
ISO/IEC/JTC 1/SC 22/WG 23 N0723
16 June 2017

6.22 Init ial ization [LAV]

6.22.1 Description of application vulnerabil ity

Reading	a	variable	that	has	not	been	assigned	a	value	appropriate	to	its	type	can	cause	unpredictable	
execution	in	the	block	that	uses	the	value	of	that	variable,	and	has	the	potential	to	export	bad	values	to	
callers,	or	to	cause	out-of-bounds	memory	accesses.		

Uninitialized	variable	usage	is	frequently	not	detected	until	after	testing	and	often	when	the	code	in	
question	is	delivered	and	in	use,	because	happenstance	will	provide	variables	with	adequate	values	
(such	as	default	data	settings	or	accidental	left-over	values)	until	some	other	change	exposes	the	defect.	

Variables	that	are	declared	during	module	construction	(by	a	class	constructor,	instantiation,	or	
elaboration)	may	have	alternate	paths	that	can	read	values	before	they	are	set.		This	can	happen	in	
straight	sequential	code	but	is	more	prevalent	when	concurrency	or	co-routines	are	present,	with	the	
same	impacts	described	above.	

Another	vulnerability	occurs	when	compound	objects	are	initialized	incompletely	or	incorrectly,	as	can	
happen	when	objects	are	incrementally	built,	fields	are	added	under	maintenance,	or	data	structures	
are	initialized	as	an	aggregate.		When	possible	and	supported	by	the	language,	aggregate	initialization	is	
preferable	to	field-by-field	initialization	statements,	and	named	association	is	preferable	to	positional,	
as	it	facilitates	human	review	and	is	less	susceptible	to	error	injection	under	maintenance.		Aggregate	
initialization	can	be	problematic	for	multidimensional	arrays	if	the	braces	and	initializer	lists	are	not	
ordered	properly.		A	structure	being	initialized	as	an	aggregate	can	result	in	elements	being	initialized	to	
unintended	values	if	the	data	is	not	listed	carefully.		For	classes,	the	declaration	and	initialization	may	
occur	in	separate	modules.	In	such	cases	it	must	be	possible	to	show	that	every	field	that	needs	an	initial	
value	receives	that	value,	and	to	document	ones	that	do	not	require	initial	values.	

6.22.2 Cross reference

CWE:	
457.	Use	of	Uninitialized	Variable	

JSF	AV	Rules:	71,	142,	143,	144,	145	and	147	
MISRA	C	2012:	9.1,	9.2,	and	9.3	
MISRA	C++	2008:	8-5-1	
CERT	C	guidelines:	DCL14-C	and	EXP33-C	
Ada	Quality	and	Style	Guide:	5.9.6	

6.22.3 Mechanism of fai lure

Uninitialized	objects	may	have	invalid	values,	valid	but	wrong	values,	or	valid	and	dangerous	values.		
Wrong	values	could	cause	unbounded	branches	in	conditionals	or	unbounded	loop	executions,	or	could	
simply	cause	wrong	calculations	and	results.	

Stephen Michell� 2017-6-19 4:13 PM
Formatted: Right

Wagoner, Larry D.� 2017-5-24 3:11 PM
Deleted: of variables

Wagoner, Larry D.� 2017-5-24 3:25 PM
Deleted: or	
Wagoner, Larry D.� 2017-5-24 3:49 PM
Deleted:
Wagoner, Larry D.� 2017-5-24 3:48 PM
Deleted: whole-structure

Wagoner, Larry D.� 2017-5-24 3:59 PM
Formatted: Font:11 pt, Not Bold

There	is	a	special	case	of	pointers	or	access	types.	When	such	a	type	contains	null	values,	a	bound	
violation	and	hardware	exception	can	result.		When	such	a	type	contains	plausible	but	meaningless	
values,	random	data	reads	and	writes	can	collect	erroneous	data	or	can	destroy	data	that	is	in	use	by	
another	part	of	the	program;	when	such	a	type	is	an	access	to	a	subprogram	with	a	plausible	(but	
wrong)	value,	then	either	a	bad	instruction	trap	may	occur	or	a	transfer	to	an	unknown	code	fragment	
can	occur.		All	of	these	scenarios	can	result	in	undefined	behaviour.	

Uninitialized	or	incorrectly	initialized	variables	are	difficult	to	identify	and	use	for	attackers,	but	can	be	
arbitrarily	dangerous	in	safety	situations.	

The	general	problem	of	showing	that	all	program	objects	are	initialized	is	intractable.	

6.22.4 Applicable language characterist ics

This	vulnerability	description	is	intended	to	be	applicable	to	languages	with	the	following	characteristics:	

• Languages	that	permit	variables	to	be	read	before	they	are	assigned.	

6.22.5 Avoiding the vulnerabil ity or mitigating its effects

Software	developers	can	avoid	the	vulnerability	or	mitigate	its	ill	effects	in	the	following	ways:	

• Carefully	structure	programs	to	show	that	all	variables	are	set	before	first	read	on	every	path	
throughout	each	subprogram.			

• When	an	object	is	visible	from	multiple	modules,	identify	a	module	that	must	set	the	value	
before	reads	can	occur	from	any	other	module	that	can	access	the	object,	and	ensure	that	this	
module	is	executed	first.	

• When	concurrency,	interrupts	and	co-routines	are	present,	identify	where	early	initialization	
occurs	and	show	that	the	correct	order	is	set	via	program	structure,	not	by	timing,	OS	
precedence,	or	chance.	

• Initialize	each	object	at	elaboration	time,	or	immediately	after	subprogram	execution	
commences	and	before	any	branches.			

• If	the	subprogram	must	commence	with	conditional	statements,	show	that	every	variable	
declared	and	not	initialized	earlier	is	initialized	on	each	branch.			

• Ensure	that	the	initial	object	value	is	a	sensible	value	for	the	logic	of	the	program.		The	so-called	
"junk	initialization"	(such	as,	for	example,	setting	every	variable	to	zero)	prevents	the	use	of	
tools	to	detect	otherwise	uninitialized	variables.	

• Define	or	reserve	fields	or	portions	of	the	object	to	only	be	set	when	fully	initialized.		Consider,	
however,	that	this	approach	has	the	effect	of	setting	the	variable	to	possibly	mistaken	values	
while	defeating	the	use	of	static	analysis	to	find	the	uninitialized	variables.	

• Use	static	analysis	tools	to	show	that	all	objects	are	set	before	use.	As	the	general	problem	is	
intractable,	keep	initialization	algorithms	simple	so	that	they	can	be	analyzed.	

Wagoner, Larry D.� 2017-5-24 4:01 PM
Deleted: ;

• When	declaring	and	initializing	the	object	together,	if	the	language	does	not	require	the	
compiler	to	statically	verify	that	the	declarative	structure	and	the	initialization	structure	match,	
use	static	analysis	tools	to	help	detect	any	mismatches.	

• When	setting	compound	objects,	if	the	language	provides	a	capability	for	aggregate	initialization,	
use	that	in	preference	to	a	sequence	of	initializations	as	this	facilitates	coverage	analysis;	
otherwise	use	tools	that	perform	such	coverage	analysis	and	document	the	initialization.		Do	not	
perform	partial	initializations	unless	there	is	no	choice,	and	document	any	deviations	from	full	
initialization.	

• Verify	aggregate	initializations	to	ensure	that	initializations	are	performed	as	expected	since	
complex	data	structures	can	assign	values	different	than	expected.	

• Where	default	assignments	of	multiple	components	are	performed,	explicit	declaration	of	the	
component	names	and/or	ranges	helps	static	analysis	and	identification	of	component	changes	
during	maintenance.	

• Use	named	assignments	in	preference	to	positional	assignment	where	the	language	has	named	
assignments	that	can	be	used	to	build	reviewable	assignment	structures	that	can	be	analyzed	by	
the	language	processor	for	completeness.	Use	comments	and	secondary	tools	to	help	show	
correct	assignment	where	the	language	only	supports	positional	assignment	notation.	

6.22.6 Implications for language design and evolution

In	future	language	design	and	evolution	activities,	the	following	items	should	be	considered:	

• Some	languages	have	ways	to	determine	if	modules	and	regions	are	elaborated	and	initialized	
and	to	raise	exceptions	if	this	does	not	occur.	Languages	that	do	not,	could	consider	adding	such	
capabilities.		

• Languages	could	consider	setting	aside	fields	in	all	objects	to	identify	if	initialization	has	
occurred,	especially	for	security	and	safety	domains.		

• Languages	that	do	not	support	whole-object	initialization,	could	consider	adding	this	capability.		

	

Wagoner, Larry D.� 2017-5-24 4:03 PM
Deleted: mechanisms	to	set	all	
components	together

Wagoner, Larry D.� 2017-5-24 4:03 PM
Deleted: those	

