templates and Generics [SYM], 43
Type System [IHN], 23
Type-breaking Reinterpretation of Data [AMV], 42
Unanticipated Exceptions from Library Routines [HJW], 48
Unchecked Array Indexing [XYZ], 27
Undefined Behaviour [EWF], 51
Unspecified Behaviour [BQF], 50
Unused Variable [YZS], 31
Using Shift Operations for Multiplication and Division [PIK], 29
Language Vulnerability
Unchecked Array Copying [XYW], 27
LAV – Initialization of Variables, 32
LRM – Extra Intrinsics, 46

MEM – Deprecated Language Features, 53
Mixed casing, 30
Modular type, 14
MXB – Suppression of Language-defined Run-time Checking, 49

NAI – Choice of Clear Names, 30
NSQ – Library Signature, 47
NYY – Dynamically-linked Code and Self-modifying Code, 47

Obsolescent feature, 14
Operational and Representation Attributes, 14, 18
OTR – Subprogram Signature Mismatch, 40
Overriding indicators, 14
OYB – Ignored Error Status and Unhandled Exceptions, 41

Partition, 14
PIK – Using Shift Operations for Multiplication and Division, 29
PLF – Floating-point Arithmetic, 24
Pointer, 14, 32
Polymorphic Variable, 17
Postconditions, 46, 47
Pragma, 14, 49
Configuration pragma, 12
pragma Atomic, 18, 54
pragma Atomic_Components, 18, 54
pragma Convention, 18, 47, 48
pragma Default_Storage_Pool, 20
pragma Detect_Blocking, 18
pragma Discard_Names, 18
pragma Export, 18, 47, 48
pragma Import, 19, 42, 47, 48
pragma Normalize_Scalars, 19, 33
pragma Pack, 19
pragma Restrictions, 19, 20, 49, 50, 53, 57
pragma Suppress, 19, 21, 27, 49, 51
pragma Unchecked Union, 19
pragma Volatile, 19, 54
pragma Volatile_Components, 19, 54
Preconditions, 46, 47
Program verification, 46

Range check, 14
Record representation clause, 14
RIP – Inheritance, 44
RVG – Pointer Arithmetic, 28

SAM – Side-effects and Order of Evaluation, 34
Scalar type, 14
selecting expression, 14
Separate Compilation, 19
SHL – Reliance on external format strings, 56
Singular/plural forms, 30
SKL – Provision of Inherently Unsafe Operations, 49
static expression, 14
Storage Place Attribute, 15
Storage pool, 11, 15, 20, 43
Storage subpool, 15, 20, 43
STR – Bit Representation, 24
Subtype declaration, 15
SYM – Templates and Generics, 43
Symbols and conventions, 10

Task, 15, 55
Terms and definitions, 10
TEX – Loop Control Variables, 37
TRJ – Argument Passing to Library Functions, 44, 45, 46
Type conversion, 14, 17
Type invariants, 46, 47

Unchecked conversions, 17, 23
Unchecked_Conversion, 17, 21, 23, 42, 49, 51
Underscores and periods, 30
Unsafe Programming, 20, 24, 25, 26, 27, 28, 29, 36, 37, 41, 43, 45, 47, 49, 55
Unused variable, 15

Volatile, 15, 54

WXQ – Dead store, 22, 31

XYK – Dangling Reference to Heap, 29
XYL – Memory Leak, 43
XYQ – Dead and Deactivated Code, 36
XYW – Unchecked Array Copying, 27
XYZ – Unchecked Array Indexing, 27
XZH – Off-by-one Error, 37

YOW – Identifier Name Reuse, 32
YZS – Unused Variable, 31

