
 ISO/IEC/JTC 1/SC 22/WG 23 Document N1263
 8 March 2023

No Recommended avoidance mechanism Reference(s)
1 Avoid the use of pickle, but if it must be used, only unpickle

trusted data.

2 When using asyncio, make all tasks non-blocking.
3 Avoid using exec or eval and never use these with untrusted

code

4 Avoid mixing concurrency models within the same program or, if
unavoidable, use with extreme caution.

5 When using monkey patching, be aware that altering the
behavior of objects at runtime can make code much more difficult
to understand and easily introduce vulnerabilities.

6 Do not use floating-point arithmetic when integers or Booleans
would suffice especially for counters associated with program
flow, such as loop control variables.

6.4 [PLF], 6.15 [FIF], 6.6 [FLC]

7 Use type annotations to help provide static type checking prior to
running code.

6.5 [CCB], 6.2 [IHN], 6.11 [HFC]

8 Avoid the use of auto() for enums intended to be used for
indexing into lists.
Avoid mixing the use of auto() for enums with manual
assignments, and when indexing into a list.

6.5 [CCB]

9 Assume that when examining code, that a variable can be bound
(or rebound) to another object (of same or different type) at any
time.
Do not use mutable objects as default values for arguments in a
function definition unless absolutely needed and the effect is
understood and be cognizant that assignments to objects,
mutable and immutable, always create a new object.

6.18 [WXQ]

10 Avoid implicit references to global values from within functions
to make code clearer. In order to update global objects within a
function or class, place the global statement at the beginning of
the function definition and list the variables so it is clearer to the
reader which variables are local and which are global (for
example, global a, b, c).

6.21 [BJL]

11 Use Python’s built-in documentation (such as docstrings) to
obtain information about a class’ method before inheriting from
it
Inherit only from trusted classes and only use multiple inheritance
that is linearizable with the mro rules.

6.41 [RIP]

Deleted: ,

12 Either avoid logic that depends on byte order or use the
sys.byteorder variable and write the logic to account for
byte order dependent on its value ('little' or 'big').

6.57 [FAB], 6.3 [STR]

13 When using multiple threads, check for race conditions and
deadlocks by using fuzzing techniques during development.
When using multiple threads, verify that all shared data is
protected by locks or similar mechanisms, and use inter-
communication mechanisms or global references to ensure safe
terminations.

 6.61 [CGX], 6.63 [CGM]

14 If necessary, the preferred method for killing a thread is from
within the thread itself using a watchdog message queue or
global variable that signals the thread to terminate itself. This will
enable the thread to perform proper cleanup and eliminate
deadlocks.

6.60 [CGT], 6.62 [CGS]

15 Be cognizant that most arithmetic and bit manipulation
operations on non-integers have the potential for undetected
wrap-around errors.

16 Always use named exceptions to avoid catching errors that are
intended for other exception handlers and use context managers
to enclose the code creating the exception.

17 Follow the guidance of PEP 551 and PEP 578 to eliminate
potentially dangerous default behaviour from calls into the
Python runtime and in the use of audit hooks (see the General
Recommendations contained in “PEP 551 -- Security transparency
in the Python runtime” and “PEP 578 Python Runtime Audit
Hooks”.

