
Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 1 of 27

ISO/IEC/JTC 1/SC 22/WG 23 N1238
19-Dec-22

Clause Advice
6.2 Type system

Use kind values based on the needed range for integer types via the selected_int_kind
intrinsic procedure and based on the range and precision needed for real and complex types
via the selected_real_kind intrinsic procedure.

Use explicit conversion intrinsics for conversions of values of intrinsic types, even when the
conversion is within one type and is only a change of kind. Doing so alerts the maintenance
programmer to the fact of the conversion, and that it is intentional.

Use inquiry intrinsic procedures to learn the limits of a variable’s representation and thereby
take care to avoid exceeding those limits.
Use derived types to avoid implicit conversions.
Use compiler options when available to detect during execution when a significant loss of
information occurs.

Use compiler options when available to detect during execution when an integer value
overflows.

6.3 Bit representation
Use the language-provided intrinsics whenever bit manipulations are necessary, especially
those that occupy more than one integer.

Use the intrinsic procedure bit_size to determine the size of the bit model supported by
the kind of integer in use.

Be aware that the Fortran standard uses the term “left-most” to refer to the highest-order bit,
and the term “left” to mean towards the highest-order bit (as in shiftl) .

Do not use compiler extensions that allow variables of logical type to hold bit string values,
because the results may vary between implementations.
Avoid compiler extensions that accept BOZ constants in non-standard usage.
Encapsulate bit strings inside derived types to exclude numeric operations on them.

6.4 Floating Point Arithmetic

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 2 of 27

Use procedures from a trusted library to perform calculations where floating-point accuracy
is needed. Understand the use of the library procedures and test the diagnostic status values
returned to ensure the calculation proceeds as expected.

Avoid creating a logical value from a test for equality or inequality between two floating-point
expressions. Use compiler options where available to detect such usage.

Do not use floating-point variables as loop indices, a deleted feature; use integer variables
instead. A floating-point value can be computed from the integer loop variable as needed.

Use intrinsic inquiry procedures to determine the limits of the representation in use when
needed.

Avoid the use of bit operations to get or to set the parts of a floating point quantity. Use
intrinsic procedures to provide the functionality when needed.

Use the intrinsic module procedures to determine the limits of the processor’s conformance
to IEEE 754, and to determine the limits of the representation in use, where the IEEE intrinsic
modules and the IEEE real kinds are in use.

Use the intrinsic module procedures to detect and control the available rounding modes and
exception flags, where the IEEE intrinsic modules are in use.

6.5 Enumerator issues
Use enumeration values in Fortran only when interoperating with C procedures that have
enumerations as formal parameters and/or return enumeration values as function results.
Ensure the interoperability of the C and Fortran definitions of every enum type used.
Ensure that the correct companion processor has been identified, including any companion
processor options that affect enum definitions.

Do not use variables assigned enumeration values in arithmetic operations, or to receive the
results of arithmetic operations if subsequent use will be as an enumerator.

6.6 Conversion errors
Use the kind selection intrinsic procedures to select sizes of variables supporting the required
operations and values.

Use a temporary variable with a large range to read a value from an untrusted source so that
the value can be checked against the limits provided by the inquiry intrinsics for the type and
kind of the variable to be used.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 3 of 27

Use a temporary variable with a large range to hold the value of an expression before assigning
it to a variable of a type and kind that has a smaller numeric range to ensure that the value of
the expression is within the allowed range for the variable. Use the inquiry intrinsics to supply
the extreme values allowed for the variable.

Use derived types and put checks in the applicable defined assignment procedures.
Use static analysis or compiler features to identify conversions that can lose or corrupt
information.

Use compiler options when available to detect and report during execution when a loss or
corruption of information occurs.

Consider using simple derived types to hold numeric values that can represent different unit
systems (such as radians vs degrees) and provide explicit conversion functions as needed.

Include an IOSTAT variable in each IO statement and check its value to ensure no errors
occurred.

6.7 String termination (none)
6.8Buffer boundary violation (overflow)

Ensure that consistent bounds information about each array is available throughout a
program.
Enable bounds checking throughout development of a code. Disable bounds checking during
production runs only for program units that are critical for performance.
Use whole array assignment, operations, and bounds inquiry intrinsics where possible.

Obtain array bounds from array inquiry intrinsic procedures wherever needed; and use
explicit interfaces and assumed-shape arrays to ensure that array shape information is passed
to all procedures where needed, and can be used to dimension local arrays.

Use allocatable arrays where array operations involving differently-sized arrays might occur so
the left-hand side array is reallocated as needed.

Use allocatable character variables where assignment of strings of varying sizes is expected so
the left-hand side character variable is re-allocated as needed.

Use intrinsic assignment for the whole character variable rather than looping over substrings
to assign data to statically-sized character variables so the truncate-or-blank-fill seman-tic
protects against storing outside the assigned variable.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 4 of 27

Consider using the iostat= specifier when there is a risk that an internal file is too small for
the output sent to it.

6.9 Unchecked array indexing
Ensure that consistent bounds information about each array is available throughout a
program.

Enable bounds checking, when available, throughout development of a code. Disable bounds
checking during production runs only for program units that are critical for performance.

Use whole array assignment, operations, and bounds inquiry intrinsics where possible.

Obtain array bounds from array inquiry intrinsic procedures wherever needed. Use explicit
interfaces and assumed-shape arrays or allocatable arrays as procedure dummy arguments to
ensure that array shape information is passed to all procedures where needed, and can be
used to dimension local arrays.

Use allocatable arrays where array operations involving differently-sized arrays might occur so
the left-hand side array is reallocated as needed.

Declare the lower bound of each array extent to fit the problem, thus minimizing the use of
subscript arithmetic.

6.10Unchecked array copying - no specific guidance
6.11 Pointer type conversions

Avoid implicit interfaces; use explicit interfaces instead.
Avoid the use of C-style pointers, unless necessary to interface with C programs.
Avoid sequence types.

6.12Pointer arithmetic - not applicable
6.13 Null pointer dereference

Ensure that all pointers have a defined association status before use, either by initialization or
by pointer assignment.

Consider using allocatable instead of pointer when possible, since the allocation status
of allocatable variables or allocatable components cannot be undefined.

Use static analysis tools and compiler options where available to enable pointer checking
during development of a code.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 5 of 27

Use the associated intrinsic procedure before referencing a target through a pointer if
there is any possibility of the pointer being disassociated.
Use default initialization in the declarations of pointer components.

6.14 Dangling reference to heap
Use allocatable objects in preference to pointer objects whenever the facilities of allocatable
objects are sufficient.
Use compiler options where available to detect dangling references.

Use compiler options where available to enable pointer checking throughout development of
a code. Disable pointer checking during production runs only for program units that are
critical for performance.

Do not pointer-assign a pointer to a target if the pointer might have a longer lifetime than the
target or the target attribute of the target. Check actual arguments that are argument
associated with dummy arguments that are given the target attribute within the
referenced procedure.

Check for successful deallocation when deallocating a pointer by using the stat= specifier.

6.15 Arithmetic wrap-around error
Follow the guidance of ISO/IEC 24772-1:2019 clause 6.15.5

Use the intrinsic procedure selected_int_kind to select an integer kind value that will
be adequate for all anticipated needs.

Use compiler options where available to detect during execution when an integer value
overflows.

6.16Using shift operators for multiplication and division
Do not use shift intrinsics where integer multiplication or division is intended.

6.17 Choice of clear names
Declare all variables and use implicit none to enforce this.
Do not use consecutive underscores in a name.
Do not use keywords as names when there is any possibility of confusion.
Be aware of language rules associated with the case of external names and with the attribute
bind(C).

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 6 of 27

6.18Dead Store - no specific guidance
6.19Unused variable - no specific guidance
6.20 Identifier name reuse

Do not reuse a name within a nested scope.
Clearly comment the distinction between similarly named variables, wherever they occur in
nested scopes.
Be aware of the scoping rules for statement entities and construct entities

6.21 Namespace issues

Avoid implicit typing; always declare all variables; and use implicit none to enforce
this.

Use a global private statement in all modules to require explicit specification of the
public attribute.

Use an only clause on every use statement.
Use renaming to resolve name collisions.

6.22 Missing initialization of variables
Favour explicit initialization in executable statements for objects of intrinsic type and default
initialization for objects of derived type.
When providing default initialization, provide default values for all components.

Use type value constructors to provide values for all components.
Use compiler options, where available, to find instances of use of uninitialized variables.
Use other tools, for example, a debugger or flow analyzer, to detect instances of the use of
uninitialized variables.

6.23Operator precedence and associativity
Consult the Fortran reference manual or suitable textbooks for definitive information on
specific operator precedence and associativity issues

6.24Side effects and order of evaluation
Replace any function with a side effect by a subroutine so that its place in the sequence of
computation is certain.

Assign function values to temporary variables and use the temporary variables in the original
expression.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 7 of 27

Declare a function as pure whenever possible.
6.25 Likely incorrect expression

Use an automatic tool to simplify expressions.
Check for assignment versus pointer assignment carefully when assigning to names having the
pointer attribute.
Enable the compiler’s detection of nonconforming code.

6.26 Dead and deactivated code
Use an editor or other tool that can transform a block of code to comments to do so with
dead or deactivated code.

Use a version control tool to maintain older versions of code when needed to preserve
development history.

6.27Switch statements and static analysis

Cover cases that are expected never to occur with a case default clause to ensure that
unexpected cases are detected and processed, perhaps emitting an error message.

6.28 Demarcation of control flow
Use the block form of the do-loop, together with cycle and exit state-ments, rather than the
non-block do-loop.

Use the if construct or select case construct whenever possible, rather than
statements that rely on labels, that is, the arithmetic if and go to statements.

Use names on block constructs to provide matching of initial statement and end statement
for each construct.

6.29 Loop control variable abuse
Ensure that the value of the iteration variable is not changed other than by the loop control
mechanism during the execution of a do loop.

 Verify that where the iteration variable is an actual argument, it is associated with an
intent(in) or a value dummy argument.

6.30 Off-by-one error
Declare array bounds to fit the natural bounds of the problem.
Declare interoperable (with C) arrays with the lower bound 0.
Use lbound and ubound intrinsics to specify loop bounds instead of numeric literals.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 8 of 27

6.31 Unstructures programming
Use the compiler or static analysis tools to detect unstructured programming and the use of
old or obsolescent features.
Use a tool to automatically refactor unstructured code.
Replace unstructured code manually with modern structured alternatives only where
automatic tools are unable to do so.
Use the compiler or other code analysis tool to detect archaic usage.

6.32Passing parameters and return values
Specify explicit interfaces by placing procedures in modules where the procedure is to be used
in more than one scope, or by using internal procedures where the procedure is to be used in
one scope only.

Specify argument intents to allow further checking of argument usage.
Specify pure (or elemental) for procedures where possible for greater clarity of the
programmer’s intentions.

 Use a compiler or other tools to automatically create explicit interfaces for external
procedures.

6.33Dangling references to stack frames
Do not pointer-assign a pointer to a target if the pointer association might have a longer
lifetime than the target or the target attribute of the target.

Use allocatable variables in preference to pointers wherever they provide sufficient
functionality.

6.34 Subprogram signature mismatch
Use explicit interfaces, preferably by placing procedures inside a module or another
procedure.

Use a processor or a static analysis tool that check all interfaces, especially if this can be
checked during compilation with no execution overhead.
 Use a processor or other tool to create explicit interface bodies for external procedures.

6.35 Recursion
Prefer iteration to recursion, unless it can be proved that the depth of recursion can never be
large.

6.36Ignored error status and unhandled exception

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 9 of 27

When the default behaviour of program termination is undesirable, code a status variable for
all statements that support one, examine its value prior to continuing execution for faults
that cause termination, and take appropriate action.

Check and respond to all status values that might be returned by an intrinsic procedure or by
a library procedure.

6.37Type-breaking reinterpretation of data
Avoid use of the transfer intrinsic unless its use is unavoidable, and then document the use carefully.
Do not use common to share data. Use module variables instead.

Do not use equivalence. If the intent is to save storage space, use allocatable data instead.

Do not use entry. Use a module containing any private data items, with a module
procedure for each entry point and the shared code in a private module procedure.

Use compiler options where available to detect violation of the rules for common,
equivalence, and entry.

6.38 Deep vs. shallow copying
Use allocatable components in preference to pointer components.
Copy the objects referred to by pointer components if there is any possibility that the aliasing
of a shallow copy would affect the application adversely.

6.39Memory leaks and heap fragmentation
Use allocatable data items rather than pointer data items whenever possible.

Use final routines to free memory resources allocated to a data item of derived type.

Use a tool during testing to detect memory leaks.
6.40 Templates and generics - N/A
6.41 Inheritance

Declare a type-bound procedure to be non overridable when neces-sary to ensure that
it is not overridden by subclasses.

6.42Violations of the Liskov substitution principle
Consider enforcing preconditions and postconditions by inserting explicit checks in the code.

Use the select type construct to specify the type intended in type-bound references.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 10 of 27

6.43 Redispatching
Use the select type construct to ensure that the intended procedure is actually called.

6.44 Polymorphic variables
Use the class default guard statement to provide code that indicates an error or clearly document why such behaviour is acceptable.

6.45 Extra intrinics

Specify that an intrinsic or external procedure has the attribute, respectively, in a scope
where the intrinsic procedure is referenced..
Specify intrinsic or non_intrinsic on a use statement for a module.
Use compiler options to detect use of non-standard intrinsic procedures.

6.46Argument passing to library functions
Use libraries from reputable sources with reliable documentation and understand the
documentation to appreciate the range of acceptable input.
Verify arguments to library procedures when their validity is in doubt.
Use condition constructs such as if and where to prevent invocation of a library
procedure with invalid arguments.

Provide explicit interfaces for library procedures. If the library provides a module containing
interface bodies, use the module.

6.47 Inter-language calling
Correctly identify the companion processor, including any options affecting its types.

Use the C interoperability features of Fortran (the iso_c_binding module, the
ISO_Fortran_binding.h header file, and the bind(C) attribute), and use the correct
constants therein to specify the type kind values needed.

Use the value attribute as needed for dummy arguments.
Perform IO on any given file in one programming language only; consider restricting all IO to
one language system only.

6.48Dynamically-linked code and self-modifying code - N/A
6.49 Library signature

Use explicit interfaces for the library code if they are available. Avoid libraries that do not
provide explicit interfaces.

Carefully construct explicit interfaces for the library procedures where library modules are
not provided.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 11 of 27

6.50Unanticipated exceptions from library routines
Check any return flags present and, if an error is indicated, take appropriate actions when
calling a library procedure.

6.51 Pre-processor directives
Avoid use of the C pre-processor cpp.
Avoid pre-processors generally. Where deemed necessary, a Fortran mode should be set.
Use processor-specific modules in place of pre-processing wherever possible.

6.52Suppression of language-defined checks
Use all run-time checks that are available during development.
Use all run-time checks that are available during production running, except where
performance is critical.
Use several processors during development to check as many conditions as possible.

6.53Provision of inherently unsafe operations
Provide an explicit interface for each external procedure or replace the procedure by an
internal or module procedure.
Avoid the use of the intrinsic function transfer.
Avoid the use of common and equivalence.

Use the compiler or other automatic tool for checking the types of the arguments in calls
between Fortran and C, make use of them during development and in production running
except where performance would be severely affected.

6.54 Obscure language features
Use the processor or other static analysis tools to detect and identify obsolescent or deleted
features and replace them by better methods.
Avoid the use of common and equivalence.
Avoid explicit and implicit usages of the save attribute in recursive invocations of a
procedure and in do concurrent constructs .
Specify the save attribute when supplying an initial value.
Use implicit none to require explicit declarations.

6.55Unspecified behaviour - No Fortran-specific guidance
6.56 Undefined behaviour

Use processor options to detect and report use of non-standard features.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 12 of 27

Obtain diagnostics from more than one source, for example, use code checking tools or
multiple compilers.

Supply an explicit interface to specify the external attribute for all external procedures
invoked.
Avoid use of non-standard intrinsic procedures.
Specific the intrinsic attribute for all non-standard intrinsic procedures and modules
referenced.

6.57 Implementation-defined behaviour
Use processor options to detect and report use of non-standard features.
Obtain diagnostics from more than one source, for example, use code checking tools or
multiple Fortran compilers.

Supply an explicit interface to specify the external attribute for all external procedures
invoked.
Avoid use of non-standard intrinsic procedures.
Specific the intrinsic attribute for all non-standard intrinsic procedures and modules
referenced.

6.58 Deprecated language features

Use the processor to detect and identify obsolescent or deleted features and replace them by
better methods.

6.59Concurreny -- Activation - nothing specific
6.60Concurrency -- directed termination - N/A
6.61 Concurrent data access

Use coarrays only when communication among images is necessary.
Use one or more of the following mechanisms to ensure correct execution when executing on
more than one image,

• Use the sync_all statement to separate the alteration of the value of a coarray
variable on one image from its access by any other image.

• Use the sync_images statement to separate the alteration of the value of a coarray
variable on one image from its access by an image in a specified set of images.
• Use a collective subroutine whenever suitable.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 13 of 27

• Use integer variables of kind atomic_int_kind and logical variables of kind
atomic_logical_kind and use atomic intrinsic subroutines including
atomic_define, atomic_ref, and atomic_or to guarantee sequential access.

• Use the event post statement in one image and the corresponding event wait
statement on another image to impose sequential ordering.

• Use a critical section to limit execution to one image at a time; if performance using
critical sections is unacceptable, use locks and perform analysis to show correct lock
behaviour.

Avoid
• The use of the volatile attribute.
• The use of the asynchronous attribute except for use with a parallel-processing
package such as MPI for nonblocking data transfer.
• The use of the sync memory statement for defining and ordering segments.

6.62Concurrency -- premature termination
Use the intrinsic functions failed_images, stopped_images, and
image_status to detect failed and stopped images.

In order to continue execution in the presence of failed images, from time-to-time store
relevant information for each team of images externally or on another team, so that the
computation can be resumed on a reduced number of images or with images kept in reserve
and idle replacing failed images.

If continued execution is not desired in the presence of failed images, follow a strategy that
ensures safe termination of the executing images.

6.63 Protocol lock errors
Use collective subroutines whenever possible.

6.64 Uncontrolled format string
Wherever possible, use format strings that are constants.

Where a variable string is needed, include code to check that its value is within expectations.

6.65 Modifying constants

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 14 of 27

Always use intent specifications for dummy arguments.
Avoid a pointer to an in dummy argument.
Use the compiler or static analysis tools to detect any use of a constant or in dummy
argument that is not in accord with the Standard.

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 15 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 16 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 17 of 27

DMJ 38 E

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 18 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 19 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 20 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 21 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 22 of 27

*

*

*

*

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 23 of 27

*

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 24 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 25 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 26 of 27

Commenting template (Version 4) ISO/IEC JTC 1/SC 7/WG 7 N0727
2003-07-17

ISO-IECJTC1-SC22-WG23_N1238-Fortran-vulnerabilities-collated-guidance-20221219.xlsx 2025-08-20 Page 27 of 27

Use the class default guard statement to provide code that indicates an error or clearly document why such behaviour is acceptable.

