
Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 1 of 25

Python collated guidance ISO/IEC/JTC 1/SC 22/WG 23 N1239

Clause Advice
6.2 Type system

Use static type checkers to detect typing errors. The Python community is one source of
static type checkers.
Pay special attention to issues of magnitude and precision when using mixed type
expressions.
Be aware of the consequences of shared references. See clause 6.24 Side-effects and order
of evaluation of operands [SAM] and 6.38 Deep vs. shallow copying [YAN].
Keep in mind that using a very large integer will have a negative effect on performance.

6.3 Bit representation

Be careful when shifting negative numbers to the right as the number will never reach
zero.
Localize and document the code associated with explicit manipulation of bits and bit
fields.
Use sys.byteorder to determine the native byte order of the platform.

6.4 Floating Point Arithmetic

Code algorithms to account for the fact that results can vary slightly by implementation.

6.5 Enumerator issues

Use type annotations to help provide static type checking prior to running the code.
Avoid the use of auto() for enums intended to be used for indexing into lists.
If using auto() for defining enums, ensure that auto() is used everywhere.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 2 of 25

If using auto() for defining enums, be very careful in converting to list members.
Avoid using enums created by auto() to access lists

6.6 Conversion errors

Though there is generally no need to be concerned with an integer getting too large
(rollover) or small, be aware that iterating or performing arithmetic with very large
positive or small (negative) integers will hurt performance.

Be aware of the potential consequences of precision loss when converting from floating-
point to integer.
Design coding strategies that allow the distinction of semantically incompatible types.
Design classes that have operation handling methods carefully and ensure that
Py_NotImplemented and TypeError exceptions are handled.

Use or develop ‘units’ libraries to handle conversions between differing unit-based
systems.

6.7 String termination (none)
6.8 Buffer boundary violation (overflow) (none)

6.9 Unchecked array indexing (none)
6.10 Unchecked array copying - no specific guidance (none)
6.11 Pointer type conversions

Do not alter the __class__ attribute for instances of a class unless there are
compelling reasons to do so. If alterations are required, document the reasons in
docstring and local comments.
Use type annotations and type hints in the code.
Run a third-party static type checker.

6.12 Pointer arithmetic - (none)
6.13 Null pointer dereference (none)
6.14 Dangling reference to heap

When accessing data objects directly by using memoryview(), make sure that the data
pointed to remains valid until it is no longer needed.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 3 of 25

6.15 Arithmetic wrap-around error
Be cognizant that most arithmetic and bit manipulation operations on non-integers have
the potential for undetected wrap-around errors.

Avoid using floating-point or decimal variables for loop control but if one of these types
must be used, then bound the loop structures so as to not exceed the maximum or
minimum possible values for the loop control variables.

Test the implementation that is being used to see if exceptions are raised for floating-
point operations and if they are then use exception handling to catch and handle wrap-
around errors.

6.16 Using shift operators for multiplication and division (none)

6.17 Choice of clear names
For more guidance on Python’s naming conventions, refer to Python Style Guides
contained in “PEP 8 – Style Guide for Python Code”.
Avoid names that differ only by case unless necessary to the logic of the usage, and in
such cases document the usage.
Adhere to Python’s naming conventions.
Do not use overly long names.
Use names that are not similar (especially in the use of upper and lower case) to other
names.
Use meaningful names.
Use names that are clear and visually unambiguous because the compiler cannot assist in
detecting names that appear similar but are different.
Ensure that ‘show-all-hidden-characters’ is enabled in the editor.
Understand or eliminate all confusing Unicode characters, in particular, homoglyphs.
Use caution when copying and pasting Unicode text.

6.18 Dead Store - no specific guidance
Assume that when examining code, that a variable can be bound (or rebound) to another
object (of same or different type) at any time .

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 4 of 25

Avoid rebinding except where it adds identifiable benefit.
Consider using ResourceWarning to detect implicit reclamation of resources.
 This was modified to match the “Recommended avoidance mechanism” table in Section 5. We should
revisit the intent of this guidance.

6.19 Unused variable - no specific guidance
6.20 Identifier name reuse

Do not use identical names unless necessary to reference the correct object.

Avoid the use of the global and nonlocal specifications because they are generally
a bad programming practice for reasons beyond the scope of this annex and because their
bypassing of standard scoping rules make the code harder to understand.

Use qualification when necessary to ensure that the correct variable is referenced.
6.21 Namespace issues

Use the full path name for imports, in preference to relative paths.

When using the import statement, rather than use the from X import * form
(which imports all of module X’s attributes into the importing program’s namespace),
instead explicitly name the attributes that need to be imported (for example, from X
import a, b, c) so that variables, functions and classes are not inadvertently
overlaid.

Avoid implicit references to global values from within functions to make code clearer. In
order to update globals within a function or class, place the global statement at the
beginning of the function definition and list the variables so it is clearer to the reader
which variables are local and which are global (for example, global a, b, c).

When interfacing with external systems or other objects where the declaration order of
class members is relevant, use __prepare__ to obtain the desired order for class
member creation.

6.22 Missing initialization of variables

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 5 of 25

Ensure that it is not logically possible to reach a reference to a variable before it is
assigned to avoid the occurrence of a runtime error.

6.23 Operator precedence and associativity
(none specific)

6.24 Side effects and order of evaluation

Avoid assignment to a variable equally named as the loop index counters within the loop.

Be aware of Python’s short-circuiting behaviour when expressions with side effects are
used on the right side of a Boolean expression.
Do not change the size of a data structures while iterating over it. Instead, create a new
list.
Use the assert statement during the debugging phase of code development to help
eliminate undesired conditions from occurring.

6.25 Likely incorrect expression
Add parentheses after a function call in order to invoke the function.
Keep in mind that any function that changes a mutable object in place returns a None
object – not the changed object since there is no need to return an object because the
object has been changed by the function.

Be sure to use an await statement for async coroutines and ensure that all routines are
nonblocking.

6.26 Dead and deactivated code
Import just the attributes that are required by using the from statement to avoid adding
dead code.
Be aware that subsequent imports have no effect; use the reload statement instead of
import if a fresh copy of the module is desired.

6.27 Switch statements and static analysis (none)

6.28 Demarcation of control flow
● Use either spaces or tabs, not both, to demark control flow.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 6 of 25

Note: Python 3.0+ will refuse to compile code that uses a mixture of tabs and spaces for
indentation.

6.29 Loop control variable abuse
Be careful to only modify variables involved in loop control in ways that are easily
understood and in ways that cannot lead to a premature exit or an endless loop.
When using the for statement to iterate through a mutable object, do not add or delete
members because it could have unexpected results.

Avoid using assignment expressions in the loop control statement (that is, while or
for).

6.30 Off-by-one error
Be aware of Python’s indexing by default from zero and code accordingly.
Be careful that a loop will always end when the loop index counter value is one less than
the ending number of the range.
Use the for statement to execute over whole constructs in preference to loops that index
individual elements.

Use the enumerate() built-in method when both container elements and their position
within the iteration sequence are required.

6.31 Unstructures programming
Use the break statement judiciously to exit from control structures and show statically
that the code behaves correctly in all contexts.

Restructure code so that the nested loops that are to be collectively exited form the body
of a function, and use early function returns to exit the loops. This technique does not
work if there is more complex logic that requires different levels of exit.

 Use context managers (such as with) to enclose code creating exceptions.

6.32 Passing parameters and return values
Create copies of mutable objects before calling a function if changes are not wanted to
mutable arguments.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 7 of 25

Uses types.MappingProxy or collections.ChainMap to provide read-only
views of mappings without the cost of making a copy.

Be aware that for immutable arguments, local copies are created when assignment occurs
within the function while for mutable arguments, assignments operate directly on the
original argument.

Be careful when passing mutable arguments into a function since the assignment
sequence (order) within the function may produce unexpected results.

6.33 Dangling references to stack frames

Avoid using ctypes when calling C code from within Python and use cffi (C
Foreign Function Interface) instead.

6.34 Subprogram signature mismatch
Adjust the maximum recursion depth to an appropriate value as needed.

6.35 Recursion
Prefer iteration to recursion, unless it can be proved that the depth of recursion can never be
large.

6.36 Ignored error status and unhandled exception
Use Python’s exception handling with care in order to not catch errors that are intended
for other exception handlers. That is, always catch named exceptions.

Use exception handling, but directed to specific tolerable exceptions, to ensure that
crucial processes can continue to run even after certain exceptions are raised.

6.37 Type-breaking reinterpretation of data (N/A)
6.38 Deep vs. shallow copying

Be aware the “slice” operator “[:]” and the container copy() methods only perform
shallow copies.

To obtain deep copies at all levels of a variable, use the copy.deepcopy standard
library function.

6.39 Memory leaks and heap fragmentation

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 8 of 25

Set each object to null when it is no longer required.
If a program is intended for continuous operation, examine all object usage carefully,
following the guidance of ISO/IEC TR 24772-1:2019, to show that memory is
effectively reclaimed and reused.

Use context managers to explicitly release large memory buffers that are no longer
needed.

6.40 Templates and generics

Though Python does not meet the applicable language characteristics, the guidance
contained in ISO/IEC TR 24772-1:2019 clause 6.40.5 is good advice for avoiding issues
that arise in a dynamically typed language.

6.41 Inheritance
Inherit only from trusted classes, such as standard classes.
Only use multiple inheritance that is linearizable by the MRO rules.
Make sure that each class calls the __init__ of its superclass.
Use the __mro__ attribute to obtain information about the MRO sequence of classes
followed by method calls.
Use static analysis tools supported by type-checking hints.
Employ type hints to elicit compile-time analysis.
Prefix method calls with the desired class wherever feasible.
Use Python’s built-in documentation (such as docstrings) to obtain information about a
class’ methods before inheriting from the class provided that the documentation
accurately reflects that implemented code.

For users who are new to the use of multiple inheritance in Python, carefully review
Python’s rules, especially those of super() and class names that prefix calls.

6.42 Violations of the Liskov substitution principle

use software static analysis tools to detect such violations.
6.43 Redispatching

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 9 of 25

Avoid dispatching whenever possible by prefixing the method call with the target class
name, or with super().

Within a single class, avoid the definition of a second method with the same signature as
an existing method.

Use systematic code reviews, organization-wide coding standards, and static analysis
tools to prevent problems related to the redefinition of methods in object-oriented
programming.

6.44 Polymorphic variables
Make sure that each class implements the __init__ method that calls the __init__ of its
superclass.
Employ static type checking by providing type hints for static analysis tools in areas
involving inheritance.
Use __mro__ as an aid during development and during maintenance to help obtain the
desired class hierarchies and verify linearity.
Consider using __mro__ to check at runtime that the actual method binding matches the
expected method binding and to raise an exception if they do not match.
Pay attention to warnings that identify variables written but never read.

6.45 Extra intrinics
Do not override built-in “intrinsics”.

If it is necessary to override an intrinsic, document the case and show that it behaves as
documented and that it preserves all the properties of the built-in intrinsic.

6.46 Argument passing to library functions
(No python-specific guidance)

6.47 Inter-language calling

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 10 of 25

Do not write Python extension modules by hand, as doing so is error-prone, and highly
likely to lead to reference counting errors, memory leaks, dangling pointers, out-of-
bounds memory accesses, and similar problems.
Where available, use existing interface libraries that bridge between Python and the
extension module language, for example, PyO3 for Rust, pybind11 for C++.

6.48 Dynamically-linked code and self-modifying code

Avoid using exec or eval and never use these with untrusted code.

Be careful when using Guerrilla patching to ensure that all uses of the patched classes
and/or modules continue to function as expected; conversely, be aware of any code being
used that patches classes and/or modules to avoid unexpected results.
Ensure that the file path and files being imported are from trusted sources.

Follow the guidance of PEP 551 and PEP 578 to eliminate potentially dangerous default
behaviour from calls into the Python runtime and in the use of audit hooks (see the
General Recommendations contained in “PEP 551 -- Security transparency in the Python
runtime” and “PEP 578 Python Runtime Audit Hooks”.

Verify that the release version of the product does not use default entry points
(python.exe on Windows, and pythonX.Y on other platforms) since these are executable
from the command line and do not have hooks enabled by default.

Consider using a modified entry point that restricts the use of optional arguments since
this will reduce the chance of unintentional code from being executed.
Avoid any unprotected settings from the working environment in an entry point.
If the application is performing event logging as part of normal operations, consider
logging all predetermined events in calling external libraries.

Consider logging as many events as possible and ensure that such logs are moved off
local machines frequently.

6.49 Library signature

Use only trusted modules as extensions.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 11 of 25

If coding an extension, utilize Python’s extension API to ensure a correct signature
match.

6.50 Unanticipated exceptions from library routines
(No specific Python guidance)

6.51 Pre-processor directives (N/A)
6.52 Suppression of language-defined checks (N/A)
6.53 Provision of inherently unsafe operations

Use only trusted modules.
Avoid the use of the exec and eval functions.
Avoid overriding Python’s default behaviour provided by the builtins module.
Create a whitelist of Python built-in functions that are deemed to be expected and
acceptable in uses of pickle and forbid any other functions.
Do not override the names of built-in variables or functions.
Avoid the use of the pickle module and logging.dictConfig and consider
using JSON and MessagePack as alternatives.
Avoid the use of pickle for long term storage.
Avoid the use of protocol 0.
Disallow the use of self-referencing payloads.

6.54 Obscure language features

Ensure that a function is defined before attempting to call it.
Be aware that a function is defined dynamically so its composition and operation may
vary due to variations in the flow of control within the defining program.
Be aware of when a variable is local versus global.
Do not use mutable objects as default values for arguments in a function definition
unless absolutely needed and the effect is understood.
Be aware that when using the += operator on mutable objects the operation is done in
place with a new object id being created.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 12 of 25

Be cognizant that assignments to objects, mutable and immutable, always create a new
object.
Understand the difference between equivalence and equality and code accordingly.

Ensure that the file path used to locate a persisted file or DBMS is correct and never
ingest objects from an untrusted source.

6.55 Unspecified behaviour
When pickling is applied to make objects persistent, use exception handling to cleanup
partially written files.

Prefer the use of equality (==) to identity (is) and clearly document any use of identity.

Use the intern()function to enforce optimization when memory optimization is
required for non-simple strings.
Consider using the id function to test for object equality.
Do not use form feed characters for indentation.

6.56 Undefined behaviour

Do not depend on the sequence of keys in a dictionary to be consistent across
implementations, or even between multiple executions with the same implementation, in
versions prior to Python 3.7.

When launching parallel tasks do not raise a BaseException subclass in a callable in the Future class.

Do not modify the dictionary object returned by a vars() and locals() call.
Do not try to use the catch warnings function to suppress warning messages when
using more than one thread.

Do not inspect or change the content of a list when sorting a list using the sort()
method.

6.57 Implementation-defined behaviour

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 13 of 25

Either avoid logic that depends on byte order or use the sys.byteorder variable and
write the logic to account for byte order dependent on its value ('little' or 'big').

Always use either spaces or tabs (but not both) for indentations.
Consider using a text editor to find and make consistent, the use of tabs and spaces for
indentation.
Use zero (the default exit code for Python) for successful execution and consider adding
logic to vary the exit code according to the platform as obtained from sys.platform
(such as, 'win32', 'darwin', or other).

Interrogate the sys.float.info system variable to obtain platform specific attributes
and code according to those constraints.
Call the sys.getfilesystemcoding() function to return the name of the
encoding system used.
Use the os.fsencode() and os.fsdecode() methods as a portable way to encode
or decode a filename to the filesystem encoding that is used.

When high performance is dependent on knowing the range of integer numbers that can
be used without degrading performance use the sys.int_info struct sequence to
obtain the number of bits per digit (bits_per_digit) and the number of bytes used
to represent a digit (sizeof_digit).

Use sys.maxsize to determine the maximum value a variable of type Py_ssize_t
can take. Usually on a 32-bit platform, the value is 2**31 - 1 on a 32-bit platform and
2**63 - 1 on a 64-bit platform.

6.58 Deprecated language features
(No specific Python guidance)

6.59 Concurreny -- Activation
For any processes and threads that have already been started, ensure that additional starts
on that same object are not attempted to avoid exceptions.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 14 of 25

Avoid mixing concurrency models within the same program, or if unavoidable, use with
extreme caution.
Handle all exceptions related to thread creation.
Ensure that there is only one asyncio event loop per program, although multiple events
can be activated within the single loop. Python event loops are automatically generated
by asyncio.run().

When using asyncio, make all tasks non-blocking and use asyncio calls from an
event loop.
Use the debug mode of the Python interpreter to detect concurrency errors .
To reduce the chance of excessive delays, perform concurrent asyncio operations only
on non-blocking code.

When using multiple threads, consider using the ThreadPoolExecutor within the
concurrent.futures module to help maintain and control the number of threads
being created.

For async functions, ensure that each async call executes one or more operations that
relinquish control of the processor when appropriate.

6.60 Concurrency -- directed termination
Avoid external termination of concurrent entities except as an extreme measure, such as
the termination of the program.
Use inter-thread or inter-process communication mechanisms to instruct another thread
or process to terminate itself.
Ensure that all shared resources locked by the thread or process are released upon
termination, for example, in an exception handler and/or in a finally block.

Design the code to be fail-safe in the presence of terminating processes, threads or tasks.

Do not call join() on a daemon thread.

6.61 Concurrent data access

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 15 of 25

When using multiple threads, verify that all shared data is protected by locks or similar
mechanisms.
If data accesses need to be serialized, ensure that they reside in the same thread, or
provide explicit synchronization among the threads or processes for the data accesses.

Avoid using global variables and consider using the queue.Queue(),
threading.queue, asyncio.queue or multiprocessing.Queue()
functions to exchange data between threads or processes respectively.

When multiple asyncio tasks access data shared among tasks, always complete such
access in each task prior to awaiting any event.

When multiple asyncio tasks access complex data shared among tasks which may require
multiple iterations to fully update, retain any partial data local to the task and perform the
update only when all data is present.

If shared variables must be used in multithreaded applications, use model checking or
equivalent methodologies to prove the absence of race conditions.

6.62 Concurrency -- premature termination

Protect data that would be vulnerable to premature termination, such as by using locks or
protected regions, or by retaining the last consistent version of the data (checkpoints).

Enable event logging and record all events prior to termination so that full traceability is
preserved.
For threads:
Handle exceptions; free locks; and clean up nested threads and shared data before
termination.

Consider using the or try or finally clauses in each thread method to notify a
higher-level construct of the termination so that any corrective action if needed can be
taken.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 16 of 25

Consider using one or more of the threading.is_alive(),
threading.active_count(), and threading.enumerate() methods to
determine if a thread’s execution state is as expected.
For multiprocessing:
Handle exceptions; free locks; and clean up any processes that are the responsibility of
this process.

Consider using the or try or finally clauses in each thread method to notify a
higher-level construct of the termination so that any corrective action if needed can be
taken.

Consider using one or more of the threading.is_alive(),
threading.active_count(), and threading.enumerate() methods to
determine if a thread’s execution state is as expected.
For Asyncio:
Ensure consistent termination behaviour of all coroutines

6.63 Protocol lock errors
Verify that all sections of code that have critical sections check the related lock prior to
entering the critical section, including API calls known to be unsynchronized.
Ensure that join() is not used on a process before it is started since this will throw an
exception.

When using Pipe() in conjunction with processes or threads inside multiple processes,
restrict the writing of a single pipe to a single process or thread, and similarly for
reading.

If exclusive access to any resource shared among multiple processes is needed, ensure
the exclusivity by synchronization mechanisms provided by the multiprocessing
module.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 17 of 25

If global variables are used in multi-threaded code, use locks around their use. Access to
the shared data can be protected by first testing-and-setting a lock, then manipulating the
data, and then releasing the lock when finished and before exiting. The use of locks does
not guarantee security since locks are only effective if all other threads check for the
locks. A locked critical section in one thread can be modified by another thread if it does
not first check for the lock.

Verify that all sections of code that have access to critical sections check for a lock prior
to accessing the resource.
When using global variables in multi-threaded code, use threading_local() which
creates a local copy of the global variable within each thread.
When using multiple threads, consider using semaphores to manage access to critical
sections of data.
When using Pipe() in conjunction with processes or threads, restrict the writing of a
single pipe to a single process or thread, and similarly for reading.

For threads, use join() as the final interaction with other thread(s) to ensure that the
calling thread is blocked until all joined threads have either terminated normally, thrown
an exception, or timed out (if implemented).

Ensure that join() is not used on a thread or a process before it is started since this
will throw an exception.
When using Pipe() in conjunction with threads, restrict the writing of a single pipe to a
single thread, and similarly for reading.
Do not yield within critical sections.

6.64 Uncontrolled format string

Implement checks to limit the size of input strings.
Limit the number of input arguments to the expected values.
Review the Python format string specifiers and do not allow formats that should not be
input by the user.

6.65 Modifying constants

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 18 of 25

Do not assign new values to NotImplemented, Ellipsis or __debug__.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 19 of 25

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 20 of 25

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 21 of 25

DMJ 38 E

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 22 of 25

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 23 of 25

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 24 of 25

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1239-Python-vulnerabilities-collated-guidance-20230103.xlsx 2025-08-20 Page 25 of 25

*

