
ISO/IEC/JTC 1/SC 22/WG 23 N1251

30 January 2023

4.9 Polymorphism

Replace section by

Fortran supports object orientation with single inheritance. A derived type ta may be extended to
form a new type tb with all the components of type ta plus possible additional components. The
extended type tb also has a parent component of type ta with the name ta and the type and type
parameters of the parent type. Access to the components is illustrated by the following example.

type ta
 real :: x
end type
type, extends (ta) :: tb
 integer :: i
end type
type(tb) :: bobj
. . .
bobj%x = 1
bobj%ta%x = 2 ! Overwrites the previous assignment of 1

A variable can be declared as polymorphic; it has a declared type and a dynamic type that is
permitted to be any extension of the declared type. A type declaration can bind existing procedures
to the type; each has a binding name that may be the same as the name of the existing procedure.
The existing procedure usually has a dummy argument of the type that is given the pass attribute.
A type-bound procedure is invoked as if it were a component of the object; if the procedure has an
argument with the pass attribute, the corresponding actual argument is omitted from the
argument list and the invoking object is passed automatically. Here is an example

module m
 type ta
 real :: x = 7.2
 end type
 type, extends (ta) :: tb
 integer :: i
 contains
 procedure :: proc => foo ! first argument implictly given
 ! the pass attribute
 end type
contains
 real function foo(arg)
 class(tb) :: arg
 foo = arg%x
 end function
end module m
. . .
 use m
 type(tb) :: bobj
 real :: y

 y = bobj%proc() ! y is assigned the value 7.2

Binding names are inherited by extensions of the type but can be overridden by a specification for
the same name in the definition of an extended type. Which procedure is invoked in a type-bound
reference is determined by the dynamic type of the object through which the procedure is
referenced. To execute alternative code depending on the dynamic type of a polymorphic entity and
to gain access to the dynamic parts, the select type construct is provided.

7 Language specific vulnerabilities for Fortran

Replace by

7.1 Source form

7.1.1 Applicability to language

Fortran permits a source form called “fixed” where blanks are not significant in parsing the source
code, and a source form called “free” where blanks are significant. A famous example of the
vulnerability associated with fixed source form is

do 25 i = 1.10

Is interpreted as an assignment of 1.1 to the (undeclared) floating point variable do25i instead of as
the loop header

do 25 i = 1,10

In addition, fixed source form ignores text beyond line position 72, whereas for free form code, all
characters within the legal line length are significant (except beyond the character !). The
vulnerability associated with fixed form source code is that any text placed beyond line position 72 is
ignored, which can change the semantics.

7.1.2 Avoidance mechanisms for language users

• Avoid fixed source form in all programs.
• Use implicit none to require that all variables are declared, see 6.17 Choice of clear names

[NAI].

Commented [SM1]: STEVE to write.

