
Baseline	Edition		 TR	24772–X	

©	ISO/IEC	2017	–	All	rights	reserved	 i	
	

ISO/IEC	JTC	1/SC	22/WG23	N0707	
Date:	2017-04-07	

ISO/IEC	TR	24772–9	

Edition	1	

ISO/IEC	JTC	1/SC	22/WG	23	

Secretariat:	ANSI	

Information	Technology	—	Programming	languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	–	Part	9	–	Vulnerability	descriptions	for	the	
programming	language	C++	

	

Élément	introductif	—	Élément	principal	—	Partie	n:	Titre	de	la	partie	

	

Warning	

This	document	is	not	an	ISO	International	Standard.	It	is	distributed	for	review	and	comment.	It	is	subject	to	change	
without	notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	which	they	
are	aware	and	to	provide	supporting	documentation.	

	 	

Document	type:	International	standard	
Document	subtype:	if	applicable	
Document	stage:	(10)	development	stage	
Document	language:	E	

	

Stephen Michell� 2017-4-9 6:16 PM
Deleted: 691

Stephen Michell� 2017-4-9 6:16 PM
Deleted: 2

Stephen Michell� 2017-4-9 6:16 PM
Deleted: 9

Stephen Michell� 2017-4-9 6:17 PM
Formatted: zzCover, Space After: 100 pt,
Tabs:Not at 0 cm
Stephen Michell� 2017-4-9 6:17 PM
Deleted:

Stephen Michell� 2017-4-9 6:17 PM
Formatted: Font:12 pt

WG	23/N	0707	 	

ii	 ©	ISO/IEC	2017	–	All	rights	reserved	
	

Stephen Michell� 2017-4-9 6:17 PM
Deleted: XXX

	

Copyright	notice	

This	ISO	document	is	a	working	draft	or	committee	draft	and	is	copyright-protected	by	ISO.	While	the	
reproduction	of	working	drafts	or	committee	drafts	in	any	form	for	use	by	participants	in	the	ISO	
standards	development	process	is	permitted	without	prior	permission	from	ISO,	neither	this	document	
nor	any	extract	from	it	may	be	reproduced,	stored	or	transmitted	in	any	form	for	any	other	purpose	
without	prior	written	permission	from	ISO.	

Requests	for	permission	to	reproduce	this	document	for	the	purpose	of	selling	it	should	be	addressed	as	
shown	below	or	to	ISO’s	member	body	in	the	country	of	the	requester:	

ISO	copyright	office	
Case	postale	56,	CH-1211	Geneva	20	
Tel.	+	41	22	749	01	11	
Fax	+	41	22	749	09	47	
E-mail	copyright@iso.org	
Web	www.iso.org	

Reproduction	for	sales	purposes	may	be	subject	to	royalty	payments	or	a	licensing	agreement.	

Violators	may	be	prosecuted.	

Baseline	Edition		 TR	24772–X	

©	ISO/IEC	2017	–	All	rights	reserved	 iii	
	

Contents	 Page	

Foreword	...	vi	

Introduction	..	vii	

1.	Scope	...	1	

2.	Normative	references	..	1	

3.	Terms	and	definitions,	symbols	and	conventions	...	1	
3.1	Terms	and	definitions	..	1	

4.	Language	concepts	..	5	

5.	Avoiding	programming	language	vulnerabilities	in	C	..	6	

6.	Specific	Guidance	for	C	..	8	
6.1	General	..	8	
6.2	Type	System	[IHN]	...	8	
6.3	Bit	Representations	[STR]	..	8	
6.4	Floating-point	Arithmetic	[PLF]	..	9	
6.5	Enumerator	Issues	[CCB]	..	9	
6.6	Conversion	Errors	[FLC]	..	10	
6.7	String	Termination	[CJM]	...	11	
6.8	Buffer	Boundary	Violation	[HCB]	..	11	
6.9	Unchecked	Array	Indexing	[XYZ]	..	13	
6.10	Unchecked	Array	Copying	[XYW]	...	13	
6.11	Pointer	Type	Conversions	[HFC]	...	14	
6.12	Pointer	Arithmetic	[RVG]	...	15	
6.13	NULL	Pointer	Dereference	[XYH]	..	16	
6.14	Dangling	Reference	to	Heap	[XYK]	...	16	
6.15	Arithmetic	Wrap-around	Error	[FIF]	...	18	
6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	...	19	
6.17	Choice	of	Clear	Names	[NAI]	..	19	
6.18	Dead	Store	[WXQ]	...	20	
6.19	Unused	Variable	[YZS]	..	20	
6.20	Identifier	Name	Reuse	[YOW]	..	20	
6.21	Namespace	Issues	[BJL]	..	21	
6.22	Initialization	of	Variables	[LAV]	..	21	
6.23	Operator	Precedence	and	Associativity	[JCW]	..	22	
6.24	Side-effects	and	Order	of	Evaluation		of	Operands	[SAM]	..	22	
6.25	Likely	Incorrect	Expression	[KOA]	...	23	
6.26	Dead	and	Deactivated	Code	[XYQ]	...	24	
6.27	Switch	Statements	and	Static	Analysis	[CLL]	...	25	
6.28	Demarcation	of	Control	Flow	[EOJ]	..	26	

Unknown
Field Code Changed ... [1]

Unknown
Field Code Changed ... [2]

Unknown
Field Code Changed ... [3]

Unknown
Field Code Changed ... [4]

Unknown
Field Code Changed ... [5]

Unknown
Field Code Changed ... [6]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 4

Unknown
Field Code Changed ... [7]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 4

Unknown
Field Code Changed ... [8]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 6

Unknown
Field Code Changed ... [9]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 6

Unknown
Field Code Changed ... [10]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 6

Unknown
Field Code Changed ... [11]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 7

Unknown
Field Code Changed ... [12]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 8

Unknown
Field Code Changed ... [13]

Unknown
Field Code Changed ... [14]

Unknown
Field Code Changed ... [15]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 12

Unknown
Field Code Changed ... [16]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 12

Unknown
Field Code Changed ... [17]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 14

Unknown
Field Code Changed ... [18]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 14

Unknown
Field Code Changed ... [19]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 15

Unknown
Field Code Changed ... [20]

Unknown
Field Code Changed ... [21]

Unknown
Field Code Changed ... [22]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [23]

Unknown
Field Code Changed ... [24]

Unknown
Field Code Changed ... [25]

Unknown
Field Code Changed ... [26]

Unknown
Field Code Changed ... [27]

Unknown
Field Code Changed ... [28]

Unknown
Field Code Changed ... [29]

Unknown
Field Code Changed ... [30]

Unknown
Field Code Changed ... [31]

Unknown
Field Code Changed ... [32]

Unknown
Field Code Changed ... [33]

Unknown
Field Code Changed ... [34]

Unknown
Field Code Changed ... [35]

Unknown
Field Code Changed ... [36]

WG	23/N	0707	 	

iv	 ©	ISO/IEC	2017	–	All	rights	reserved	
	

Stephen Michell� 2017-4-9 6:17 PM
Deleted: XXX

6.29	Loop	Control	Variables	[TEX]	...	27	
6.30	Off-by-one	Error	[XZH]	..	27	
6.31	Structured	Programming	[EWD]	..	28	
6.32	Passing	Parameters	and	Return	Values	[CSJ]	...	29	
6.33	Dangling	References	to	Stack	Frames	[DCM]	...	30	
6.34	Subprogram	Signature	Mismatch	[OTR]	...	30	
6.35	Recursion	[GDL]	...	31	
6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	..	31	
6.37	Fault	Tolerance	and	Failure	Strategies	[REU]	...	32	
6.38	Type-breaking	Reinterpretation	of	Data	[AMV]	...	33	
6.39	Deep	vs.	Shallow	Copying	[YAN]	..	33	
6.39.1	Applicability	to	language	..	33	
6.40	Memory	Leak	[XYL]	...	33	
6.41	Templates	and	Generics	[SYM]	..	34	
6.42	Inheritance	[RIP]	...	34	
6.43	Violations	of	the	Liskov	Principle	or	the	Contract	Model		[BLP]	..	34	
6.44	Redispatching	[PPH]	..	34	
6.45	Polymorphic	variables	[BKK]	..	34	
6.46	Extra	Intrinsics	[LRM]	..	35	
6.47	Argument	Passing	to	Library	Functions	[TRJ]	...	35	
6.48	Inter-language	Calling	[DJS]	...	35	
6.49	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	...	36	
6.50	Library	Signature	[NSQ]	...	36	
6.51	Unanticipated	Exceptions	from	Library	Routines	[HJW]	...	37	
6.52	Pre-processor	Directives	[NMP]	...	37	
6.53	Suppression	of	Language-defined	Run-time	Checking	[MXB]	...	38	
6.54	Provision	of	Inherently	Unsafe	Operations	[SKL]	...	38	
6.55	Obscure	Language	Features	[BRS]	..	38	
6.56	Unspecified	Behaviour	[BQF]	...	39	
6.57	Undefined	Behaviour	[EWF]	..	39	
6.58	Implementation–defined	Behaviour	[FAB]	..	40	
6.59	Deprecated	Language	Features	[MEM]	..	41	
6.60	Concurrency	–	Activation	[CGA]	...	41	
6.61	Concurrency	–	Directed	termination	[CGT]	..	41	
6.62	Concurrent	Data	Access	[CGX]	...	42	
6.63	Concurrency	–	Premature	Termination	[CGS]	..	42	
6.64	Protocol	Lock	Errors	[CGM]	...	42	
6.65	Uncontrolled	Format	String		[SHL]	...	43	

7.	Language	specific	vulnerabilities	for	C	...	43	

8.	Implications	for	standardization	..	43	

Bibliography	...	46	

Index	 49	

Unknown
Field Code Changed ... [37]

Unknown
Field Code Changed ... [38]

Unknown
Field Code Changed ... [39]

Unknown
Field Code Changed ... [40]

Unknown
Field Code Changed ... [41]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 29

Unknown
Field Code Changed ... [42]

Unknown
Field Code Changed ... [43]

Unknown
Field Code Changed ... [44]

Unknown
Field Code Changed ... [45]

Unknown
Field Code Changed ... [46]

Unknown
Field Code Changed ... [47]

Unknown
Field Code Changed ... [48]

Unknown
Field Code Changed ... [49]

Unknown
Field Code Changed ... [50]

Unknown
Field Code Changed ... [51]

Unknown
Field Code Changed ... [52]

Unknown
Field Code Changed ... [53]

Unknown
Field Code Changed ... [54]

Unknown
Field Code Changed ... [55]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 34

Unknown
Field Code Changed ... [56]

Unknown
Field Code Changed ... [57]

Unknown
Field Code Changed ... [58]

Stephen Michell� 2017-4-9 6:19 PM
Deleted: 35

Unknown
Field Code Changed ... [59]

Unknown
Field Code Changed ... [60]

Unknown
Field Code Changed ... [61]

Unknown
Field Code Changed ... [62]

Unknown
Field Code Changed ... [63]

Unknown
Field Code Changed ... [64]

Unknown
Field Code Changed ... [65]

Unknown
Field Code Changed ... [66]

Unknown
Field Code Changed ... [67]

Unknown
Field Code Changed ... [68]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [69]

Unknown
Field Code Changed ... [70]

Unknown
Field Code Changed ... [71]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [72]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [73]

Unknown
Field Code Changed ... [74]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [75]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [76]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [77]

Stephen Michell� 2017-4-9 6:19 PM

Unknown
Field Code Changed ... [78]

Stephen Michell� 2017-4-9 6:19 PM

Baseline	Edition		 TR	24772–X	

©	ISO/IEC	2017	–	All	rights	reserved	 v	
	

	

	 	

WG	23/N	0707	 	

vi	 ©	ISO/IEC	2017	–	All	rights	reserved	
	

Stephen Michell� 2017-4-9 6:17 PM
Deleted: XXX

Foreword	

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	
Commission)	form	the	specialized	system	for	worldwide	standardization.	National	bodies	that	are	members	of	
ISO	or	IEC	participate	in	the	development	of	International	Standards	through	technical	committees	established	
by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	ISO	and	IEC	technical	
committees	collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non-
governmental,	in	liaison	with	ISO	and	IEC,	also	take	part	in	the	work.	In	the	field	of	information	technology,	ISO	
and	IEC	have	established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

International	Standards	are	drafted	in	accordance	with	the	rules	given	in	the	ISO/IEC	Directives,	Part	2.	

The	main	task	of	the	joint	technical	committee	is	to	prepare	International	Standards.	Draft	International	
Standards	adopted	by	the	joint	technical	committee	are	circulated	to	national	bodies	for	voting.	Publication	as	
an	International	Standard	requires	approval	by	at	least	75	%	of	the	national	bodies	casting	a	vote.	

In	exceptional	circumstances,	when	the	joint	technical	committee	has	collected	data	of	a	different	kind	from	
that	which	is	normally	published	as	an	International	Standard	(“state	of	the	art”,	for	example),	it	may	decide	to	
publish	a	Technical	Report.			A	Technical	Report	is	entirely	informative	in	nature	and	shall	be	subject	to	review	
every	five	years	in	the	same	manner	as	an	International	Standard.	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	patent	
rights.	ISO	and	IEC	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.	

ISO/IEC	TR	24772-X,	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information	technology,	
Subcommittee	SC	22,	Programming	languages,	their	environments	and	system	software	interfaces.	

	 	

Baseline	Edition		 TR	24772–X	

©	ISO/IEC	2017	–	All	rights	reserved	 vii	
	

Introduction	

This	Technical	Report	provides	guidance	for	the	programming	language	C++,	so	that	application	developers	
considering	C++	or	using	C++	will	be	better	able	to	avoid	the	programming	constructs	that	lead	to	
vulnerabilities	in	software	written	in	the	C++	language	and	their	attendant	consequences.		This	guidance	can	
also	be	used	by	developers	to	select	source	code	evaluation	tools	that	can	discover	and	eliminate	some	
constructs	that	could	lead	to	vulnerabilities	in	their	software.	This	report	can	also	be	used	in	comparison	
with	companion	Technical	Reports	and	with	the	language-independent	report,	TR	24772–1,	to	select	a	
programming	language	that	provides	the	appropriate	level	of	confidence	that	anticipated	problems	can	be	
avoided.		

This	technical	report	part	is	intended	to	be	used	with	TR	24772–1,	which	discusses	programming	language	
vulnerabilities	in	a	language	independent	fashion.	

It	should	be	noted	that	this	Technical	Report	is	inherently	incomplete.		It	is	not	possible	to	provide	a	
complete	list	of	programming	language	vulnerabilities	because	new	weaknesses	are	discovered	continually.		
Any	such	report	can	only	describe	those	that	have	been	found,	characterized,	and	determined	to	have	
sufficient	probability	and	consequence.

Technical	Report	 ISO/IEC	TR	24772:2015(E)	

	

©	ISO/IEC	2015	–	All	rights	reserved	 	 	 1	
	

Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	
vulnerabilities	in	programming	languages	—	Vulnerability	descriptions	for	
the	programming	language	C++	

1.	Scope	

This	Technical	Report	specifies	software	programming	language	vulnerabilities	to	be	avoided	in	the	development	
of	systems	where	assured	behaviour	is	required	for	security,	safety,	mission-critical	and	business-critical	software.		
In	general,	this	guidance	is	applicable	to	the	software	developed,	reviewed,	or	maintained	for	any	application.	

Vulnerabilities	described	in	this	Technical	Report	document	the	way	that	the	vulnerability	described	in	the	
language-independent	TR	24772–1	are	manifested	in	C++.	

2.	Normative	references	

The	following	referenced	documents	are	indispensable	for	the	application	of	this	document.		For	dated	
references,	only	the	edition	cited	applies.		For	undated	references,	the	latest	edition	of	the	referenced	document	
(including	any	amendments)	applies.	

ISO/IEC	14882:2014	—	Programming	Languages—C	++	
ISO/IEC	TR24772–3			--	Information	Technology	—	Programming	Languages	—	Guidance	to	avoiding	vulnerabilities	
in	programming	languages	—	Vulnerability	descriptions	for	the	programming	language	C	

3.	Terms	and	definitions,	symbols	and	conventions	

3.1	Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO/IEC	2382,	in	TR	24772–1,	in	14882:2014	
and	the	following	apply.		Other	terms	are	defined	where	they	appear	in	italic	type.	

The	following	terms	are	in	alphabetical	order,	with	general	topics	referencing	the	relevant	specific	terms.	

Abstract	

Access	protection	

Concrete	

Class	

Dynamic	dispatch	

Clive Pygott� 2017-1-30 6:24 PM
Comment [1]: 	
Suggest	there	C++	terms	need	definitions	

WG	23/N0643	 	 	

2	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

Encapsulation	

Inheritance	

Namespace	

Overload	

Override	

Protected	

Private	

Public	

Pure	

Static	

STL	

Template	

Virtual	

	

	

3.1.1	

access:	An	execution-time	action,	to	read	or	modify	the	value	of	an	object.			

Note	1:	Where	only	one	of	two	actions	is	meant,	read	or	modify.		Modify	includes	the	case	where	the	new	
value	being	stored	is	the	same	as	the	previous	value.		Expressions	that	are	not	evaluated	do	not	access	
objects	
	

3.1.2	

alignment		
The	requirement	that	objects	of	a	particular	type	be	located	on	storage	boundaries	with	addresses	that	are	
particular	multiples	of	a	byte	address.	

3.1.3	

argument	
The	expression	in	the	comma-separated	list	bounded	by	the	parentheses	in	a	function	call	expression,	or	a	
sequence	of	preprocessing	tokens	in	the	comma-separated	list	bounded	by	the	parentheses	in	a	function-like	
macro	invocation	

	

©	ISO/IEC	2015	–	All	rights	reserved	 3	
	

Note	1:	Also	called	actual	argument	

Note	2:	An	argument	replaces	a	formal	parameter	as	the	call	is	realized.	
	

3.1.4	

behaviour		
An	external	appearance	or	action.	

Note	1:			See:	implementation-defined	behavior,	locale-specific	behavior,	undefined	behavior,	unspecified	
behaviour	

3.1.5	

bit	
The	unit	of	data	storage	in	the	execution	environment	large	enough	to	hold	an	object	that	may	have	one	of	two	
values.	It	need	not	be	possible	to	express	the	address	of	each	individual	bit	of	an	object.	

byte	
the	addressable	unit	of	data	storage	large	enough	to	hold	any	member	of	the	basic	character	set	of	the	execution	
environment.			

Note	1:	It	is	possible	to	express	the	address	of	each	individual	byte	of	an	object	uniquely.		A	byte	is	composed	
of	a	contiguous	sequence	of	bits,	the	number	of	which	is	implementation-defined.	The	least	significant	bit	is	
called	the	low-order	bit;	the	most	significant	bit	is	called	the	high-order	bit.	

character	
	An	abstract	member	of	a	set	of	elements	used	for	the	organization,	control,	or	representation	of	data.		

Note	6:	See:	single-byte	character,	multibyte	character,	wide	character	

correctly	rounded	result:	The	representation	in	the	result	format	that	is	nearest	in	value,	subject	to	the	current	
rounding	mode,	to	what	the	result	would	be	given	unlimited	range	and	precision.	

diagnostic	message:	The	message	belonging	to	an	implementation-defined	subset	of	the	implementation’s	
message	output.		The	C	Standard	requires	diagnostic	messages	for	all	constraint	violations.	

formal	parameter:	The	object	declared	as	part	of	a	function	declaration	or	definition	that	acquires	a	value	on	
entry	to	the	function,	or	an	identifier	from	the	comma-separated	list	bounded	by	the	parentheses	immediately	
following	the	macro	name	in	a	function-like	macro	definition.	

implementation:	A	particular	set	of	software,	running	in	a	particular	translation	environment	under	particular	
control	options,	that	performs	translation	of	programs	for,	and	supports	execution	of	functions	in,	a	particular	
execution	environment.	

implementation-defined	behaviour:	The	unspecified	behaviour	where	each	implementation	documents	how	the	
choice	is	made.		An	example	of	implementation-defined	behaviour	is	the	propagation	of	the	high-order	bit	when	a	
signed	integer	is	shifted	right.	

WG	23/N0643	 	 	

4	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

implementation-defined	value:	An	unspecified	value	where	each	implementation	documents	how	the	choice	for	
the	value	is	selected.	

implementation	limit:	The	restriction	imposed	upon	programs	by	the	implementation.	

indeterminate	value:	Is	either	an	unspecified	value	or	a	trap	representation.	

Language	type:	See	block-structured	language,	comb-structured	language	

locale-specific	behaviour:	The	behaviour	that	depends	on	local	conventions	of	nationality,	culture,	and	language	
that	each	implementation	documents.		An	example,	locale-specific	behaviour	is	whether	the	islower()	function	
returns	true	for	characters	other	than	the	26	lower	case	Latin	letters.	

memory	location:	Either	an	object	of	scalar1	type,	or	a	maximal	sequence	of	adjacent	bit-fields		all	having	nonzero	
width.			

Note	1:	A	bit-field	and	an	adjacent	non-bit-field	member	are	in	separate	memory	locations.	The	same	applies	
to	two	bit-fields,	if	one	is	declared	inside	a	nested	structure	declaration	and	the	other	is	not,	or	if	the	two	are	
separated	by	a	zero-length	bit-field	declaration,	or	if	they	are	separated	by	a	non-bit-field	member	
declaration.	It	is	not	safe	to	concurrently	update	two	bit-fields	in	the	same	structure	if	all	members	declared	
between	them	are	also	bit-fields,	no	matter	what	the	sizes	of	those	intervening	bit-fields		happen	to	be.		For	
example	a	structure	declared	as	

 struct {
 char a;
 int b:5, c:11, :0, d:8;
 struct { int ee:8; } e;
 }

contains	four	separate	memory	locations:	The	member	a,	and	bit-fields	d	and	e.ee	are	separate	memory	
locations,	and	can	be	modified	concurrently	without	interfering	with	each	other.		The	bit-fields	b	and	c	together	
constitute	the	fourth	memory	location.		The	bit-fields	b	and	c	can’t	be	concurrently	modified,	but	b	and	a,	can	be	
concurrently	modified.	

multibyte	character:	The	sequence	of	one	or	more	bytes	representing	a	member	of	the	extended	character	set	of	
either	the	source	or	the	execution	environment.			The	extended	character	set	is	a	superset	of	the	basic	character	
set.	

object:	The	region	of	data	storage	in	the	execution	environment,	the	contents	of	which	can	represent	values.			
When	referenced,	an	object	may	be	interpreted	as	having	a	particular	type.	

parameter:	See	actual	argument,	argument,	formal	parameter	

recommended	practice:	A	specification	that	is	strongly	recommended	as	being	in	keeping	with	the	intent	of	the	C	
Standard,	but	that	may	be	impractical	for	some	implementations.	

																																																													

1	Integer	types,	Floating	types	and	Pointer	types	are	collectively	called	scalar	types	in	the	C	Standard	

	

©	ISO/IEC	2015	–	All	rights	reserved	 5	
	

runtime-constraint:	A	requirement	on	a	program	when	calling	a	library	function.	

single-byte	character:	The	bit	representation	that	fits	in	a	byte.	

trap	representation:	An	object	representation	that	need	not	represent	a	value	of	the	object	type.	

undefined	behaviour:	 The	use	of	a	non-portable	or	erroneous	program	construct	or	of	erroneous	data,	for	which	
the	C	standard	imposes	no	requirements.		Undefined	behaviour	ranges	from	ignoring	the	situation	completely	
with	unpredictable	results,	to	behaving	during	translation	or	program	execution	in	a	documented	manner	
characteristic	of	the	environment	(with	or	without	the	issuance	of	a	diagnostic	message),	to	terminating	a	
translation	or	execution	(with	the	issuance	of	a	diagnostic	message).		An	example	of,	undefined	behaviour	is	the	
behaviour	on	integer	overflow.	

unspecified	behaviour:	The	use	of	an	unspecified	value,	or	other	behaviour	where	the	C	Standard	provides	two	or	
more	possibilities	and	imposes	no	further	requirements	on	which	is	chosen	in	any	instance.		For	example,	
unspecified	behaviour	is	the	order	in	which	the	arguments	to	a	function	are	evaluated.	

unspecified	value:	The	valid	value	of	the	relevant	type	where	the	C	Standard	imposes	no	requirements	on	which	
value	is	chosen	in	any	instance.			An	unspecified	value	cannot	be	a	trap	representation.	

value:	The	precise	meaning	of	the	contents	of	an	object	when	interpreted	as	having	a	specific	type.	See	
implementation-defined	value,	indeterminate	value,	unspecified	value,	trap	representation	

wide	character:	A	bit	representation	capable	of	representing	any	character	in	the	current	locale.		The	C	Standard	
uses	the	name	wchar_t	for	objects	of	this	type.	

	

4.	Language	concepts	

C++	was	initially	defined	as	a	syntactic	superset	of	the	C	programming	language:	adding	object	oriented	features	
such	as	classes,	encapsulation,	dynamic	dispatch,	namespaces	and	templates.	It	was	a	“syntactic	superset”	
because	whilst	there	is	a	core	of	C++	that	is	syntactically	identical	to	C,	it	has	always	been	the	case	that	there	are	
subtle	semantic	differences	between	the	two,	for	example:	

• Historically,	C	permitted	the	use	of	a	function	before	its	declaration	(though	this	is	now	deprecated	in	C)	.	
This	is	illegal	in	C++	

• Where	a	struct	is	defined	within	another	struct,	in	C	the	inner	declaration	is	in	effect	made	at	file	scope,	
so	the	definition	is	available	for	use	later	in	the	program.	In	C++,	the	inner	declaration	name	is	qualified	
by	that	of	the	parent,	so	without	qualification,	the	inner	struct	cannot	be	used	later	in	the	program,	as	in	
the	following	example	

 struct S1 {
 struct S2 {…} m1;
 …

 };

 struct S2 v1; /* legal in C not C++ */

Clive Pygott� 2017-1-29 6:35 PM
Comment [2]: 	
All	these	C	definitions	need	to	be	reviewed	to	
decide	which	are	still	needed	

Stephen Michell� 2017-4-6 4:19 PM
Deleted: ... [79]

Clive Pygott� 2017-1-29 6:40 PM
Comment [3]: 	
Never	quite	sure	what	this	was	doing	in	the	C	report	
–	other	than	preventing	section	4	from	being	empty	
	
The	suggested	introduction	to	C++	and	its	
relationship	with	C	could	go	here	

WG	23/N0643	 	 	

6	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

 S1::S2 v2 // legal in C++ not C

	
Subsequently,	the	two	languages	have	diverged,	both	adding	features	not	present	in	the	other.	Not	withstanding	
that,	there	is	still	a	significant	syntactic	and	semantic	overlap	between	C	and	C++.	So	the	starting	point	for	this	
report	has	been	the	equivalent	for	C.	However,	in	many	cases,	the	additional	features	of	C++	provide	mechanisms	
for	avoiding	the	vulnerabilities	inherited	from	C,	and	these	are	reflected	in	the	following	sections.	

	

Include	discussions	of	Object	orientation,	static,	and	const			

5.	Avoiding	programming	language	vulnerabilities	in	C++	

In	addition	to	the	generic	programming	rules	from	TR	24772-1	clause	5.4,	additional	rules	from	this	section	
apply	specifically	to	the	C++	programming	language.	The	recommendations	of	this	section	are	restatements	of	
recommendations	from	clause	6,	but	represent	ones	stated	frequently,	or	that	are	considered	as	particularly	
noteworthy	by	the	authors.	Clause	6	of	this	document	contains	the	full	set	of	recommendations,	as	well	as	
explanations	of	the	problems	that	led	to	the	recommendations	made.	
	
Every	guidance	provided	in	this	section,	and	in	the	corresponding	Part	section,	is	supported	by	material	in	
Clause	6	of	this	document,	as	well	as	other	important	recommendations.	

	
Index	 	 Reference	
1	 Make	casts	explicit	in	the	return	value	of	malloc.	

	
Example:	s	=	(struct	foo*)malloc(sizeof(struct	foo));	
uses	the	C	type	system	to	enforce	that	the	pointer	to	the	allocated	space	will	be	of	a	
type	that	is	appropriate	for	the	size.		Because	malloc	returns	a	void	*,	without	the	
cast,	"s"	could	be	of	any	random	pointer	type,		with	the	cast,	that	mistake	will	be	
caught	

[HFC]	

2	 Use	bounds	checking	interfaces	from	Annex	K	of	C11[4]	in	favour	of	non-bounds	
checking	interfaces,	such	as	strcpy_s	instead	of	strcpy.		

[HCB]	

3	 Use	commonly	available	functions	such	as	the	POSIX	functions	htonl(),	htons(),	
ntohl()	and	ntohs()	to	convert	from	host	byte	order	to	network	byte	order	and	vice	
versa	

[STR]	

4	 Use	stack	guarding	add-ons	to	detect	overflows	of	stack	buffers			(REMOVE?)	 [HCB]	
5	 Perform	range	checking	before	copying	memory	(using	mechanisms	such	as	

memcpy	and	memmove),	unless	it	can	be	shown	that	a	range	error	cannot	occur.		
	
Bounds	checking	is	not	performed	automatically,	but	in	the	interest	of	speed	and	
efficiency,	range	checking	only	needs	to	be	done	when	it	cannot	be	statically	shown	
that	an	access	outside	of	the	array	cannot	occur.	

[XYW]	

6	 Check	that	a	pointer	is	not	null	before	dereferencing,	unless	it	can	be	shown	that	
the	pointer	is	not	null.	

[XYH]	

7	 After	a	call	to	free	as	illustrated	in	the	following	code:	
free	(ptr);	
ptr	=	NULL;				

Set	the	pointer	to	null	to	prevent	multiple	deallocation	or	use	of	a	dangling	
reference	via	this	pointer.	

[XYK]	

Clive Pygott� 2017-1-30 6:46 PM
Comment [4]: 	
Needs	to	be	reworked	for	C++,	once	section	6	is	
complete	

	

©	ISO/IEC	2015	–	All	rights	reserved	 7	
	

8	 Do	not	read	uninitialized	memory,	including	memory	allocated	by	functions	such	as	
malloc.		

[LAV]	

9	 Check	that	the	result	of	an	operation	on	an	unsigned	integer	value	will	cause	
wrapping,	unless	it	can	be	shown	that	wrapping	cannot	occur.	
Any	of	the	following	operators	have	the	potential	to	wrap:	

a	+	b					a	–	b					a	*	b				a++										a--				a	+=	b	
a	-=	b				a	*=	b			a	<<	b		a<<=b			-a	

[FIF]	

10	 Check	if	the	result	of	an	operation	on	a	signed	integer	value	will	cause	an	overflow,	
unless	it	can	be	shown	that	overflow	cannot	occur.	
Any	of	the	following	operators	have	the	potential	to	overflow,	which	is	undefined	
behavior	in	C:	

a	+	b						a	–	b								a	*	b						a/b												a%b								a++						a--	
a	+=	b				a	-=	b							a	*=	b			a	/=	b									a	%=	b		
a	<<	b				a	<<=	b			-a	

	

11	 Ensure	that	a	type	conversion	results	in	a	value	that	can	be	represented	in	the	
resulting	type.		

[FLC]	

	

	 	

WG	23/N0643	 	 	

8	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.	Specific	Guidance	for	C++	Vulnerabilities	

6.1	General		

This	clause	contains	specific	advice	for	C++	about	the	possible	presence	of	vulnerabilities	as	described	in	
TR	24772-1,	and	provides	specific	guidance	on	how	to	avoid	them	in	C++	code.	This	section	mirrors	TR	24772-1	
clause	6	in	that	the	vulnerability	“Type	System	[IHN]”	is	found	in	6.2	of	TR	24772–1,	and	C++	specific	guidance	is	
found	in	clause	6.2	and	subclauses	in	this	TR.		

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	
	
Since	C++	contains	almost	all	of	the	C	language	as	a	subset,	the	type	system,	vulnerabilities	and	mitigations	are	as	
described	in	TR	24772-3,	Clause	6.2.	
In	addition	to	the		vulnerabilities	and	mitigations	of	C	described	in	TR	24772-3,	C++	adds	specific	casts	which	
provide	a	number	of	(mostly)	compile-time	checks,	so	prevent	casting	between	obviously	inappropriate	types.	

• static	casts	
• const	casts;	and	
• dynamic	casts;		

	

6.2.2	Guidance	to	language	users	

• Follow	the	advice	provided	in	TR	24772-3	clause	6.2.2.	
• Use	C++	casts	rather	than	C-style	casts,	as	they	provide	more	compile-time	checking	and	are	more	

restrictive	in	what	they	can	change.		
• Class	member	functions	that	can	be	‘static’	should	be	‘static’.	Class	member	functions	that	cannot	be	

‘static’,	but	can	be	‘const’	should	be	‘const’		
• The	‘mutable’	keyword	for	class	member	variables	should	be	used	sparingly	

	
	

6.3	Bit	Representations	[STR]	

6.3.1	Applicability	to	language	
	
C++	uses	the	bit	representation	mechanisms	of	C,	as	documented	in	TR	24772-3	clause	6.3.1.	
	

6.3.2	Guidance	to	language	users		

In	addition	to	the		advice	of	TR	24772-3	clause	6.3.2:	

• Consider	using	raw	strings	for	strings	whose	intended	value	include	characters	with	special	meaning	
(such	as	\)	

Stephen Michell� 2017-4-6 1:58 PM
Formatted: Normal, No bullets or
numbering

Stephen Michell� 2017-4-6 1:57 PM
Deleted: 	

Stephen Michell� 2017-4-6 1:57 PM
Deleted: a	number	of	feature	relevant	to	a	discussion	
of	its	type	system: ... [80]

Stephen Michell� 2017-4-6 2:00 PM
Formatted: Bulleted + Level: 1 + Aligned at:
0.63 cm + Indent at: 1.27 cm

Stephen Michell� 2017-4-6 4:05 PM
Formatted: Not Highlight

Stephen Michell� 2017-4-6 4:09 PM
Deleted: TR	24772-1	clause	6.2.5

Stephen Michell� 2017-4-6 2:01 PM
Deleted: <#>Be	aware	of	the	rules	for	typing	and	
conversions	to	avoid	vulnerabilities. ... [81]

Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic
Stephen Michell� 2017-4-6 2:03 PM

Deleted: u

Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic
Stephen Michell� 2017-4-6 2:03 PM

Deleted: a

Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic
Stephen Michell� 2017-4-6 2:03 PM

Deleted: l

Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic
Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic
Stephen Michell� 2017-4-6 2:03 PM
Formatted: Font:Italic

Stephen Michell� 2017-4-6 2:12 PM
Deleted: C++	supports	a	variety	of	sizes	for	integers	... [82]

Stephen Michell� 2017-4-6 2:06 PM
Formatted: Normal, Space After: 0 pt

Clive Pygott� 2017-2-1 7:25 PM
Comment [5]: 	 ... [83]

Stephen Michell� 2017-4-6 4:03 PM
Formatted: Not Highlight
Stephen Michell� 2017-4-6 3:43 PM
Deleted: general

Stephen Michell� 2017-4-6 3:43 PM
Deleted: 	TR	24772-1	clause	6.3.5

Stephen Michell� 2017-4-6 2:15 PM
Deleted: :

Stephen Michell� 2017-4-6 4:04 PM
Formatted ... [84]

Stephen Michell� 2017-4-7 10:27 AM
Formatted: Font:Bold, Italic

	

©	ISO/IEC	2015	–	All	rights	reserved	 9	
	

• 	

6.4	Floating-point	Arithmetic	[PLF]	

6.4.1	Applicability	to	language	
	
C++	uses	the	floating	point	mechanisms	of	C,	as	documented	in	TR	24772-3	clause	6.4.1.	

6.4.2	Guidance	to	language	users	
Follow	the	general	advice	of	TR	24772-3	clause	6.4.2.	

6.5	Enumerator	Issues	[CCB]	

6.5.1	Applicability	to	language	

C++	uses	the	enumeration	mechanisms	of	C,	as	documented	in	TR	24772-3	clause	6.5.1,	with	changes	as	
described	here.	

In	C++,	there	is	not	a	bidirectional	cast	between	and	int,	i.e.	there	is	no	implicit	cast	from	an	integer	type	back	to	the	
enum	type.	
In	C++,	when	casting	from	an	enumeration	to	an	integer	type,	an	explicit	cast	is	required.	(paul	to	provide	example)	
	
	 Document		scoped	enumeration	(enum	class)	
abc::A	
Idea	that	the	enumerated	type	can	have	a	user-specified	underlying	type	for	enumerated	constants	
	
Cannot	use	the	wrong	enum		
	
	

6.5.2	Guidance	to	language	users	
Follow	the	general	advice	of	TR	24772-3	clause	6.5.2	as	well	as	the	following:	

• Use	constexpr	to	declare	a	set	of	unrelated	values	where	the	C	choice	would	have	been	to	declare	
one	or	more	enumerators,	such	as	
constexpr size_t bufferLen = 128;
constexpr char special_char = ‘a’; instead of
enum{bufferLen = 128, special_char = ‘a’}; // adds an implicit type	

• Avoid	casting	arbitrary	integer	values	to	enumeration	type	.	If	it	is	unavoidable,	use	a	function-style	
cast	with	braces	instead	of	C-style	or	static	casts	
													e_type{7};	

• Obtain	the	underlying	enumeration	value,	by	casting	the	enumeration	to	its	underlying	type,	e.g.,	
enum e_type{A, B, C};
auto value = static_cast<typename std::underlying_type<e_type>::type>(B);

Stephen Michell� 2017-4-6 4:04 PM
Formatted: Font:(Default) Calibri

Stephen Michell� 2017-4-6 2:21 PM
Deleted: <#>Only	use	bitwise	operators	on	
unsigned	integer	values	as	the	results	of	some	
bitwise	operations	on	signed	integers	are	
implementation	defined. ... [85]

Clive Pygott� 2017-2-6 6:05 PM
Comment [6]: 	
Don’t	know	if	this	is	relevant	to	C++	or	not	

Stephen Michell� 2017-4-6 2:22 PM
Deleted: C++	permits	the	floating-point	data	types	... [86]

Clive Pygott� 2017-2-1 7:30 PM
Comment [7]: 	
This	is	all	inherited	from	C	
	 ... [87]

Stephen Michell� 2017-4-6 2:23 PM
Deleted: In	addition	to	the…ollow	the	general	... [88]

Stephen Michell� 2017-4-6 2:24 PM
Deleted: <#>Do	not	use	a	floating-point	... [89]

Stephen Michell� 2017-4-7 11:11 AM
Deleted: The	enum	type	in	C	comprises	a	set	of	... [90]

Stephen Michell� 2017-4-7 10:42 AM
Formatted: Font:+Theme Headings

Clive Pygott� 2017-2-2 6:44 PM
Comment [8]: 	 ... [91]

Stephen Michell� 2017-4-7 10:54 AM
Formatted ... [92]

Stephen Michell� 2017-4-7 11:20 AM
Formatted: Font:Courier, 9 pt
Stephen Michell� 2017-4-7 10:33 AM
Deleted: enum	abc	{A,B,C,D,E,F,G,H}	var_abc;... [93]

Stephen Michell� 2017-4-7 10:54 AM
Formatted ... [94]

Stephen Michell� 2017-4-7 10:37 AM
Formatted ... [95]

Stephen Michell� 2017-4-7 11:26 AM
Formatted: Highlight

Stephen Michell� 2017-4-7 11:26 AM
Deleted:

Stephen Michell� 2017-4-7 11:31 AM
Formatted ... [96]

Stephen Michell� 2017-4-7 11:32 AM
Formatted: Font:+Theme Body, Highlight
Stephen Michell� 2017-4-7 11:34 AM
Formatted: Highlight
Stephen Michell� 2017-4-7 11:35 AM
Formatted ... [97]

Stephen Michell� 2017-4-7 10:37 AM
Deleted: In	addition	to	the	general	advice	of	TR	... [98]

Stephen Michell� 2017-4-7 10:46 AM
Formatted: Normal, Indent: Left: 0 cm
Stephen Michell� 2017-4-7 10:46 AM
Formatted ... [99]

WG	23/N0643	 	 	

10	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.6	Conversion	Errors	[FLC]	

6.6.1	Applicability	to	language	

C++	includes	some	of	the	conversion	mechanisms	of	C,	as	documented	in	TR	24772-3	clause	6.6.1.	

C++	type	conversion	mechanisms	differ	from	the	mechanisms	of	C,	as	documented	in	ISO	IEC	14882	Annex	C.	This	
subclause	highlights	those	differences	where	C++	eliminates	potential	vulnerabilities	found	in	C.		
	
Implicit	conversions	from	void*	to	any	other	object	type	is	invalid.	
	

C++	adds	a	number	of	new	features	relevant	to	type	conversion:	
• C-style	casts	(using	the	desired	type	in	brackets	in	front	of	an	expression),	whilst	still	available	in	C++,	are	

augmented	by	four	C++	specific	cast	and	function	style	casts.	These	provide	a	number	of	(mostly)	
compile-time	checks,	so	prevent	casting	between	obviously	inappropriate	types	

• The	programmer	can	add	code	to	the	definition	of	a	class	to	allow	values	of	any	other	type	to	be	implicitly	
cast	to	that	class	type,	or	for	a	class	object	to	be	implicitly	cast	to	any	other	type	(including	basic	numeric	
types).	As	implicit	conversions	can	make	code	maintenance	more	difficult,	in	general	they	should	be	
avoided	

	
Implicit	casting	to	a	class	type	occurs	when	a	class	has	a	constructor	that	can	take	a	single	parameter,	as	in	the	
following	example:	

class C
 {public:
 C(int x=10, float y=0){…}
 };

void foo(C param){…}

… foo(21); …

	
The	call	to	foo	requires	a	parameter	of	type	C,	but	is	provided	with	an	int.	However,	as	C	has	a	constructor	that	
can	take	an	int	parameter	(the	float	parameter	is	ignored	because	it	has	a	default	value),	a	temporary	object	of	
type	C	is	constructed	using	21	as	the	x	parameter.	This	is	passed	to	foo.	The	temporary	object	is	destroyed	when	
foo	returns.	
	
Note	that	this	implicit	conversion	to	a	class	object	is	the	default	behavior	of	constructors	that	can	be	called	with	a	
single	parameter.	To	prevent	this	happening,	the	keyword	‘explicit’	is	used	before	the	constructor,	as	in:	

 explicit C(int x=10, float y=0){…}

The	call		foo(21)		would	now	not	be	legal.	

6.6.2	Guidance	to	language	users	
In	addition	to	the	general	advice	of	TR	24772-1	clause	6.6.5:	

• Guidance	for	numeric	conversions:	Use	the	brace	form	of	function	style	casts	

Stephen Michell� 2017-4-7 11:46 AM
Formatted: Not Highlight

Stephen Michell� 2017-4-7 11:46 AM
Deleted: C++	permits	implicit	conversions.		That	is,	
C++	will	automatically	perform	a	conversion	without	an	
explicit	cast.		For	instance,	 ... [100]

Clive Pygott� 2017-2-2 6:59 PM
Comment [9]: 	
This	part	inherited	from	C		See	C++	additions	at	the	end	

Stephen Michell� 2017-4-7 11:46 AM
Formatted: Not Highlight
Stephen Michell� 2017-4-7 11:51 AM
Formatted: Font:Courier
Stephen Michell� 2017-4-7 11:46 AM
Formatted: Not Highlight

Stephen Michell� 2017-4-7 11:46 AM
Deleted: A	loss	of	data	(truncation)	can	occur	when	
converting	from	a	signed	type	to	a	signed	type	with	less	
precision.	For	example,	the	following	code	can	result	in	
truncation: ... [101]

Clive Pygott� 2017-2-2 6:59 PM
Comment [10]: 	
I	don’t	think	this	is	also	in	C++	

Stephen Michell� 2017-4-7 12:17 PM
Formatted: Not Highlight
Stephen Michell� 2017-4-7 12:17 PM
Formatted: Not Highlight
Stephen Michell� 2017-4-7 12:15 PM

Deleted: Ch

	

©	ISO/IEC	2015	–	All	rights	reserved	 11	
	

• Use	C++	casts	rather	than	C-style	casts,	as	they	provide	more	checking	
• If	a	class	has	a	converting	constructor	and	implicit	conversions	are	not	required,	make	that	constructor	

‘explicit’		

6.7	String	Termination	[CJM]	

6.7.1	Applicability	to	language	

A	string	in	C++	is	composed	of	a	contiguous	sequence	of	characters	terminated	by	and	including	a	null	character	
(a	byte	with	all	bits	set	to	0).		Therefore	strings	in	C++	cannot	contain	the	null	character	except	as	the	terminating	
character.		Inserting	a	null	character	in	a	string	either	through	a	bug	or	through	malicious	action	can	truncate	a	
string	unexpectedly.		Alternatively,	not	putting	a	null	character	terminator	in	a	string	can	cause	actions	such	as	
string	copies	to	continue	well	beyond	the	end	of	the	expected	string.		Overflowing	a	string	buffer	through	the	
intentional	lack	of	a	null	terminating	character	can	be	used	to	expose	information	or	to	execute	malicious	code.	

In	C,	strings	are	usually	implemented	as	arrays	of	chars.	Such	arrays	can	be	prone	to	accidental	or	deliberate	
overflow,	as	they	are	inherently	of	a	fixed	size.	Hence	attempting	to	copy	an	string	longer	than	the	array,	or	
appending	a	string	where	the	result	will	be	longer	than	the	array,	will	lead	to	corruption	of	the	program	state.	

C++	provide	a	string	class	(in	the	iostream	library),	std::string.	Internally,	the	class	maintains	an	array	of	char	on	
the	heap.	If	an	attempt	is	made	to	copy	or	append	a	string	that	results	in	a	string	larger	than	the	current	size	of	
the	array,	a	new	larger	array	is	allocated.	

6.7.2	Guidance	to	language	users	

• Use	std::string	or	similar,	in	preference	to	C-style	arrays	of	chars	

	
6.8	Buffer	Boundary	Violation	[HCB]	

6.8.1	Applicability	to	language	

A	buffer	boundary	violation	condition	occurs	when	an	array	is	indexed	outside	its	bounds,	or	pointer	arithmetic	
results	in	an	access	to	storage	that	occurs	outside	the	bounds	of	the	object	accessed.	
In	C++,	the	subscript	operator	[]	is	defined	such	that	E1[E2]	is	identical	to	(*((E1)+(E2))),	so	that	in	either	
representation,	the	value	in	location	(E1+E2)	is	returned.		C++	does	not	perform	bounds	checking	on	arrays,	so	the	
following	code:	
 int foo(const int i) {
 int x[] = {0,0,0,0,0,0,0,0,0,0};
 return x[i];
 }

will	return	whatever	is	in	location	x[i]	even	if,	i	were	equal	to	-10	or	10	(assuming	either	subscript	was	still	within	
the	address	space	of	the	program).		This	could	be	sensitive	information	or	even	a	return	address,	which	if	altered	
by	changing	the	value	of	x[-10]or	x[10],	could	change	the	program	flow.	
	

Stephen Michell� 2017-4-7 12:14 PM
Deleted: <#>eck	the	value	of	a	larger	type	
before	converting	it	to	a	smaller	type	to	see	if	the	
value	in	the	larger	type	is	within	the	range	of	the	
smaller	type.		Any	conversion	from	a	type	with	
larger	precision	to	a	smaller	precision	type	could	
potentially	result	in	a	loss	of	data.		In	some	
instances,	this	loss	of	precision	is	desired.		Such	
cases	should	be	explicitly	acknowledged	in	
comments.		For	example,	the	following	code	
could	be	used	to	check	whether	a	conversion	
from	an	unsigned	integer	to	an	unsigned	
character	will	result	in	a	loss	of	precision:... [102]

Stephen Michell� 2017-4-7 12:14 PM
Deleted: <#>Close	attention	should	be	given	to	
all	warning	messages	issued	by	the	compiler	
regarding	multiple	casts.	Making	a	cast	in	C++	
explicit	will	both	remove	the	warning	and	
acknowledge	that	the	change	in	precision	is	on	
purpose. ... [103]

Stephen Michell� 2017-4-7 12:03 PM
Deleted: 	that	can	take	a	single	parameter

Stephen Michell� 2017-4-7 12:13 PM
Deleted: to	prevent	accidental	implicit	
conversion	from	the	parameter	type	to	the	class	
type,	unless	such	conversions	are	required	

WG	23/N0643	 	 	

12	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

The	following	code	is	more	appropriate	and	would	not	violate	the	boundaries	of	the	array	x:	
int foo(const int i) {
int x[X_SIZE] = {0};
if (i < 0 || i >= X_SIZE) {
 return ERROR_CODE;
 }
else {
 return x[i];
 }
}

A	buffer	boundary	violation	may	also	occur	when	copying,	initializing,	writing	or	reading	a	buffer	if	attention	to	
the	index	or	addresses	used	are	not	taken.			
	
As	described	in	6.7	[CJM],	C++	provides	library	functions,	e.g.	std::string,	that	encapsulate	strings	and	prevent	
boundary	violations	when	accessing	arrays	of	characters.	It	also	provides	standard	templates	that	provide	similar	
facilities	for	any	other	type,	such	as	std::vector.	Like	a	C-style	array,	a	vector	can	be	indexed	using	[],	and	as	in	C	
such	an	access	is	unchecked.	However,	vector	also	provides	an	access	function		at()		that	behaves	like	[],	but	
performs	a	check	that	the	access	is	within	the	bounds	of	the	array.	The	following	example	compares	C	and	C++	
performing	equivalent	array	operations:	
	

C	 C++	 Comment	
	 #include	<array>	 	
int	arr	[10];	 std::array<int,10>arr;	 Both	arrays	are	of	10	elements	
arr[10]	=	0;	 arr[10]	=	0;	 Both	accesses	silently	violate	array’s	bounds	
arr[10]	=	0;	 arr.at(10)	=	0;	 The	C++	access	fails	with	an	error	exception	

					Vectors	can	be	used	as	shown	for	arrays.	
	
6.8.2	Guidance	to	language	users	

• For	the	use	of	C-style	arrays,	follow	the	guidance	provided	in	TR	24772-3	clause	6.8.2.	
• Use	a	library	class	such	as	std::array	to	encapsulate	an	array,	or	write	a	class	with	similar	behavior.		
• Use	iterators	and	range-based	for-loops	
• Use	std::vector	to	access	arrays	of	dynamic	changing	size		
• When	manually	accessing	array	elements	by	indexing	or	pointer	arithmetic,	use	bounds	checking	access	

such	as	array::at,	unless	it	can	be	conclusively	shown	that	the	access	can	never	be	outside	the	bounds	of	
the	array.	
If	bound	checking	each	access	would	be	prohibitively	slow.	If	for	performance	reasons,	index	checking	on	
each	access	is	inappropriate,	provide	a	check	to	show	that	no	access	will	be	outside	the	bounds	of	the	
array,	e.g.	when	processing	all	the	elements	of	a	large	array,	show	or	check	that	the	first	and	last	
elements	to	be	accessed	are	in	bounds	

• Use	boiler	plate	words	about	static	analysis	tools	
• (Clive	to	polish)	

Stephen Michell� 2017-4-6 3:11 PM
Deleted: vector

Stephen Michell� 2017-4-6 3:10 PM
Deleted: I

Stephen Michell� 2017-4-6 3:12 PM
Deleted: ay

Stephen Michell� 2017-4-6 3:10 PM
Deleted: vector

Stephen Michell� 2017-4-6 3:11 PM
Deleted: 	array(10

Stephen Michell� 2017-4-6 3:11 PM
Deleted:)

Stephen Michell� 2017-4-6 3:11 PM
Deleted: ay

Stephen Michell� 2017-4-6 3:13 PM
Deleted: 1

Stephen Michell� 2017-4-6 3:11 PM
Deleted: ay

Stephen Michell� 2017-4-6 3:13 PM
Deleted: 1

Stephen Michell� 2017-4-6 3:11 PM
Deleted: ay

Stephen Michell� 2017-4-6 3:13 PM
Deleted: 1

Stephen Michell� 2017-4-6 3:11 PM
Deleted: ay

Stephen Michell� 2017-4-6 3:13 PM
Deleted: 1

Stephen Michell� 2017-4-6 2:56 PM
Deleted: For	example,	in	the	following	move	 ... [104]

Clive Pygott� 2017-2-3 6:54 PM
Comment [11]: 	 ... [105]

Stephen Michell� 2017-4-6 3:37 PM
Deleted: Use	

Stephen Michell� 2017-4-6 3:13 PM
Deleted: vector

Stephen Michell� 2017-4-6 3:32 PM
Deleted: Always	use	bound	checking	access,	such	... [106]

Stephen Michell� 2017-4-6 3:29 PM
Formatted ... [107]

Stephen Michell� 2017-4-6 3:29 PM
Deleted: or	i

Stephen Michell� 2017-4-6 3:28 PM
Deleted: ... [108]

Stephen Michell� 2017-4-6 2:58 PM
Deleted: ... [109]

Stephen Michell� 2017-4-6 2:58 PM
Formatted ... [110]

Stephen Michell� 2017-4-6 3:41 PM
Formatted ... [111]

Stephen Michell� 2017-4-6 3:41 PM
Formatted ... [112]

	

©	ISO/IEC	2015	–	All	rights	reserved	 13	
	

6.9	Unchecked	Array	Indexing	[XYZ]	

6.9.1	Applicability	to	language	

C	does	not	perform	bounds	checking	on	arrays,	so	though	arrays	may	be	accessed	outside	of	their	bounds,	the	
value	returned	is	undefined	and	in	some	cases	may	result	in	a	program	termination.		For	example,	in	C	the	
following	code	is	valid,	though,	for	example,	if	i	has	the	value	10,	the	result	is	undefined:	
 int foo(const int i) {
 int t;
 int x[] = {0,0,0,0,0};
 t = x[i];
 return t;
 }

The	variable	t	will	likely	be	assigned	whatever	is	in	the	location	pointed	to	by	x[10] (assuming	that	x[10]	is	still	
within	the	address	space	of	the	program).	

6.9.2	Guidance	to	language	users	

• Perform	range	checking	before	accessing	an	array	since	C	does	not	perform	bounds	checking	
automatically.		In	the	interest	of	speed	and	efficiency,	range	checking	only	needs	to	be	done	when	it	
cannot	be	statically	shown	that	an	access	outside	of	the	array	cannot	occur.	

• Use	the	safer	and	more	secure	functions	for	string	handling	from	the	normative	annex	K	of	C11	[4],	
Bounds-checking	interfaces.		These	are	alternative	string	handling	library	functions.		The	functions	verify	
that	receiving	buffers	are	large	enough	for	the	resulting	strings	being	placed	in	them	and	ensure	that	
resulting	strings	are	null	terminated.	

6.10	Unchecked	Array	Copying	[XYW]	

6.10.1	Applicability	to	language	

A	buffer	overflow	occurs	when	some	number	of	bytes	(or	other	units	of	storage)	is	copied	from	one	buffer	to	
another	and	the	amount	being	copied	is	greater	than	is	allocated	for	the	destination	buffer.	In	essence	this	is	a	
special	case	of	Buffer	Boundary	Violation	[HCB].		
	
As	with	[HCB],	in	most	cases	the	vulnerability	can	be	avoided	by	using	library	classes,	such	as	std::vector,	which	
provides	a	copy	assignment	operator,	that	adjusts	the	size	of	the	target	to	fit	the	object	being	copied.	
	
If	for	some	reason	this	is	not	acceptable,	C++	has	access	to	the	C	library	functions	memcpy	and	memmove.	Both	
simply	copy	memory	and	no	checks	are	made	as	to	whether	the	destination	area	is	large	enough	to	accommodate	
the	amount	of	data	being	copied.		It	is	assumed	that	the	calling	routine	or	programmer	has	ensured	that	
adequate	space	has	been	provided	in	the	destination.		Problems	can	arise	when	the	destination	buffer	is	too	small	
to	receive	the	amount	of	data	being	copied.	

6.10.2	Guidance	to	language	users	

• Use	classes,	such	as	std::vector,	that	provide	copy	functions	that	ensure	the	target	array	is	large	enough	
for	the	indicated	source,	in	preference	to	C	library	functions	such	as	memcpy()	or		memmove().	

Clive Pygott� 2017-2-3 7:32 PM
Comment [12]: 	
My	inclination	is	to	ditch	all	this,	and	refer	back	to	
6.8	[HCB]	

WG	23/N0643	 	 	

14	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

• Perform	range	checking	before	calling	a	memory	copying	function	such	as	memcpy()	and	memmove().		
These	functions	do	not	perform	bounds	checking	automatically.		In	the	interest	of	speed	and	efficiency,	
range	checking	only	needs	to	be	done	when	it	cannot	be	statically	shown	that	an	access	outside	of	the	
array	cannot	occur.	

• Use	the	safer	and	more	secure	functions	for	string	handling	from	the	normative	annex	K	of	C11	[4],	
Bounds-checking	interfaces.	

6.11	Pointer	Type	Conversions	[HFC]	

6.11.1	Applicability	to	language	

C++	allows	casting	the	value	of	a	pointer	to	and	from	another	data	type.		These	conversions	can	cause	unexpected	
changes	to	pointer	values.	

Pointers	in	C++	refer	to	a	specific	type,	such	as	integer.		If	sizeof(int)	is	4	bytes,	and	ptr is	a	pointer	to	
integers	that	contains	the	value	0x5000,	then	ptr++	would	make	ptr	equal	to	0x5004.		However,	if	ptr	were	a	
pointer	to	char,	then	ptr++	would	make	ptr	equal	to	0x5001.		It	is	the	difference	due	to	data	sizes	coupled	
with	conversions	between	pointer	data	types	that	cause	unexpected	results	and	potential	vulnerabilities.		Due	to	
arithmetic	operations,	pointers	may	not	maintain	correct	memory	alignment	or	may	operate	upon	the	wrong	
memory	addresses.	

In	particular,	make	casts	explicit	in	the	return	value	of	malloc	
						Example:								s = (struct foo*)malloc(sizeof(struct foo));
This	uses	the	C	type	system	to	enforce	that	the	pointer	to	the	allocated	space	will	be	of	a	type	that	is	appropriate	
for	the	size.		Because	malloc	returns	a	void *,	without	the	cast,	s	could	be	of	any	random	pointer	type;		with	
the	cast,	that	mistake	will	be	caught	

In	general	casting	pointers	breaks	the	type	system	and	should	be	avoided.	If	it	is	unavoidable,	use	static_cast	
rather	than	reinterpret_cast.	This	is	because	reinterpret_cast	simple	treats	the	unmodified	pattern	of	bits	in	the	
pointer	as	being	of	the	target	type	rather	than	the	original,	but	the	C++	standard	recognizes	that	the	compiler	
may	impose	constrains	or	additional	data	requirements	on	a	pointer.	With	static_cast,	the	compiler	is	allowed	to	
make	appropriate	changes	to	the	resulting	pointer.	

One	common	use	of	pointer	conversion	in	C	is	to	specify	the	actual	type	of	the	void*	pointer	returned	by	malloc	
when	allocating	memory	on	the	heap,	as	in:							(T*)malloc(sizeof(T));	
Whilst	malloc	(and	free)	is	still	available	in	C++,	memory	allocation	in	C++	should	be	done	using	the	new	(and	
delete)	keywords,	as	in:																																											new	T;				//	always	returns	a	T*	pointer	
	

One	legitimate	use	of	pointer	conversion	in	C++	is	where	there	is	a	hierarchy	of	classes	declared,	as	in:	
																		class	Base	{	…	};	
																		class	Derived:	public	Base	{	…	};	
Anywhere	a		Base*		pointer	is	required,	a	pointer	to	a	Derived	class	object	can	be	used	instead.	In	effect,	there	is	
an	implicit	cast	of	the	Derived*	pointer	to	Base*.		This	is	called	‘upcasting’.		Sometimes,	having	got	a	Base*	
pointer,	it	may	be	necessary	to	convert	it	back	to	the	derived	type,	‘downcasting’.	This	should	be	done	using	
dynamic_cast,	as	this	will	check	(at	runtime)	that	the	pointer	is	to	an	object	of	the	correct	type.	If	it’s	not,	either	
NULL	will	be	returned,	or	an	error	exception	thrown:	

	

©	ISO/IEC	2015	–	All	rights	reserved	 15	
	

																		class	Base	{	…	};	
																		class	Derived1:	public	Base	{	…	};	
																		class	Derived2:	public	Base	{	…	};	
	
																		void	foo(Base	*ptr);		//	forward	reference	
	
																									Derived2	d2;	
																									foo(&v2);							//	&v2	of	type	Derived2*	implicitly	upcast	to	Base*	
	
																		void	foo(Base	*ptr)	
																									{	Derived1	*p1	=	dynamic_cast<{	Derived1*>(ptr);				//	p1	becomes	NULL,	as	ptr	not	a	Devived1*	
																											Derived2	*p2	=	dynamic_cast<{	Derived2*>(ptr);				//	p2	become	&v2	
																									}	
	

6.11.2	Guidance	to	language	users	

• Follow	the	advice	provided	by	TR	24772-1	clause	6.11.5.	
• Cast	between	pointers	using	static_cast	rather	than	reinterpret_cast,	unless	downcasting	
• When	downcasting,	use	dynamic_cast,	and	be	aware	that	the	result	may	be	NULL		
• Maintain	the	same	type	to	avoid	errors	introduced	through	conversions.	
• Always	cast	the	value	returned	by	malloc		to	an	appropriate	type	
• Heed	compiler	warnings	that	are	issued	for	pointer	conversion	instances.		The	decision	may	be	made	to	

avoid	all	conversions	so	any	warnings	must	be	addressed.		Note	that	casting	into	and	out	of		void *
pointers	will	most	likely	not	generate	a	compiler	warning	as	this	is	valid	in	C++	

• Use	new	and	delete	to	allocate/deallocate	memory,	rather	than	malloc/free		

6.12	Pointer	Arithmetic	[RVG]	

6.12.1	Applicability	to	language	

When	performing	pointer	arithmetic	in	C,	the	size	of	the	value	to	add	to	a	pointer	is	automatically	scaled	to	the	
size	of	the	type	of	the	pointed-to	object.		For	instance,	when	adding	a	value	to	the	byte	address	of	a	4-byte	
integer,	the	value	is	scaled	by	a	factor	4	and	then	added	to	the	pointer.	The	effect	of	this	scaling	is	that	if	a	pointer	
P	points	to	the	i-th	element	of	an	array	object,	then	(P)	+	N	will	point	to	the	i+n-th	element	of	the	array.		Failing	to	
understand	how	pointer	arithmetic	works	can	lead	to	miscalculations	that	result	in	serious	errors,	such	as	buffer	
overflows.	

In	C,	arrays	have	a	strong	relationship	to	pointers.		The	following	example	will	illustrate	arithmetic	in	C	involving	a	
pointer	and	how	the	operation	is	done	relative	to	the	size	of	the	pointer's	target.		Consider	the	following	code	
snippet:	
 int buf[5];
 int *buf_ptr = buf;

where	the	address	of	buf	is	0x1234,	after	the	assignment	buf_ptr	points	to	buf[0].	Adding	1	to	buf_ptr	
will	result	in	buf_ptr == 0x1238	on	a	host	where	an	int	is	4	bytes;	buf_ptr	will	then	point	to	buf[1].		Not	

Clive Pygott� 2017-2-6 6:23 PM
Comment [13]: 	
This	seems	pointless,	as	we	are	doing	pointer	
conversion,	so	deliberately	not	maintaining	the	
same	type	

WG	23/N0643	 	 	

16	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

realizing	that	address	operations	will	be	in	terms	of	the	size	of	the	object	being	pointed	to	can	lead	to	address	
miscalculations	and	undefined	behaviour.	
	
6.12.2	Guidance	to	language	users	

• Consider	an	outright	ban	on	pointer	arithmetic	due	to	the	error-prone	nature	of	pointer	arithmetic.	
• Verify	that	all	pointers	are	assigned	a	valid	memory	address	for	use.	

6.13	NULL	Pointer	Dereference	[XYH]	

6.13.1	Applicability	to	language	
	
C	allows	memory	to	be	dynamically	allocated	primarily	through	the	use	of	malloc(),	calloc(),	and	
realloc().		Each	will	return	the	address	to	the	allocated	memory.		Due	to	a	variety	of	situations,	the	memory	
allocation	may	not	occur	as	expected	and	a	null	pointer	will	be	returned.		Other	operations	or	faults	in	logic	can	
result	in	a	memory	pointer	being	set	to	null.		Using	the	null	pointer	as	though	it	pointed	to	a	valid	memory	
location	can	cause	a	segmentation	fault	and	other	unanticipated	situations.	
	
Space	for	10000	integers	can	be	dynamically	allocated	in	C	in	the	following	way:	
 int *ptr = malloc(10000*sizeof(int)); // allocate space for 10000 ints

malloc()will	return	the	address	of	the	memory	allocation	or	a	null	pointer	if	insufficient	memory	is	available	for	
the	allocation.		It	is	good	practice	after	the	attempted	allocation	to	check	whether	the	memory	has	been	allocated	
via	an	if	test	against	NULL:	

 if (ptr != NULL) // check to see that the memory could be allocated

Memory	allocations	usually	succeed,	so	neglecting	this	test	and	using	the	memory	will	usually	work.		That	is	why	
neglecting	the	null	test	will	frequently	go	unnoticed.		An	attacker	can	intentionally	create	a	situation	where	the	
memory	allocation	will	fail	leading	to	a	segmentation	fault.		

Faults	in	logic	can	cause	a	code	path	that	will	use	a	memory	pointer	that	was	not	dynamically	allocated	or	after	
memory	has	been	deallocated	and	the	pointer	was	set	to	null	as	good	practice	would	indicate.	

6.13.2	Guidance	to	language	users	

• Create	a	specific	check	that	a	pointer	is	not	null	before	dereferencing	it.		As	this	can	be	expensive	in	some	
cases	(such	as	in	a	for	loop	that	performs	operations	on	each	element	of	a	large	segment	of	memory),	
judicious	checking	of	the	value	of	the	pointer	at	key	strategic	points	in	the	code	is	recommended.	

6.14	Dangling	Reference	to	Heap	[XYK]	

6.14.1	Applicability	to	language	

C	allows	memory	to	be	dynamically	allocated	primarily	through	the	use	of	of	malloc(),	calloc(),	and	
realloc(). C	allows	a	considerable	amount	of	freedom	in	accessing	the	dynamic	memory.		Pointers	to	the	
dynamic	memory	can	be	created	to	perform	operations	on	the	memory.		Once	the	memory	is	no	longer	needed,	

	

©	ISO/IEC	2015	–	All	rights	reserved	 17	
	

it	can	be	released	through	the	use	of	free().		However,	freeing	the	memory	does	not	prevent	the	use	of	the	
pointers	to	the	memory	and	issues	can	arise	if	operations	are	performed	after	memory	has	been	freed.	
	
Consider	the	following	segment	of	code:	
 int foo() {
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/
 if (ptr != NULL) { /* check to see that the memory could be allocated */
 /* perform some operations on the dynamic memory */
 free (ptr); /* memory is no longer needed, so free it */
 /* program continues performing other operations */
 ptr[0] = 10; /* ERROR – memory being used after released */
 …
 }
 …
 }

The	use	of	memory	in	C	after	it	has	been	freed	is	undefined.		Depending	on	the	execution	path	taken	in	the	
program,	freed	memory	may	still	be	free	or	may	have	been	allocated	via	another	malloc()or	other	dynamic	
memory	allocation.		If	the	memory	that	is	used	is	still	free,	use	of	the	memory	may	be	unnoticed.		However,	if	the	
memory	has	been	reallocated,	altering	of	the	data	contained	in	the	memory	can	result	in	data	corruption.		
Determining	that	a	dangling	memory	reference	is	the	cause	of	a	problem	and	locating	it	can	be	difficult.	
Setting	and	using	another	pointer	to	the	same	section	of	dynamically	allocated	memory	can	also	lead	to	
undefined	behaviour.		Consider	the	following	section	of	code:	
 int foo() {
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers */
 if (ptr != NULL) { /* check to see that the memory
 could be allocated */
 int ptr2 = &ptr[10]; /* set ptr2 to point to the 10th
 element of the allocated memory */
 … /* perform some operations on the
 dynamic memory */
 free (ptr); /* memory is no longer needed */
 ptr = NULL; /* set ptr to NULL to prevent ptr
 from being used again */
 … /* program continues performing
 other operations */
 ptr2[0] = 10; /* ERROR – memory is being used
 after it has been released via ptr2 */
 …
 }
 return (0);
 }

Dynamic	memory	was	allocated	via	a	malloc()and	then	later	in	the	code,	ptr2	was	used	to	point	to	an	address	
in	the	dynamically	allocated	memory.		After	the	memory	was	freed	using	free(ptr)	and	the	good	practice	of	
setting	ptr	to	NULL	was	followed	to	avoid	a	dangling	reference	by	ptr	later	in	the	code,	a	dangling	reference	still	
existed	using	ptr2.	
	

WG	23/N0643	 	 	

18	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.14.2	Guidance	to	language	users	

• Follow	the	advice	provided	by	TR	24772-1	clause	6.15.2.	
Set	a	freed	pointer	to	NULL	immediately	after	a	free()call,	as	illustrated	in	the	following	code:	
free (ptr);
ptr = NULL;

• Do	not	create	and	use	additional	pointers	to	dynamically	allocated	memory.	
• Only	reference	dynamically	allocated	memory	using	the	pointer	that	was	used	to	allocate	the	memory.	

6.15	Arithmetic	Wrap-around	Error	[FIF]	

6.15.1	Applicability	to	language	
	
Given	the	fixed	size	of	integer	data	types,	continuously	adding	one	to	an	unsigned	integer	eventually	will	cause	
the	value	to	go	from	the	maximum	possible	value	to	a	small	value.		C	permits	this	to	happen	without	any	
detection	or	notification	mechanism.		Continuously	adding	one	to	a	signed	integer	eventually	will	cause	undefined	
behaviour.	
	
For	example,	consider	the	following	code	for	a	short int	containing	16	bits:	
 int foo(short int i) {
 i++;
 return i;
 }

	
Calling	foo	with	the	value	of	32767	would	cause	undefined	behaviour,	such	as	wrapping	to	-32768,	or	trapping.		
Manipulating	a	value	in	this	way	can	result	in	unexpected	results	such	as	overflowing	a	buffer.		
	
C	is	often	used	for	bit	manipulation.		Part	of	this	is	due	to	the	capabilities	in	C	to	mask	bits	and	shift	them.		
Another	part	is	due	to	the	relative	closeness	C	has	to	assembly	instructions.		Manipulating	bits	on	a	signed	value	
can	inadvertently	change	the	sign	bit	resulting	in	a	number	potentially	going	from	a	positive	value	to	a	negative	
value.	
	
In	C,	bit	shifting	by	a	value	that	is	greater	than	the	size	of	the	data	type	or	by	a	negative	number	is	undefined.		The	
following	code,	where	a	int	is	16	bits,	would	be	undefined	when	j >= 16	or	j	is	negative:	
 int foo(int i, const int j) {
 return i>>j;
 }

6.15.2	Guidance	to	language	users	

• Be	aware	that	any	of	the	following	operators	have	the	potential	to	wrap	in	C:	
a + b a – b a * b a++ a--
a += b a -= b a *= b a << b a >> b -a

• Use	defensive	programming	techniques	to	check	whether	an	operation	will	overflow	or	underflow	the	
receiving	data	type.		These	techniques	can	be	omitted	if	it	can	be	shown	at	compile	time	that	overflow	or	
underflow	is	not	possible.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 19	
	

• Only	conduct	bit	manipulations	on	unsigned	data	types.		The	number	of	bits	to	be	shifted	by	a	shift	
operator	should	lie	between	1	and	(n-1),	where	n	is	the	size	of	the	data	type.	

	

6.16	Using	Shift	Operations	for	Multiplication	and	Division	[PIK]	

6.16.1	Applicability	to	language	

The	issues	for	C	are	well	defined	in	TR	24772-1	clause	6.16	Using	Shift	Operations	for	Multiplication	and	Division	
[PIK].		Also	see	clause	6.15	Arithmetic	Wrap-around	Error	[FIF].	

6.16.2	Guidance	to	language	users	

The	guidance	for	C	users	is	well	defined	in	TR	24772-1	clause	6.16	Using	Shift	Operations	for	Multiplication	and	
Division	[PIK].		Also	see,	6.15	Arithmetic	Wrap-around	Error	[FIF].	

6.17	Choice	of	Clear	Names	[NAI]	

6.17.1	Applicability	to	language	

C	is	somewhat	susceptible	to	errors	resulting	from	the	use	of	similarly	appearing	names.		C	does	require	the	
declaration	of	variables	before	they	are	used.		However,	C	allows	scoping	so	that	a	variable	that	is	not	declared	
locally	may	be	resolved	to	some	outer	block	and	a	human	reviewer	may	not	notice	that	resolution.				Variable	
name	length	is	implementation	specific	and	so	one	implementation	may	resolve	names	to	one	length	whereas	
another	implementation	may	resolve	names	to	another	length	resulting	in	unintended	behaviour.	

As	with	the	general	case,	calls	to	the	wrong	subprogram	or	references	to	the	wrong	data	element	(when	missed	
by	human	review)	can	result	in	unintended	behaviour.	

6.17.2	Guidance	to	language	users	

• Use	names	that	are	clear	and	non-confusing.	
• Use	consistency	in	choosing	names.	
• Keep	names	short	and	concise	in	order	to	make	the	code	easier	to	understand.	
• Choose	names	that	are	rich	in	meaning.	
• Keep	in	mind	that	code	will	be	reused	and	combined	in	ways	that	the	original	developers	never	imagined.	
• Make	names	distinguishable	within	the	first	few	characters	due	to	scoping	in	C.		This	will	also	assist	in	

averting	problems	with	compilers	resolving	to	a	shorter	name	than	was	intended.	
• Do	not	differentiate	names	through	only	a	mixture	of	case	or	the	presence/absence	of	an	underscore	

character.	
• Avoid	differentiating	through	characters	that	are	commonly	confused	visually	such	as	‘O’	and	‘0’,	‘I’	(lower	

case	‘L’),	‘l’	(capital	‘I’)	and	‘1’,	‘S’	and	‘5’,	‘Z’	and	‘2’,	and	‘n’	and	‘h’.	
• Develop	coding	guidelines	to	define	a	common	coding	style	and	to	avoid	the	above	dangerous	practices.	

WG	23/N0643	 	 	

20	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.18	Dead	Store	[WXQ]	

6.18.1	Applicability	to	language	

Because	C	is	an	imperative	language,	programs	in	C	can	contain	dead	stores.		This	can	result	from	an	error	in	the	
initial	design	or	implementation	of	a	program,	or	from	an	incomplete	or	erroneous	modification	of	an	existing	
program.	

A	store	into	a	volatile-qualified	variable	generally	should	not	be	considered	a	dead	store	because	accessing	such	a	
variable	may	cause	additional	side	effects,	such	as	input/output	(memory-mapped	I/O)	or	observability	by	a	
debugger	or	another	thread	of	execution.	

6.18.2	Guidance	to	language	users	
• Use	compilers	and	analysis	tools	to	identify	dead	stores	in	the	program.	
• Declare	variables	as	volatile	when	they	are	intentional	targets	of	a	store	whose	value	does	not	appear	to	

be	used.	

6.19	Unused	Variable	[YZS]	

6.19.1	Applicability	to	language	

Variables	may	be	declared,	but	never	used	when	writing	code	or	the	need	for	a	variable	may	be	eliminated	in	the	
code,	but	the	declaration	may	remain.		Most	compilers	will	report	this	as	a	warning	and	the	warning	can	be	easily	
resolved	by	removing	the	unused	variable.	

6.19.2	Guidance	to	language	users	

• Resolve	all	compiler	warnings	for	unused	variables.		This	is	trivial	in	C	as	one	simply	needs	to	remove	the	
declaration	of	the	variable.		Having	an	unused	variable	in	code	indicates	that	either	warnings	were	turned	
off	during	compilation	or	were	ignored	by	the	developer.	

	
6.20	Identifier	Name	Reuse	[YOW]	

6.20.1	Applicability	to	language	

C	allows	scoping	so	that	a	variable	that	is	not	declared	locally	may	be	resolved	to	some	outer	block	and	that	
resolution	may	cause	the	variable	to	operate	on	an	entity	other	than	the	one	intended.	
Because	the	variable	name	var1	was	reused	in	the	following	example,	the	printed	value	of	var1	may	be	
unexpected.	

int var1; /* declaration in outer scope */
var1 = 10;
{
 int var2;
 int var1; /* declaration in nested (inner) scope */
 var2 = 5;
 var1 = 1; /* var1 in inner scope is 1 */

	

©	ISO/IEC	2015	–	All	rights	reserved	 21	
	

}

 print (“var1=%d\n”, var1); /* will print “var1=10” as var1 refers */
 /* to var1 in the outer scope */

Removing	the	declaration	of	var2	will	result	in	a	diagnostic	message	being	generated	making	the	programmer	
aware	of	an	undeclared	variable.		However,	removing	the	declaration	of	var1	in	the	inner	block	will	not	result	in	
a	diagnostic	as	var1	will	be	resolved	to	the	declaration	in	the	outer	block	and	a	programmer	maintaining	the	
code	could	very	easily	miss	this	subtlety.		The	removing	of	inner	block	var1	will	result	in	the	printing	of	var1=1	
instead	of	var1=10.
	

6.20.2	Guidance	to	language	users	

• Ensure	that	a	definition	of	an	entity	does	not	occur	in	a	scope	where	a	different	entity	with	the	same	
name	is	accessible	and	can	be	used	in	the	same	context.	A	language-specific	project	coding	convention	
can	be	used	to	ensure	that	such	errors	are	detectable	with	static	analysis.	

• Ensure	that	a	definition	of	an	entity	does	not	occur	in	a	scope	where	a	different	entity	with	the	same	
name	is	accessible	and	has	a	type	that	permits	it	to	occur	in	at	least	one	context	where	the	first	entity	can	
occur.	

• Ensure	that	all	identifiers	differ	within	the	number	of	characters	considered	to	be	significant	by	the	
implementations	that	are	likely	to	be	used,	and	document	all	assumptions.	

6.21	Namespace	Issues	[BJL]	

6.21.1	Applicability	to	language	

Does	not	apply	to	C	because	C	requires	unique	names	and	has	a	single	global	namespace.		A	diagnostic	message	is	
required	for	duplicate	names	in	a	single	compilation.	

6.22	Initialization	of	Variables	[LAV]	

6.22.1	Applicability	to	language	

Local,	automatic	variables	can	assume	unexpected	values	if	they	are	used	before	they	are	initialized.		The	C	
Standard	specifies,	"If	an	object	that	has	automatic	storage	duration	is	not	initialized	explicitly,	its	value	is	
indeterminate".		In	the	common	case,	on	architectures	that	make	use	of	a	program	stack,	this	value	defaults	to	
whichever	values	are	currently	stored	in	stack	memory.		While	uninitialized	memory	often	contains	zeros,	this	is	
not	guaranteed.		Consequently,	uninitialized	memory	can	cause	a	program	to	behave	in	an	unpredictable	or	
unplanned	manner	and	may	provide	an	avenue	for	attack.	

Assuming	that	an	uninitialized	variable	is	0	can	lead	to	unpredictable	program	behaviour	when	the	variable	is	
initialized	to	a	value	other	than	0.	

Many	implementations	will	issue	a	diagnostic	message	indicating	that	a	variable	was	not	initialized.	

WG	23/N0643	 	 	

22	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.22.2	Guidance	to	language	users	

• Heed	compiler	warning	messages	about	uninitialized	variables.		These	warnings	should	be	resolved	as	
recommended	to	achieve	a	clean	compile	at	high	warning	levels.	

Do	not	use	memory	allocated	by	functions	such	as	malloc()before	the	memory	is	initialized	as	the	memory	
contents	are	indeterminate.	

6.23	Operator	Precedence	and	Associativity	[JCW]	

6.23.1	Applicability	to	language	

Operator	precedence	and	associativity	in	C	are	clearly	defined.	

Mixed	logical	operators	are	allowed	without	parentheses.	

6.23.2	Guidance	to	language	users	

• Follow	the	guidance	provided	in	TR	24772-1	clause	6.23.5	
• Use	parentheses	any	time	arithmetic	operators,	logical	operators,	and	shift	operators	are	mixed	in	an	

expression.	

6.24	Side-effects	and	Order	of	Evaluation		of	Operands	[SAM]	

6.24.1	Applicability	to	language	
	
C	allows	expressions	to	have	side	effects.		If	two	or	more	side	effects	modify	the	same	expression	as	in:	
 int v[10];
 int i;
 /* … */
 i = v[i++];

	
the	behaviour	is	undefined	and	this	can	lead	to	unexpected	results.		Either	the	“i++”	is	performed	first	or	the	
assignment		i=v[i] is	performed	first,	or	some	other	undefined	behaviour	occurs.		Because	the	order	of	
evaluation	can	have	drastic	effects	on	the	functionality	of	the	code,	this	can	greatly	impact	portability.	
	
There	are	several	situations	in	C	where	the	order	of	evaluation	of	subexpressions	or	the	order	in	which	side	
effects	take	place	is	unspecified	including:	

• The	order	in	which	the	arguments	to	a	function	are	evaluated	(C,	Section	6.5.2.2,"Function	calls").	
• The	order	of	evaluation	of	the	operands	in	an	assignment	statement	(C,	Section	6.5.16,"Assignment	

operators").	
• The	order	in	which	any	side	effects	occur	among	the	initialization	list	expressions	is	unspecified.	In	

particular,	the	evaluation	order	need	not	be	the	same	as	the	order	of	subobject	initialization	(C,	Section	
6.7.9,	“Initialization").	
	

	

©	ISO/IEC	2015	–	All	rights	reserved	 23	
	

Because	these	are	unspecified	behaviours,	testing	may	give	the	false	impression	that	the	code	is	working	and	
portable,	when	it	could	just	be	that	the	values	provided	cause	evaluations	to	be	performed	in	a	particular	order	
that	causes	side	effects	to	occur	as	expected.	
	
	
6.24.2	Guidance	to	language	users	

• Follow	the	guidance	provided	in	TR	24772-1	clause	6.24.5	
• Expressions	should	be	written	so	that	the	same	effects	will	occur	under	any	order	of	evaluation	that	the	C	

standard	permits	since	side	effects	can	be	dependent	on	an	implementation	specific	order	of	evaluation.	
• Become	familiar	with	Annex	C	of	the	C	standard	ISO/IEC	9899:2011	[4],	which	is	a	list	of	the	sequence	

points	that	enforce	an	ordering	of	computations.	

6.25	Likely	Incorrect	Expression	[KOA]	
	
6.25.1	Applicability	to	language	
	
C	has	several	instances	of	operators	which	are	similar	in	structure,	but	vastly	different	in	meaning.		This	is	so	
common	that	the	C	example	of	confusing	the	Boolean	operator	“==”	with	the	assignment	“=”	is	frequently	cited	
as	an	example	among	programming	languages.		Using	an	expression	that	is	technically	correct,	but	which	may	just	
be	a	null	statement	can	lead	to	unexpected	results.	
	
C		provides	significant	of	freedom	in	constructing	statements.		This	freedom,	if	misused,	can	result	in	unexpected	
results	and	potential	vulnerabilities.	
	
The	flexibility	of	C	can	obscure	the	intent	of	a	programmer.		Consider:	

int x,y;
/* … */
if (x = y){
 /* … */
}

A	fair	amount	of	analysis	may	need	to	be	done	to	determine	whether	the	programmer	intended	to	do	an	
assignment	as	part	of	the	if	statement	(perfectly	valid	in	C)	or	whether	the	programmer	made	the	common	
mistake	of	using	an	“=”	instead	of	a	“==”.		In	order	to	prevent	this	confusion,	it	is	suggested	that	any	assignments	
in	contexts	that	are	easily	misunderstood	be	moved	outside	of	the	Boolean	expression.		This	would	change	the	
example	code	to:	

int x,y;
/* … */
x = y;
 if (x == 0) {
 /* … */
 }

This	would	clearly	state	what	the	programmer	meant	and	that	the	assignment	of	y	to	x	was	intended.	
Programmers	can	easily	get	in	the	habit	of	inserting	the	“;”	statement	terminator	at	the	end	of	statements.		
However,	inadvertently	doing	this	can	drastically	alter	the	meaning	of	code,	even	though	the	code	is	valid	as	in	
the	following	example:	

WG	23/N0643	 	 	

24	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

 int a,b;
 /* … */
 if (a == b); // the semi-colon will make this a null statement
 {
 /* … */
 }

Because	of	the	misplaced	semi-colon,	the	code	block	following	the	if	will	always	be	executed.		In	this	case,	it	is	
extremely	likely	that	the	programmer	did	not	intend	to	put	the	semi-colon	there.	
	
6.25.2	Guidance	to	language	users	

• Simplify	statements	with	interspersed	comments	to	aid	in	accurately	programming	functionality	and	help	
future	maintainers	understand	the	intent	and	nuances	of	the	code.			The	flexibility	of	C	permits	a	
programmer	to	create	extremely	complex	expressions.	

• Avoid	assignments	embedded	within	other	statements,	as	these	can	be	problematic.		Each	of	the	
following	would	be	clearer	and	have	less	potential	for	problems	if	the	embedded	assignments	were	
conducted	outside	of	the	expressions:	

 int a,b,c,d;
 /* … */
 if ((a == b) || (c = (d-1))) /* the assignment to c may not
 occur if a is equal to b */

															or:	
 int a,b,c;
 /* … */
 foo (a=b, c);

															Each	is	a	valid	C	statement,	but	each	may	have	unintended	results.	
• Give	null	statements	a	source	line	of	their	own.		This,	combined	with	enforcement	by	static	analysis,	

would	make	clearer	the	intention	that	the	statement	was	meant	to	be	a	null	statement.	
• Consider	the	adoption	of	a	coding	standard	that	limits	the	use	of	the	assignment	statement	within	an	

expression.	
	
6.26	Dead	and	Deactivated	Code	[XYQ]	
	
6.26.1	Applicability	to	language	
	
C	allows	the	usual	sources	of	dead	code	(described	in	6.26)	that	are	common	to	most	conventional	programming	
languages.	
	
C	uses	some	operators	that	can	be	confused	with	other	operators.		For	instance,	the	common	mistake	of	using	an	
assignment	operator	in	a	Boolean	test	as	in:	

 int a;
 /* … */
 if (a = 1)
 …

can	cause	portions	of	code	to	become	dead	code,	because	the	else	portion	of	the	if	statement	cannot	be	reached.	
	

	

©	ISO/IEC	2015	–	All	rights	reserved	 25	
	

6.26.2	Guidance	to	language	users	

• Apply	the	guidance	provided	in	TR	24772-1	clause	6.26.5.	
• Eliminate	dead	code	to	the	extent	possible	from	C	programs.	
• Use	compilers	and	analysis	tools	to	assist	in	identifying	unreachable	code.	
• Use	“//”	comment	syntax	instead	of	“/*…*/”	comment	syntax	to	avoid	the	inadvertent	commenting	out	

sections	of	code.	
• Delete	deactivated	code	from	programs	due	to	the	possibility	of	accidentally	activating	it.	

	
6.27	Switch	Statements	and	Static	Analysis	[CLL]	
	

6.27.1	Applicability	to	language	
	
Because	of	the	way	in	which	the	switch-case	statement	in	C	is	structured,	it	can	be	relatively	easy	to	
unintentionally	omit	the	break	statement	between	cases	causing	unintended	execution	of	statements	for	some	
cases.	
	
C	contains	a	switch	statement	of	the	form:	
 char abc;
 /* … */
 switch (abc) {
 case 1:
 sval = “a”;
 break;
 case 2:
 sval = “b”;
 break;
 case 3:
 sval = “c”;
 break;
 default:
 printf (“Invalid selection\n”);
 }

	
If	there	isn’t	a	default	case	and	the	switched	expression	doesn’t	match	any	of	the	cases,	then	control	simply	shifts	
to	the	next	statement	after	the	switch	statement	block.		Unintentionally	omitting	a	break	statement	between	two	
cases	will	cause	subsequent	cases	to	be	executed	until	a	break	or	the	end	of	the	switch	block	is	reached.		This	
could	cause	unexpected	results.	
	

6.27.2	Guidance	to	language	users	

• Apply	the	guidance	provided	in	TR	24772-1	clause	6.27.5	
• Only	a	direct	fall	through	should	be	allowed	from	one	case	to	another.		That	is,	every	nonempty	case	

statement	should	be	terminated	with	a	break	statement	as	illustrated	in	the	following	example:	
int i;
/* … */
switch (i) {

WG	23/N0643	 	 	

26	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

 case 1:
 case 2:
 i++; /* fall through from case 1 to 2 is permitted */
 break;
 case 3:
 j++;
 case 4: /* fall through from case 3 to 4 is not permitted */
 /* as it is not a direct fall through due to the */
 /* j++ statement */
 }	

• Adopt	a	style	that	permits	your	language	processor	and	analysis	tools	to	verify	that	all	cases	are	covered.	
Where	this	is	not	possible,	use	a	default	clause	that	diagnoses	the	error.	
		

6.28	Demarcation	of	Control	Flow	[EOJ]	
	

6.28.1	Applicability	to	language	
C	lacks	a	keyword	to	be	used	as	an	explicit	terminator.		Therefore,	it	may	not	be	readily	apparent	which	
statements	are	part	of	a	loop	construct	or	an	if	statement.	
	
Consider	the	following	section	of	code:	

 int foo(int a, const int *b) {
 int i=0;
 /* … */
 a = 0;
 for (i=0; i<10; i++);
 {
 a = a + b[i];
 }
 }

At	first	it	may	appear	that	a	will	be	a	sum	of	the	numbers	b[0]to	b[9].		However,	even	though	the	code	is	layed	
out	so	that	the	a = a + b[i]	code	appears	to	be	within	the	for	loop,	the	“;”	at	the	end	of	the	for	statement	
causes	the	loop	to	be	on	a	null	statement	(the	“;”)	and	the	a = a + b[i];statement	to	only	be	executed	once.		
In	this	case,	this	mistake	may	be	readily	apparent	during	development	or	testing.		More	subtle	cases	may	not	be	
as	readily	apparent	leading	to	unexpected	results.	
	
If	statements	in	C	are	also	susceptible	to	control	flow	problems	since	there	isn’t	a	requirement	in	C	for	there	to	be	
an	else	statement	for	every	if	statement.		An	else	statement	in	C	always	belong	to	the	most	recent	if	statement	
without	an	else.		However,	the	situation	could	occur	where	it	is	not	readily	apparent	to	which	if	statement	an	else	
belongs	due	to	the	way	the	code	is	indented	or	aligned.	
	
6.28.2	Guidance	to	language	users	

• Follow	the	rules	provided	in	TR	24772-1	clause	6.28.5.	
• Enclose	the	bodies	of	if,	else,	while,	for,	and	similar	in	braces.		This	will	reduce	confusion	and	potential	

problems	when	modifying	the	software.		For	example:	
int a,b,i;

	

©	ISO/IEC	2015	–	All	rights	reserved	 27	
	

/* … */
if (i == 10){
 a = 5; /* this is correct */
 b = 10;
 }

 else
 a = 10;
 b = 5;

If	the	assignments	to	b	were	added	later	and	were	expected	to	be	part	of	each	if	and	else	clause	(they	are	
indented	as	such),	the	above	code	is	incorrect:	the	assignment	to	b	that	was	intended	to	be	in	the	else	
clause	is	unconditionally	executed.	

	
6.29	Loop	Control	Variables	[TEX]	
	
6.29.1	Applicability	to	language	
	
C	allows	the	modification	of	loop	control	variables	within	a	loop.		Though	this	is	usually	not	considered	good	
programming	practice	as	it	can	cause	unexpected	problems,	the	flexibility	of	C	expects	the	programmer	to	use	
this	capability	responsibly.	
	
Since	the	modification	of	a	loop	control	variable	within	a	loop	is	infrequently	encountered,	reviewers	of	C	code	
may	not	expect	it	and	hence	miss	noticing	the	modification.		Modifying	the	loop	control	variable	can	cause	
unexpected	results	if	not	carefully	done.		In	C,	the	following	is	valid:	
 int a,i;
 for (i=1; i<10; i++){
 …
 if (a > 7)
 i = 10;
 …
 }

which	would	cause	the	for	loop	to	exit	once	a	is	greater	than	7	regardless	of	the	number	of	iterations	that	have	
occurred.	
	

6.29.2	Guidance	to	language	users	

• Apply	the	guidance	of	TR	24772-1	clause	6.29.5.	
• Do	not	modify	a	loop	control	variable	within	a	loop.		Even	though	the	capability	exists	in	C,	it	is	still	

considered	to	be	a	poor	programming	practice.		
	

6.30	Off-by-one	Error	[XZH]	
	
6.30.1	Applicability	to	language	
	
Arrays	are	a	common	place	for	off	by	one	errors	to	manifest.		In	C,	arrays	are	indexed	starting	at	0,	causing	the	
common	mistake	of	looping	from	0	to	the	size	of	the	array	as	in:	

WG	23/N0643	 	 	

28	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

 int foo() {
 int a[10];
 int i;
 for (i=0, i<=10, i++)
 …
 return (0);
 }

	
Strings	in	C	are	also	another	common	source	of	errors	in	C	due	to	the	need	to	allocate	space	for	and	account	for	
the	string	sentinel	value.		A	common	mistake	is	to	expect	to	store	an	n	length	string	in	an	n	length	array	instead	of	
length	n+1	to	account	for	the	sentinel	‘\0’.	Interfacing	with	other	languages	that	do	not	use	sentinel	values	in	
strings	can	also	lead	to	an	off	by	one	error.	
	
C	does	not	flag	accesses	outside	of	array	bounds,	so	an	off	by	one	error	may	not	be	as	detectable	in	C	as	in	some	
other	languages.		Several	good	and	freely	available	tools	for	C	can	be	used	to	help	detect	accesses	beyond	the	
bounds	of	arrays	that	are	caused	by	an	off	by	one	error.		However,	such	tools	will	not	help	in	the	case	where	only	
a	portion	of	the	array	is	used	and	the	access	is	still	within	the	bounds	of	the	array.	
	
Looping	one	more	or	one	less	is	usually	detectable	by	good	testing.		Due	to	the	structure	of	the	C	language,	this	
may	be	the	main	way	to	avoid	this	vulnerability.		Unfortunately	some	cases	may	still	slip	through	the	development	
and	test	phase	and	manifest	themselves	during	operational	use.	
	
6.30.2	Guidance	to	language	users	

• Follow	the	guidance	of	TR	24772-1	clause	6.30.5.	
• Use	careful	programming,	testing	of	border	conditions	and	static	analysis	tools	to	detect	off	by	one	errors	

in	C.	

6.31	Structured	Programming	[EWD]	
	
6.31.1	Applicability	to	language	
	
It	is	as	easy	to	write	structured	programs	in	C	as	it	is	not	to.		C	contains	the	goto	statement,	which	can	create	
unstructured	code.		Also,	C	has	continue,	break,	and	return	that	can	create	a	complicated	control	flow,	when	
used	in	an	undisciplined	manner.		Spaghetti	code	can	be	more	difficult	for	C	static	analyzers	to	analyze	and	is	
sometimes	used	on	purpose	to	intentionally	obfuscate	the	functionality	of	software.		Code	that	has	been	
modified	multiple	times	by	an	assortment	of	programmers	to	add	or	remove	functionality	or	to	fix	problems	can	
be	prone	to	become	unstructured.	

Because	unstructured	code	in	C	can	cause	problems	for	analyzers	(both	automated	and	human)	of	code,	
problems	with	the	code	may	not	be	detected	as	readily	or	at	all	as	would	be	the	case	if	the	software	was	written	
in	a	structured	manner.	

6.31.2	Guidance	to	language	users	

• Write	clear	and	concise	structured	code	to	make	code	as	understandable	as	possible.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 29	
	

Restrict	the	use	of	goto,	continue,	break,	return	and	longjmp	to	encourage	more	structured	programming.	

• Encourage	the	use	of	a	single	exit	point	from	a	function.		At	times,	this	guidance	can	have	the	opposite	
effect,	such	as	in	the	case	of	an	if	check	of	parameters	at	the	start	of	a	function	that	requires	the	
remainder	of	the	function	to	be	encased	in	the	if	statement	in	order	to	reach	the	single	exit	point.		If,	for	
example,	the	use	of	multiple	exit	points	can	arguably	make	a	piece	of	code	clearer,	then	they	should	be	
used.		However,	the	code	should	be	able	to	withstand	a	critique	that	a	restructuring	of	the	code	would	
have	made	the	need	for	multiple	exit	points	unnecessary.	
	

6.32	Passing	Parameters	and	Return	Values	[CSJ]	
	
6.32.1	Applicability	to	language	
	
C	uses	call	by	value	parameter	passing.	The	parameter	is	evaluated	and	its	value	is	assigned	to	the	formal	
parameter	of	the	function	that	is	being	called.		A	formal	parameter	behaves	like	a	local	variable	and	can	be	
modified	in	the	function	without	affecting	the	actual	argument.		An	object	can	be	modified	in	a	function	by	
passing	the	address	to	the	object	to	the	function,	for	example	
 void swap(int *x, int *y) {
 int t = *x;
 *x = *y;
 *y = t;
 }

	
Where	x	and	y are	integer	pointer	formal	parameters,	and	*x	and	*y in	the	swap()function	body	dereference	
the	pointers	to	access	the	integers.	
	
C	macros	use	a	call	by	name	parameter	passing;	a	call	to	the	macro	replaces	the	macro	by	the	body	of	the	macro.	
This	is	called	macro	expansion.		Macro	expansion	is	applied	to	the	program	source	text	and	amounts	to	the	
substitution	of	the	formal	parameters	with	the	actual	parameter	expressions.		Formal	parameters	are	often	
parenthesized	to	avoid	syntax	issues	after	the	expansion.		Call	by	name	parameter	passing	reevaluates	the	actual	
parameter	expression	each	time	the	formal	parameter	is	read.	
	
Paragraph	about	the	violation	of	the	keyword	“restrict”	in	Part	3.		–	C++	does	not	have	this	keyword.	Think	about	
the	issue.	
	
6.32.2	Guidance	to	language	users	

• Use	caution	for	reevaluation	of	function	calls	in	parameters	with	macros.	
• Use	caution	when	passing	the	address	of	an	object.		The	object	passed	could	be	an	alias2.	Aliases	can	be	

avoided	by	following	the	respective	guidelines	of	TR	24772-1	Clause	6.32.5.		
	

																																																													

2			An	alias	is	a	variable	or	formal	parameter	that	refers	to	the	same	location	as	another	variable	or	formal	parameter.	

WG	23/N0643	 	 	

30	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.33	Dangling	References	to	Stack	Frames	[DCM]	
	
6.33.1	Applicability	to	language	
	
C	allows	the	address	of	a	variable	to	be	stored	in	a	variable.		Should	this	variable’s	address	be,	for	example,	the	
address	of	a	local	variable	that	was	part	of	a	stack	frame,	then	using	the	address	after	the	local	variable	has	been	
deallocated	can	yield	unexpected	behaviour	as	the	memory	will	have	been	made	available	for	further	allocation	
and	may	indeed	have	been	allocated	for	some	other	use.		Any	use	of	perishable	memory	after	it	has	been	
deallocated	can	lead	to	unexpected	results.	
	

6.33.2	Guidance	to	language	users	

• Do	not	assign	the	address	of	an	object	to	any	entity	which	persists	after	the	object	has	ceased	to	exist.		
This	is	done	in	order	to	avoid	the	possibility	of	a	dangling	reference.		Once	the	object	ceases	to	exist,	then	
so	will	the	stored	address	of	the	object	preventing	accidental	dangling	references.	In	particular,	never	
return	the	address	of	a	local	variable	as	the	result	of	a	function	call.	

• Long	lived	pointers	that	contain	block-local	addresses	should	be	assigned	the	null	pointer	value	before	
executing	a	return	from	the	block.	

	
6.34	Subprogram	Signature	Mismatch	[OTR]	

6.34.1	Applicability	to	language	
	
Functions	in	C	may	be	called	with	more	or	less	than	the	number	of	parameters	the	receiving	function	expects.		
However,	most	C	compilers	will	generate	a	warning	or	an	error	about	this	situation.		If	the	number	of	arguments	
does	not	equal	the	number	of	parameters,	the	behaviour	is	undefined.		This	can	lead	to	unexpected	results	when	
the	count	or	types	of	the	parameters	differs	from	the	calling	to	the	receiving	function.		If	too	few	arguments	are	
sent	to	a	function,	then	the	function	could	still	pop	the	expected	number	of	arguments	from	the	stack	leading	to	
unexpected	results.		
	
C	allows	a	variable	number	of	arguments	in	function	calls.		A	good	example	of	an	implementation	of	this	is	the	
printf()	function.		This	is	specified	in	the	function	call	by	terminating	the	list	of	parameters	with	an	ellipsis	(,	
...).		After	the	comma,	no	information	about	the	number	or	types	of	the	parameters	is	supplied.		This	can	be	a	
useful	feature	for	situations	such	as	printf(),	but	the	use	of	this	feature	outside	of	special	situations	can	be	the	
basis	for	vulnerabilities.	
	
Functions	may	or	may	not	be	defined	with	a	function	definition.		The	function	definition	may	or	may	not	contain	a	
parameter	type	list.		If	a	function	that	accepts	a	variable	number	of	arguments	is	defined	without	a	parameter	
type	list	that	ends	with	the	ellipsis	notation,	the	behaviour	is	undefined.	
	
If	the	calling	and	receiving	functions	differ	in	the	type	of	parameters,	C	will,	if	possible,	do	an	implicit	conversion	
such	as	the	call	to	sqrt()that	expects	a	double:	
 double sqrt(double)

the	call:	

	

©	ISO/IEC	2015	–	All	rights	reserved	 31	
	

 root2 = sqrt(2);

coerces	the	integer	2	into	the	double	value	2.0.	
	
6.34.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.34.5.	
• Use	a	function	prototype	to	declare	a	function	with	its	expected	parameters	to	allow	the	compiler	to	

check	for	a	matching	count	and	types	of	the	parameters.	
Do	not	use	the	variable	argument	feature	except	in	rare	instances.		The	variable	argument	feature	such	as	is	used	
in	printf()is	difficult	to	use	in	a	type	safe	manner.	

6.35	Recursion	[GDL]	
	
6.35.1	Applicability	to	language	
	
C	permits	recursion,	hence	is	subject	to	the	problems	described	in	6.35.	
	
6.35.2	Guidance	to	language	users	

• Apply	the	guidance	described	in	TR	24772-1	clause	6.35.5.	

6.36	Ignored	Error	Status	and	Unhandled	Exceptions	[OYB]	

6.36.1	Applicability	to	language	

The	C	standard	does	not	include	exception	handling,	therefore	only	error	status	will	be	covered.	

C	provides	the	include	file	<errno.h>	that	defines	the	macros	EDOM, EILSEQ and ERANGE,	which	expand	to	
integer	constant	expressions	with	type	int,	distinct	positive	values	and	which	are	suitable	for	use	in	#if	
preprocessing	directives.		C	also	provides	the	integer	errno	that	can	be	set	to	a	nonzero	value	by	any	library	
function	(if	the	use	of	errno	is	not	documented	in	the	description	of	the	function	in	the	C	Standard,	errno	could	
be	used	whether	or	not	there	is	an	error).		Though	these	values	are	defined,	inconsistencies	in	responding	to	error	
conditions	can	lead	to	vulnerabilities.	

	
6.36.2	Guidance	to	language	users	

• Check	the	returned	error	status	upon	return	from	a	function.		The	C	standard	library	functions	provide	an	
error	status	as	the	return	value	and	sometimes	in	an	additional	global	error	value.	

Set	errno	to	zero	before	a	library	function	call	in	situations	where	a	program	intends	to	check	errno	before	a	
subsequent	library	function	call.	
Use	errno_t	to	make	it	readily	apparent	that	a	function	is	returning	an	error	code.		Often	a	function	that	returns	
an	errno	error	code	is	declared	as	returning	a	value	of	type	int.		Although	syntactically	correct,	it	is	not	apparent	
that	the	return	code	is	an	errno	error	code.		The	normative	Annex	K	from	ISO/IEC	9899:2011	[4]	introduces	the	
new	type	errno_t	in	<errno.h>	that	is	defined	to	be	type	int.	

• Handle	an	error	as	close	as	possible	to	the	origin	of	the	error	but	as	far	out	as	necessary	to	be	able	to	deal	
with	the	error.		

WG	23/N0643	 	 	

32	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

• For	each	routine,	document	all	error	conditions,	matching	error	detection	and	reporting	needs,	and	
provide	sufficient	information	for	handling	the	error	situation.	

• Use	static	analysis	tools	to	detect	and	report	missing	or	ineffective	error	detection	or	handling.	
• When	execution	within	a	particular	context	encounters	an	error,	finalize	the	context	by	closing	open	files,	

releasing	resources	and	restoring	any	invariants	associated	with	the	context.		
	

6.37	Fault	Tolerance	and	Failure	Strategies	[REU]	

6.37.1	Applicability	to	language	

Check	that	this	writeup	is	consistent	with	the	new	title	and	writeup	from	Part	1.	Wait	until	Erhard	has	reprocessed	
[REU]	in	Part	1.	

Choosing	when	and	where	to	exit	is	a	design	issue,	but	choosing	how	to	perform	the	exit	may	result	in	the	host	
being	left	in	an	unexpected	state.		C	provides	several	ways	of	terminating	a	program	including	exit(),	_Exit(),	
and	abort().		A	return	from	the	initial	call	to	the	main	function	is	equivalent	to	calling	the	exit()function	with	
the	value	returned	by	the	main	function	as	its	argument	(this	is	if	the	return	type	of	the	main	function	is	a	type	
compatible	with	int,	otherwise	the	termination	status	returned	to	the	host	environment	is	unspecified)	or	simply	
reaching	the	“}”	that	terminates	the	main	function	returns	a	value	of	0.	
All	of	the	termination	strategies	in	C	have	undefined,	unspecified,	and/or	implementation	defined	behaviour	
associated	with	them.		For	example,	if	more	than	one	call	to	the	exit()	function	is	executed	by	a	program,	the	
behaviour	is	undefined.		The	amount	of	clean-up	that	occurs	upon	termination	such	as	the	removal	of	temporary	
files	or	the	flushing	of	buffers	varies	and	may	be	implementation	defined.			

A	call	to	exit()or	_Exit()	will	terminate	a	program	normally.		Abnormal	program	termination	will	occur	when	
abort()	is	used	to	exit	a	program	(unless	the	signal	SIGABRT	is	caught	and	the	signal	handler	does	not	return).		
Unlike	a	call	to	exit(),	when	either	_Exit()	or	abort()are	used	to	terminate	a	program,	it	is	implementation	
defined	as	to	whether	open	streams	with	unwritten	buffered	data	are	flushed,	open	streams	are	closed,	or	
temporary	files	are	removed.	This	can	leave	a	system	in	an	unexpected	state.	
C	provides	the	function	atexit()	that	allows	functions	to	be	registered	so	that	at	normal	program	termination,	
the	registered	functions	will	be	executed	to	perform	desired	functions.		C	requires	the	capability	to	register	at	
least	32	functions.		Implementations	expecting	more	than	32	registered	functions	may	yield	unexpected	results.	

6.37.2	Guidance	to	language	users	

• Follow	the	guidance	of	TR	24772-1	clause	6.37.5.	
Use	a	return	from	the	main()program	as	it	is	the	cleanest	way	to	exit	a	C	program.	

• Use	exit()to	quickly	exit	from	a	deeply	nested	function.	
• Use	abort()in	situations	where	an	abrupt	halt	is	needed.		If	abort()is	necessary,	the	design	should	

protect	critical	data	from	being	exposed	after	an	abrupt	halt	of	the	program.	
• Become	familiar	with	the	undefined,	unspecified	and/or	implementation	aspects	of	each	of	the	

termination	strategies.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 33	
	

6.38	Type-breaking	Reinterpretation	of	Data	[AMV]	

6.38.1	Applicability	to	language	

The	primary	way	in	C	that	a	reinterpretation	of	data	is	accomplished	is	through	a	union	which	may	be	used	to	
interpret	the	same	piece	of	memory	in	multiple	ways.		If	the	use	of	the	union	members	is	not	managed	carefully,	
then	unexpected	and	erroneous	results	may	occur.	

C	allows	the	use	of	pointers	to	memory	so	that	an	integer	pointer	could	be	used	to	manipulate	character	data.		
This	could	lead	to	a	mistake	in	the	logic	that	is	used	to	interpret	the	data	leading	to	unexpected	and	erroneous	
results.	

6.38.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.38.5.	
• When	using	unions,	implement	an	explicit	discriminant	and	check	its	value	before	accessing	the	data	in	

the	union.	
	

6.39	Deep	vs.	Shallow	Copying	[YAN]	
	
6.39.1	Applicability	to	language	

[TBD]	Stephen’s	thoughts.	C	does	not	have	the	classic	OO	deep	copy	problem,	IMHO,	but	consider	cases	where	A	
references	a	struct	or	array	(which	may	contain	references	to	deeper	levels).	B	=	A	would	simply	copy	the	pointer	
(correct?)	so	the	same	issue	can	be	there.	

[DMK]	Not	really.		An	array	cannot	be	assigned	to	another	array.		Given	an	array	object	A	and	an	array	object	B	of	
the	same	type,	B	=	A	is	a	syntax	error.		Given	array	A	and	pointer	P	that	points	to	objects	of	the	type	of	A’s	
elements,	P	=	A	copies	a	pointer	to	A,	but	the	programmer	already	knows	that	because	P	was	declared	as	a	
pointer.		The	problem	in	this	section	does	not	apply	to	arrays	by	themselves.	

Given	a	struct	object	A	and	a	struct	object	B	of	the	same	type,	B	=	A	copies	the	contents,	not	a	pointer,	so	one	level	
of	deep	copying	is	already	done	and	is	not	a	problem.		If	A	contains	a	member	that	is	a	pointer,	or	a	member	that	
is	an	array,	struct,	or	union	that	contains	pointers,	then	there	is	a	deep	copy	problem.	

6.39.2	Guidance	to	language	users	

[TBD]	

	
6.40	Memory	Leak	[XYL]	

6.40.1	Applicability	to	language	

C	can	allow	memory	leaks	as	many	programs	use	dynamically	allocated	memory.		C	relies	on	manual	memory	
management	rather	than	a	built	in	garbage	collector	primarily	since	automated	memory	management	can	be	

WG	23/N0643	 	 	

34	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

unpredictable,	impact	performance	and	is	limited	in	its	ability	to	detect	unused	memory	such	as	memory	that	is	
still	referenced	by	a	pointer,	but	is	never	used.	

• Memory	is	dynamically	allocated	in	C	using	the	library	calls	malloc(),	calloc(),	and	realloc().			
When	the	program	no	longer	needs	the	dynamically	allocated	memory,	it	can	be	released	using	the	
library	call	free().		Should	there	be	a	flaw	in	the	logic	of	the	program,	memory	continues	to	be	allocated	
but	is	not	freed	when	it	is	no	longer	needed.		A	common	situation	is	where	memory	is	allocated	while	in	a	
function,	the	memory	is	not	freed	before	the	exit	from	the	function	and	the	lifetime	of	the	pointer	to	the	
memory	has	ended	upon	exit	from	the	function.	

	

6.40.2	Guidance	to	language	users	
	

• Use	debugging	tools	such	as	leak	detectors	to	help	identify	unreachable	memory.	
• Allocate	and	free	memory	in	the	same	module	and	at	the	same	level	of	abstraction	to	make	it	easier	to	

determine	when	and	if	an	allocated	block	of	memory	has	been	freed.	
• Use	realloc()	only	to	resize	dynamically	allocated	arrays.	
• Use	garbage	collectors	that	are	available	to	replace	the	usual	C	library	calls	for	dynamic	memory	

allocation	which	allocate	memory	to	allow	memory	to	be	recycled	when	it	is	no	longer	reachable.		The	use	
of	garbage	collectors	may	not	be	acceptable	for	some	applications	as	the	delay	introduced	when	the	
allocator	reclaims	memory	may	be	noticeable	or	even	objectionable	leading	to	performance	degradation.	
	

6.41	Templates	and	Generics	[SYM]	
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	these	mechanisms.	
	

6.42	Inheritance	[RIP]	
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	this	mechanism.	
	

6.43	Violations	of	the	Liskov	Substitution	Principle	or	the	Contract	Model		[BLP]		
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	polymorphism.	
	

6.44	Redispatching	[PPH]	
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	this	mechanism.	
	

6.45	Polymorphic	variables	[BKK]	
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	this	mechanism.	
	

	

©	ISO/IEC	2015	–	All	rights	reserved	 35	
	

	
6.46	Extra	Intrinsics	[LRM]	
	
This	vulnerability	does	not	apply	to	C,	because	C	does	not	implement	these	mechanisms.	
	
6.47	Argument	Passing	to	Library	Functions	[TRJ]	

6.47.1	Applicability	to	language	

Parameter	passing	in	C	is	either	pass	by	reference	or	pass	by	value.		There	isn’t	a	guarantee	that	the	values	being	
passed	will	be	verified	by	either	the	calling	or	receiving	functions.		So	values	outside	of	the	assumed	range	may	be	
received	by	a	function	resulting	in	a	potential	vulnerability.	

A	parameter	may	be	received	by	a	function	that	was	assumed	to	be	within	a	particular	range	and	then	an	
operation	or	series	of	operations	is	performed	using	the	value	of	the	parameter	resulting	in	unanticipated	results	
and	even	a	potential	vulnerability.	

6.47.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.47.5.	
• Do	not	make	assumptions	about	the	values	of	parameters.	
• Do	not	assume	that	the	calling	or	receiving	function	will	be	range	checking	a	parameter.		Therefore,	

establish	a	strategy	for	each	interface	to	check	parameters	in	either	the	calling	or	receiving	routines.	
	
6.48	Inter-language	Calling	[DJS]	

6.48.1	Applicability	to	language	

The	C	Standard	defines	the	calling	conventions,	data	layout,	error	handing	and	return	conventions	needed	to	use	
C	from	another	language.		Ada	has	developed	a	standard	for	interfacing	with	C.	Fortran	has	included	a	Clause	15	
that	explains	how	to	call	C	functions.	Calls	from	C	into	other	languages	become	the	responsibility	of	the	
programmer.	

6.48.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.48.5.	
• Minimize	the	use	of	those	issues	known	to	be	error-prone	when	interfacing	from	C,	such	as		

1. passing	character	strings,		
2. dimension,	bounds	and	layout	issues	of	arrays,		
3. interfacing	with	other	parameter	formats	such	as	call	by	reference	or	name,		
4. receiving	return	codes,	and		
5. bit	representation.	

	

WG	23/N0643	 	 	

36	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.49	Dynamically-linked	Code	and	Self-modifying	Code	[NYY]	

6.49.1	Applicability	to	language	

Most	loaders	allow	dynamically	linked	libraries	also	known	as	shared	libraries.		Code	is	designed	and	tested	using	
a	suite	of	shared	libraries	which	are	loaded	at	execution	time.		The	process	of	linking	and	loading	is	outside	the	
scope	of	the	C	standard.	

C	can	allow	self-modifying	code.		In	C	there	isn’t	a	distinction	between	data	space	and	code	space,	executable	
commands	can	be	altered	as	desired	during	the	execution	of	the	program.		Although	self-modifying	code	may	be	
easy	to	do	in	C,	it	can	be	difficult	to	understand,	test	and	fix	leading	to	potential	vulnerabilities	in	the	code.	

Self-modifying	code	can	be	done	intentionally	in	C	to	obfuscate	the	effect	of	a	program	or	in	some	special	
situations	to	increase	performance.		Because	of	the	ease	with	which	executable	code	can	be	modified	in	C,	
accidental	(or	maliciously	intentional)	modification	of	C	code	can	occur	if	pointers	are	misdirected	to	modify	code	
space	instead	of	data	space	or	code	is	executed	in	data	space.		Accidental	modification	usually	leads	to	a	program	
crash.		Intentional	modification	can	also	lead	to	a	program	crash,	but	used	in	conjunction	with	other	
vulnerabilities	can	lead	to	more	serious	problems	that	affect	the	entire	host.	

6.49.2	Guidance	to	language	users	

• Do	not	use	self-modifying	code	except	in	rare	instances.		In	those	rare	instances,	self-modifying	code	in	C	
can	and	should	be	constrained	to	a	particular	section	of	the	code	and	well	commented.	In	those	
extremely	rare	instances	where	its	use	is	justified,	limit	the	amount	of	self-modifying	code	and	heavily	
document	it.	

• Verify	that	the	dynamically	linked	or	shared	code	being	used	is	the	same	as	that	which	was	tested.		
• Retest	when	it	is	possible	that	the	dynamically	linked	or	shared	code	has	changed	before	using	the	

application.	
	

6.50	Library	Signature	[NSQ]	

6.50.1	Applicability	to	language	
Integrating	C	and	another	language	into	a	single	executable	relies	on	knowledge	of	how	to	interface	the	function	
calls,	argument	lists	and	data	structures	so	that	symbols	match	in	the	object	code	during	linking.		Byte	alignments	
can	be	a	source	of	data	corruption.	

For	instance,	when	calling	Fortran	from	C,	several	issues	arise.		Neither	C	nor	Fortran	check	for	mismatch	
argument	types	or	even	the	number	of	arguments.		C	passes	arguments	by	value	and	Fortran	passes	arguments	
by	reference,	so	addresses	must	be	passed	to	Fortran	rather	than	values	in	the	argument	list.		Multidimensional	
arrays	in	C	are	stored	in	row	major	order,	whereas	Fortran	stores	them	in	column	major	order.		Strings	in	C	are	
terminated	by	a	null	character,	whereas	Fortran	uses	the	declared	length	of	a	string.		These	are	just	some	of	the	
issues	that	arise	when	calling	Fortran	programs	from	C.		Each	language	has	its	differences	with	C,	so	different	
issues	arise	with	each	interface.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 37	
	

Writing	a	library	wrapper	is	the	traditional	way	of	interfacing	with	code	from	another	language.		However,	this	
can	be	quite	tedious	and	error-prone.	

6.50.2	Guidance	to	language	users	

• Use	signatures	to	verify	that	the	shared	libraries	used	are	identical	to	the	libraries	with	which	the	code	
was	tested.	

• Use	a	tool,	if	possible,	to	automatically	create	the	interface	wrappers.	

	
6.51	Unanticipated	Exceptions	from	Library	Routines	[HJW]	

Since	C	does	not	have	exceptions	nor	does	it	handle	exceptions	passed	from	other	language	systems,	this	
vulnerability	does	not	apply.	See	6.36	for	a	discussion	of	Ignored	errors.	See	TR	24772-1	clause	6.47	in	the	case	
where	libraries	written	in	languages	that	use	exceptions	may	be	called.	

6.52	Pre-processor	Directives	[NMP]	

6.52.1	Applicability	to	language	
	
The	C	pre-processor	allows	the	use	of	macros	that	are	text-replaced	before	compilation.			
Function-like	macros	look	similar	to	functions	but	have	different	semantics.		Because	the	arguments	are	text-
replaced,	expressions	passed	to	a	function-like	macro	may	be	evaluated	multiple	times.		This	can	result	in	
unintended	and	undefined	behaviour	if	the	arguments	have	side	effects	or	are	pre-processor	directives	as	
described	by	C	§6.10	[1].		Additionally,	the	arguments	and	body	of	function-like	macros	should	be	fully	
parenthesized	to	avoid	unintended	and	undefined	behaviour	[2].	
	
The	following	code	example	demonstrates	undefined	behaviour	when	a	function-like	macro	is	called	with	
arguments	that	have	side-effects	(in	this	case,	the	increment	operator)	[2]:	

#define CUBE(X) ((X) * (X) * (X))
/* ... */
int i = 2;
int a = 81 / CUBE(++i);

The	above	example	could	expand	to:	
 int a = 81 / ((++i) * (++i) * (++i));

this	is	undefined	behaviour	so	this	macro	expansion	is	difficult	to	predict.	
	
Another	mechanism	of	failure	can	occur	when	the	arguments	within	the	body	of	a	function-like	macro	are	not	
fully	parenthesized.		The	following	example	shows	the	CUBE	macro	without	parenthesized	arguments	[2]:	

#define CUBE(X) (X * X * X)
/* ... */
int a = CUBE(2 + 1);

This	example	expands	to:	
 int a = (2 + 1 * 2 + 1 * 2 + 1)

WG	23/N0643	 	 	

38	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

	
which	evaluates	to	7	instead	of	the	intended	27.	

6.52.2	Guidance	to	language	users	
This	vulnerability	can	be	avoided	or	mitigated	in	C	in	the	following	ways:	

• Replace	macro-like	functions	with	inline	functions	where	possible.		Although	making	a	function	inline	only	
suggests	to	the	compiler	that	the	calls	to	the	function	be	as	fast	as	possible,	the	extent	to	which	this	is	
done	is	implementation-defined.		Inline	functions	do	offer	consistent	semantics	and	allow	for	better	
analysis	by	static	analysis	tools.	

• Ensure	that	if	a	function-like	macro	must	be	used,	that	its	arguments	and	body	are	parenthesized.	
• Do	not	embed	pre-processor	directives	or	side-effects	such	as	an	assignment,	increment/decrement,	

volatile	access,	or	function	call	in	a	function-like	macro.	

	
6.53	Suppression	of	Language-defined	Run-time	Checking	[MXB]	

Does	not	apply	to	C	since	there	are	no	language-defined	runtime	checks.	
	
6.54	Provision	of	Inherently	Unsafe	Operations	[SKL]	

6.54.1	Applicability	to	language	
	
C	was	designed	for	implementing	system	software	where	some	unsafe	operations	are	inherent	and	common.	
	
6.54.2		Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.54.5.	
	

	
6.55	Obscure	Language	Features	[BRS]	

6.55.1	Applicability	of	language		

C	is	a	relatively	small	language	with	a	limited	syntax	set	lacking	many	of	the	complex	features	of	some	other	
languages.		Many	of	the	complex	features	in	C	are	not	implemented	as	part	of	the	language	syntax,	but	rather	
implemented	as	library	routines.		As	such,	most	of	the	available	features	in	C	are	used	relatively	frequently.	

Common	use	across	a	variety	of	languages	may	make	some	features	less	obscure.		Because	of	the	unstructured	
code	that	is	frequently	the	result	of	using	goto’s,	the	goto	statement	is	frequently	restricted,	or	even	outright	
banned,	in	some	C	development	environments.		Even	though	the	goto	is	encountered	infrequently	and	the	use	of	
it	considered	obscure,	because	it	is	fairly	obvious	as	to	its	purpose	and	since	its	use	is	common	to	many	other	
languages,	the	functionality	of	it	is	easily	understood	by	even	the	most	junior	of	programmers.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 39	
	

The	use	of	a	combination	of	features	adds	yet	another	dimension.		Particular	combinations	of	features	in	C	may	
be	used	rarely	together	or	fraught	with	issues	if	not	used	correctly	in	combination.		This	can	cause	unexpected	
results	and	potential	vulnerabilities.			

6.55.2	Guidance	to	language	users	

• Consider	the	guidelines	in	TR	24772-1	clause	6.55.5.	
• (Organizations)	Specify	coding	standards	that	restrict	or	ban	the	use	of	features	or	combinations	of	

features	that	have	been	observed	to	lead	to	vulnerabilities	in	the	operational	environment	for	which	the	
software	is	intended.	

6.56	Unspecified	Behaviour	[BQF]	

6.56.1	Applicability	of	language		
	The	C	standard	has	documented,	in	Annex	J.1,	54	instances	of	unspecified	behaviour.		Examples	of	unspecified	
behaviour	are:	

• The	order	in	which	the	operands	of	an	assignment	operator	are	evaluated	
• The	order	in	which	any	side	effects	occur	among	the	initialization	list	expressions	in	an	initializer	
• The	layout	of	storage	for	function	parameters	

	
Reliance	on	a	particular	behaviour	that	is	unspecified	leads	to	portability	problems	because	the	expected	
behaviour	may	be	different	for	any	given	instance.		Many	cases	of	unspecified	behaviour	have	to	do	with	the	
order	of	evaluation	of	subexpressions	and	side	effects.		For	example,	in	the	function	call	
 f1(f2(x), f3(x));

	the	functions	f2	and	f3	may	be	called	in	any	order	possibly	yielding	different	results	depending	on	the	order	in	
which	the	functions	are	called.	
	

6.56.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.56.5.	
• Do	not	rely	on	unspecified	behaviour	because	the	behaviour	can	change	at	each	instance.		Thus,	any	code	

that	makes	assumptions	about	the	behaviour	of	something	that	is	unspecified	should	be	replaced	to	make	
it	less	reliant	on	a	particular	installation	and	more	portable.	

6.57	Undefined	Behaviour	[EWF]	

6.57.1	Applicability	to	language	
The	C	standard	does	not	impose	any	requirements	on	undefined	behaviour.		Typical	undefined	behaviours	include	
doing	nothing,	producing	unexpected	results,	and	terminating	the	program.	
	
The	C	standard	has	documented,	in	Annex	J.2,	191	instances	of	undefined	behaviour	that	exist	in	C.		One	example	
of	undefined	behaviour	occurs	when	the	value	of	the	second	operand	of	the	/	or	%	operator	is	zero.		This	is	
generally	not	detectable	through	static	analysis	of	the	code,	but	could	easily	be	prevented	by	a	check	for	a	zero	

WG	23/N0643	 	 	

40	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

divisor	before	the	operation	is	performed.		Leaving	this	behaviour	as	undefined	lessens	the	burden	on	the	
implementation	of	the	division	and	modulo	operators.	
	
Other	examples	of	undefined	behaviour	are:	

• Referring	to	an	object	outside	of	its	lifetime	
• The	conversion	to	or	from	an	integer	type	that	produces	a	value	outside	of	the	range	that	can	be	

represented	
• The	use	of	two	identifiers	that	differ	only	in	non-significant	characters	

	
Relying	on	undefined	behaviour	makes	a	program	unstable	and	non-portable.		While	some	cases	of	undefined	
behaviour	may	be	consistent	across	multiple	implementations,	it	is	still	dangerous	to	rely	on	them.		Relying	on	
undefined	behaviour	can	result	in	errors	that	are	difficult	to	locate	and	only	present	themselves	under	special	
circumstances.		For	example,	accessing	memory	deallocated	by	free()	or	realloc()	results	in	undefined	behaviour,	
but	it	may	work	most	of	the	time.	
	

6.57.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.57.5.	

6.58	Implementation–defined	Behaviour	[FAB]	

6.58.1	Applicability	to	language	
	
The	C	standard	has	documented,	in	Annex	J.3,	112	instances	of	implementation-defined	behaviour.		Examples	of	
implementation-defined	behaviour	are:	

• The	number	of	bits	in	a	byte	
• The	direction	of	rounding	when	a	floating-point	number	is	converted	to	a	narrower	floating-point	number	
• The	rules	for	composing	valid	file	names	

	
Relying	on	implementation-defined	behaviour	can	make	a	program	less	portable	across	implementations.		
However,	this	is	less	true	than	for	unspecified	and	undefined	behaviour.	
	
The	following	code	shows	an	example	of	reliance	upon	implementation-defined	behaviour:	

unsigned int x = 50;
x += (x << 2) + 1; // x = 5x + 1

Since	the	bitwise	representation	of	integers	is	implementation-defined,	the	computation	on	x	will	be	incorrect	for	
implementations	where	integers	are	not	represented	in	two’s	complement	form.	
	
6.58.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.58.5.	
• Eliminate	to	the	extent	possible	any	reliance	on	implementation-defined	behaviour	from	programs	in	

order	to	increase	portability.		Even	programs	that	are	specifically	intended	for	a	particular	

	

©	ISO/IEC	2015	–	All	rights	reserved	 41	
	

implementation	may	in	the	future	be	ported	to	another	environment	or	sections	reused	for	future	
implementations.	

6.59	Deprecated	Language	Features	[MEM]	

6.59.1	Applicability	to	language	
	
C	deprecated	one	function,	the	function	gets()	and	removed	it	from	the	standard	in	2011.	
	
C	has	deprecated	several	language	features	primarily	by	tightening	the	requirements	for	the	feature:	

• Implicit	int	declarations	are	no	longer	allowed.	
• Functions	cannot	be	implicitly	declared.		They	must	be	defined	before	use	or	have	a	prototype.	
• The	use	of	the	function	ungetc()	at	the	beginning	of	a	binary	file	is	deprecated.	
• A	return	without	expression	is	not	permitted	in	a	function	that	returns	a	value	(and	vice	versa).		

	
(NOTE)	The	deprecation	of	aliased	array	parameters	has	been	removed,	hence	array	parameters	may	be	aliased.	

6.59.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.59.5.	
• Although	backward	compatibility	is	sometimes	offered	as	an	option	for	compilers	so	one	can	avoid	

changes	to	code	to	be	compliant	with	current	language	specifications,	updating	the	legacy	software	to	the	
current	standard	is	a	better	option.	

6.60	Concurrency	–	Activation	[CGA]	

6.60.1	Applicability	to	language		

The	C	standard,	in	clause	7.26.5.1,	requires	a	conforming	implementation	to	set	specific	return	codes	to	indicate	
whether	or	not	a	thread	activation	succeeded.		Although	the	vulnerability	does	not	apply	to	the	C	language,	there	
could	exist	an	application	vulnerability	if	a	program	fails	to	check	the	return	codes	and	take	appropriate	action.	

6.60.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.60.5.	
	

6.61	Concurrency	–	Directed	termination	[CGT]	

6.61.1	Applicability	to	language		

Does	not	apply	to	C	because	C	does	not	implement	this	mechanism.	

WG	23/N0643	 	 	

42	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

6.62	Concurrent	Data	Access	[CGX]		

6.62.1	Applicability	to	language		

As	stated	in	clause	5.1.2.4	of	the	C	standard,	a	program	that	contains	a	data	race	exhibits	undefined	behaviour.		In	
addition	to	threads,	signal	handlers	also	pose	a	risk	of	concurrent	data	access.		It	is	the	responsibility	of	the	
application	to	use	atomic	variables	or	mutexes	to	ensure	that	one	thread	or	signal	handler	cannot	modify	an	
object	while	another	thread	or	signal	handler	is	attempting	to	access	the	same	object.	

6.62.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.62.5.	
• Use	atomic	variables	where	appropriate	to	avoid	data	races.	
• Use	mutexes	appropriately	to	protect	accesses	to	non-atomic	shared	objects.	

	

6.63	Concurrency	–	Premature	Termination	[CGS]	

6.63.1	Applicability	to	language	

This	vulnerability	applies	to	C	because	the	standard	does	not	provide	a	mechanism	to	determine	whether	a	
thread	has	terminated.	

6.63.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.63.5.	
• Use	low-level	operating	system	primitives	or	other	APIs	where	available	to	check	that	a	required	thread	is	

still	active.	
	

6.64	Protocol	Lock	Errors	[CGM]	

6.64.1	Applicability	to	language	

The	C	standard	does	not	provide	hidden	protocols.		Although	the	vulnerability	does	not	apply	to	the	C	language,	
there	could	exist	an	application	vulnerability	if	a	program	uses	synchronization	mechanisms	incorrectly.		For	
example:	

atomic int a;

int b;

/* . . . */

a += b; // This operation is an atomic read-modify-write of the variable ‘a’.

a = a + b; // This statement contains two accesses to ‘a’ and is not atomic.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 43	
	

6.64.2	Guidance	to	language	users	

• Follow	the	guidelines	of	TR	24772-1	clause	6.64.5.	
• Be	aware	of	the	operation	of	each	synchronization	mechanism,	such	as	the	cases	where	accesses	to	

atomic	variables	may	occur	more	than	once	in	a	statement.	
	

6.65	Uncontrolled	Format	String		[SHL]	

6.65.1	Applicability	to	language	

[TBD]	

6.65.2	Guidance	to	language	users	

[TBD]	

	
	
7.	Language	specific	vulnerabilities	for	C	

[TBD]	

	

8.	Implications	for	standardization	

Future	standardization	efforts	should	consider:	
• Moving	in	the	direction	over	time	to	being	a	more	strongly	typed	language.		Much	of	the	use	of	weak	

typing	is	simply	convenience	to	the	developer	in	not	having	to	fully	consider	the	types	and	uses	of	
variables.		Stronger	typing	forces	good	programming	discipline	and	clarity	about	variables	while	at	the	
same	time	removing	many	unexpected	run	time	errors	due	to	implicit	conversions.		This	is	not	to	say	that	
C	should	be	strictly	a	strongly	typed	language	–	some	advantages	of	C	are	due	to	the	flexibility	that	
weaker	typing	provides.		It	is	suggested	that	when	enforcement	of	strong	typing	does	not	detract	from	
the	good	flexibility	that	C	offers	(for	example,	adding	an	integer	to	a	character	to	step	through	a	sequence	
of	characters)	and	is	only	a	convenience	for	programmers	(for	example,	adding	an	integer	to	a	floating-
point	number),	then	the	standard	should	specify	the	stronger	typed	solution.	

• A	common	warning	in	Annex	I	should	be	added	for	floating-point	expressions	being	used	in	a	Boolean	test	
for	equality.	

• Modifying	or	deprecating	many	of	the	C	standard	library	functions	that	make	assumptions	about	the	
occurrence	of	a	string	termination	character.	

• Define	a	string	construct	that	does	not	rely	on	the	null	termination	character.	
• Defining	an	array	type	that	does	automatic	bounds	checking.	

WG	23/N0643	 	 	

44	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

• Deprecating	less	safe	functions	such	as	strcpy()	and	strcat()	where	a	more	secure	alternative	is	available.	
• Defining	safer	and	more	secure	replacement	functions	such	as	memncpy()	and	memncmp()	to	

complement	the	memcpy()	and	memcmp()	functions	(see	6.11.6	Implications	for	standardization)	
• Defining	an	array	type	that	does	automatic	bounds	checking.	
• Defining	functions	that	contain	an	extra	parameter	in	memcpy()	and	memmove()	for	the	maximum	

number	of	bytes	to	copy.		In	the	past,	some	have	suggested	that	the	size	of	the	destination	buffer	be	used	
as	an	additional	parameter.		Some	critics	state	that	this	solution	is	easy	to	circumvent	by	simply	repeating	
the	parameter	that	was	used	for	the	number	of	bytes	to	copy	as	the	parameter	for	the	size	of	the	
destination	buffer.		This	analysis	and	criticism	is	correct.		What	is	needed	is	a	failsafe	check	as	to	the	
maximum	number	of	bytes	to	copy.		There	are	several	reasons	for	creating	new	functions	with	an	
additional	parameter.		This	would	make	it	easier	for	static	analysis	to	eliminate	those	cases	where	the	
memory	copy	could	not	be	a	problem	(such	as	when	the	maximum	number	of	bytes	is	demonstrably	less	
than	the	capacity	of	the	receiving	buffer).		Manual	analysis	or	more	involved	static	analysis	could	then	be	
used	for	the	remaining	situations	where	the	size	of	the	destination	buffer	may	not	be	sufficient	for	the	
maximum	number	of	bytes	to	copy.		This	extra	parameter	may	also	help	in	determining	which	copies	
could	take	place	among	objects	that	overlap.		Such	copying	is	undefined	according	to	the	C	standard.		It	is	
suggested	that	safer	versions	of	functions	that	include	a	restriction	max_n	on	the	number	of	bytes	n	to	
copy	(for	example,	void	*memncpy(void	*	restrict	s1,const	void	*	restrict	s2,size_t	n),	const	size_t	max_n)	
be	added	to	the	standard	in	addition	to	retaining	the	current	corresponding	functions	(for	example,	
memcpy(void	*	restrict	s1,const	void	*	restrict	s2,size_t	n))).		The	additional	parameter	would	be	
consistent	with	the	copying	function	pairs	that	have	already	been	created	such	as	strcpy()/strncpy()	and	
strcat()/strncat().		This	would	allow	a	safer	version	of	memory	copying	functions	for	those	applications	
that	want	to	use	them	in	to	facilitate	both	safer	and	more	secure	code	and	more	efficient	and	accurate	
static	code	reviews3.	

• Restrictions	on	pointer	arithmetic	that	could	eliminate	common	pitfalls.		Pointer	arithmetic	is	error-prone	
and	the	flexibility	that	it	offers	is	useful,	but	some	of	the	flexibility	is	simply	a	shortcut	that	if	restricted	
could	lessen	the	chance	of	a	pointer	arithmetic	based	error.	

• Defining	a	standard	way	of	declaring	an	attribute	to	indicate	that	a	variable	is	intentionally	unused.	
• A	common	warning	in	Annex	I	should	be	added	for	variables	with	the	same	name	in	nested	scopes.	
• Creating	a	few	standardized	precedence	orders.		Standardizing	on	a	few	precedence	orders	will	help	to	

eliminate	the	confusing	intricacies	that	exist	between	languages.		This	would	not	affect	current	languages	
as	altering	precedence	orders	in	existing	languages	is	too	onerous.		However,	this	would	set	a	basis	for	
the	future	as	new	languages	are	created	and	adopted.		Stating	that	a	language	uses	“ISO	precedence	
order	A”	would	be	useful	rather	than	having	to	spell	out	the	entire	precedence	order	that	differs	in	a	
conceptually	minor	way	from	some	other	languages,	but	in	a	major	way	when	programmers	attempt	to	
switch	between	languages.	

• Deprecating	the	goto	statement.		The	use	of	the	goto	construct	is	often	spotlighted	as	the	antithesis	of	
good	structured	programming.		Though	its	deprecation	will	not	instantly	make	all	C	code	structured,	
deprecating	the	goto	and	leaving	in	place	the	restricted	goto	variations	(for	example,	break	and	continue)	

																																																													

3			This	has	been	addressed	by	WG	14	in	an	optionally	normative	annex	in	the	current	working	paper	

	

©	ISO/IEC	2015	–	All	rights	reserved	 45	
	

and	possibly	adding	other	restricted	goto’s	could	assist	in	encouraging	safer	and	more	secure	C	
programming	in	general.	

• Defining	a	“fallthru”	construct	that	will	explicitly	bind	multiple	switch	cases	together	and	eliminate	the	
need	for	the	break	statement.		The	default	would	be	for	a	case	to	break	instead	of	falling	through	to	the	
next	case.		Granted	this	is	a	major	shift	in	concept,	but	if	it	could	be	accomplished,	less	unintentional	
errors	would	occur.	

• Defining	an	identifier	type	for	loop	control	that	cannot	be	modified	by	anything	other	than	the	loop	
control	construct	would	be	a	relatively	minor	addition	to	C	that	could	make	C	code	safer	and	encourage	
better	structured	programming.	

• Defining	a	standardized	interface	package	for	interfacing	C	with	many	of	the	top	programming	languages	
and	a	reciprocal	package	should	be	developed	of	the	other	top	languages	to	interface	with	C.	

• Joining	with	other	languages	in	developing	a	standardized	set	of	mechanisms	for	detecting	and	treating	
error	conditions	so	that	all	languages	to	the	extent	possible	could	use	them.		Note	that	this	does	not	
mean	that	all	languages	should	use	the	same	mechanisms	as	there	should	be	a	variety	(label	parameters,	
auxiliary	status	variables),	but	each	of	the	mechanisms	should	be	standardized.	

• Since	fault	handling	and	exiting	of	a	program	is	common	to	all	languages,	it	is	suggested	that	common	
terminology	such	as	the	meaning	of	fail	safe,	fail	hard,	fail	soft,	and	so	on	along	with	a	core	API	set	such	as	
exit,	abort,	and	so	on	be	standardized	and	coordinated	with	other	languages.	

• Deprecating	unions.		The	primary	reason	for	the	use	of	unions	to	save	memory	has	been	diminished	
considerably	as	memory	has	become	cheaper	and	more	available.		Unions	are	not	statically	type	safe	and	
are	historically	known	to	be	a	common	source	of	errors,	leading	to	many	C	programming	guidelines	
specifically	prohibiting	the	use	of	unions.	

• Creating	a	recognizable	naming	standard	for	routines	such	that	one	version	of	a	library	does	parameter	
checking	to	the	extent	possible	and	another	version	does	no	parameter	checking.		The	first	version	would	
be	considered	safer	and	more	secure	and	the	second	could	be	used	in	certain	situations	where	
performance	is	critical	and	the	checking	is	assumed	to	be	done	in	the	calling	routine.		A	naming	standard	
could	be	made	such	that	the	library	that	does	parameter	checking	could	be	named	as	usual,	say	
“library_xyz”	and	an	equivalent	version	that	does	not	do	checking	could	have	a	“_p”	appended,	such	as	
“library_xyz_p”.		Without	a	naming	standard	such	as	this,	a	considerable	number	of	wasted	cycles	will	be	
conducted	doing	a	double	check	of	parameters	or	even	worse,	no	checking	will	be	done	in	both	the	calling	
and	receiving	routines	as	each	is	assuming	the	other	is	doing	the	checking.		

• Creating	an	Annex	that	lists	deprecated	features.	
	

	 	

WG	23/N0643	 	 	

46	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

	

Bibliography	

[1]	 ISO/IEC	Directives,	Part	2,	Rules	for	the	structure	and	drafting	of	International	Standards,	2004	

[2]	 ISO/IEC	TR	10000-1,	Information	technology	—	Framework	and	taxonomy	of	International	Standardized	
Profiles	—	Part	1:	General	principles	and	documentation	framework	

[3]	 ISO	10241	(all	parts),	International	terminology	standards	

[4]	 ISO/IEC	9899:2011,	Information	technology	—	Programming	languages	—	C	

[5]	 ISO/IEC	9899:2011/Cor.1:2012,	Technical	Corrigendum	1	

[6]	 ISO/IEC	30170:2012,	Information	technology	—	Programming	languages	—	Ruby	

[7]	 ISO/IEC/IEEE	60559:2011,	Information	technology	–	Microprocessor	Systems	–	Floating-Point	arithmetic	

[8]	 ISO/IEC	1539-1:2010,	Information	technology	—	Programming	languages	—	Fortran	—	Part	1:	Base	
language	

[9]	 ISO/IEC	8652:1995,	Information	technology	—	Programming	languages	—	Ada	

[10]	 ISO/IEC	14882:2011,	Information	technology	—	Programming	languages	—	C++	

[11]	 R.	Seacord,	The	CERT	C	Secure	Coding	Standard.	Boston,MA:	Addison-Westley,	2008.	

[12]	 Motor	Industry	Software	Reliability	Association.	Guidelines	for	the	Use	of	the	C	Language	in	Vehicle	Based	
Software,	2012	(third	edition)16F

4.	

[13]	 ISO/IEC	TR24731–1,	Information	technology	—	Programming	languages,	their	environments	and	system	
software	interfaces	—	Extensions	to	the	C	library	—	Part	1:	Bounds-checking	interfaces	

[14]	 ISO/IEC	TR	15942:2000,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
	 Ada	programming	language	in	high	integrity	systems	

[15]	 Joint	Strike	Fighter	Air	Vehicle:	C++	Coding	Standards	for	the	System	Development	and	Demonstration	
Program.	Lockheed	Martin	Corporation.	December	2005.	

[16]	 Motor	Industry	Software	Reliability	Association.	Guidelines	for	the	Use	of	the	C++	Language	in	critical	
systems,	June	2008	

[17]	 ISO/IEC	TR	24718:	2005,	Information	technology	—	Programming	languages	—	Guide	for	the	use	of	the	
Ada	Ravenscar	Profile	in	high	integrity	systems	

[18]	 L.	Hatton,	Safer	C:	developing	software	for	high-integrity	and	safety-critical	systems.	McGraw-Hill	1995	

																																																													

4	The	first	edition	should	not	be	used	or	quoted	in	this	work.	

	

©	ISO/IEC	2015	–	All	rights	reserved	 47	
	

[19]	 ISO/IEC	15291:1999,	Information	technology	—	Programming	languages	—	Ada	Semantic	Interface	
Specification	(ASIS)	

[20]	 Software	Considerations	in	Airborne	Systems	and	Equipment	Certification.	Issued	in	the	USA	by	the	
Requirements	and	Technical	Concepts	for	Aviation	(document	RTCA	SC167/DO-178B)	and	in	Europe	by	the	
European	Organization	for	Civil	Aviation	Electronics	(EUROCAE	document	ED-12B).December	1992.	

[21]	 IEC	61508:	Parts	1-7,	Functional	safety:	safety-related	systems.	1998.	(Part	3	is	concerned	with	software).	

[22]	 ISO/IEC	15408:	1999	Information	technology.	Security	techniques.	Evaluation	criteria	for	IT	security.	

[23]	 J	Barnes,	High	Integrity	Software	-	the	SPARK	Approach	to	Safety	and	Security.	Addison-Wesley.	2002.	

[25]	 Steve	Christy,	Vulnerability	Type	Distributions	in	CVE,	V1.0,	2006/10/04	

[26]	 ARIANE	5:	Flight	501	Failure,	Report	by	the	Inquiry	Board,	July	19,	1996	
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf		

[27]	 Hogaboom,	Richard,	A	Generic	API	Bit	Manipulation	in	C,	Embedded	Systems	Programming,	Vol	12,	No	7,	
July	1999	http://www.embedded.com/1999/9907/9907feat2.htm	

[28]	 Carlo	Ghezzi	and	Mehdi	Jazayeri,	Programming	Language	Concepts,	3rd	edition,	ISBN-0-471-10426-4,	John	
Wiley	&	Sons,	1998	

[29]	 Lions,	J.	L.	ARIANE	5	Flight	501	Failure	Report.	Paris,	France:	European	Space	Agency	(ESA)	&	National	
Center	for	Space	Study	(CNES)	Inquiry	Board,	July	1996.	

[30]	 Seacord,	R.	Secure	Coding	in	C	and	C++.	Boston,	MA:	Addison-Wesley,	2005.	See	
http://www.cert.org/books/secure-coding	for	news	and	errata.		

[31]	 John	David	N.	Dionisio.	Type	Checking.		http://myweb.lmu.edu/dondi/share/pl/type-checking-v02.pdf	

[32]	 MISRA	Limited.	"MISRA	C:	2012	Guidelines	for	the	Use	of	the	C	Language	in	Critical	Systems."	
Warwickshire,	UK:	MIRA	Limited,	March	2013	(ISBN	978-1-906400-10-1	and	978-1-906400-11-8).	

[33]	 The	Common	Weakness	Enumeration	(CWE)	Initiative,	MITRE	Corporation,	(http://cwe.mitre.org/)	

[34]	 Goldberg,	David,	What	Every	Computer	Scientist	Should	Know	About	Floating-Point	Arithmetic,	ACM	
Computing	Surveys,	vol	23,	issue	1	(March	1991),	ISSN	0360-0300,	pp	5-48.	

[35]	 IEEE	Standards	Committee	754.	IEEE	Standard	for	Binary	Floating-Point	Arithmetic,	ANSI/IEEE	Standard	
754-2008.	Institute	of	Electrical	and	Electronics	Engineers,	New	York,	2008.	

[36]	 Robert	W.	Sebesta,	Concepts	of	Programming	Languages,	8th	edition,	ISBN-13:	978-0-321-49362-0,	ISBN-
10:	0-321-49362-1,	Pearson	Education,	Boston,	MA,	2008	

[37]	 Bo	Einarsson,	ed.	Accuracy	and	Reliability	in	Scientific	Computing,	SIAM,	July	2005	
http://www.nsc.liu.se/wg25/book	

WG	23/N0643	 	 	

48	 ©	ISO/IEC	2015	–	All	rights	reserved	
	

[38]	 GAO	Report,	Patriot	Missile	Defense:	Software	Problem	Led	to	System	Failure	at	Dhahran,	Saudi	Arabia,	B-
247094,	Feb.	4,	1992,	http://archive.gao.gov/t2pbat6/145960.pdf	

[39]	 Robert	Skeel,	Roundoff	Error	Cripples	Patriot	Missile,	SIAM	News,	Volume	25,	Number	4,	July	1992,	page	
11,	http://www.siam.org/siamnews/general/patriot.htm	

[40]	 CERT.	CERT	C++	Secure	Coding	
Standard.		https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637	(2009).		

[41]	 Holzmann,	Garard	J.,	Computer,	vol.	39,	no.	6,	pp	95-97,	Jun.,	2006,	The	Power	of	10:	Rules	for	Developing	
Safety-Critical	Code	

[42]	 P.	V.	Bhansali,	A	systematic	approach	to	identifying	a	safe	subset	for	safety-critical	software,	ACM	SIGSOFT	
Software	Engineering	Notes,	v.28	n.4,	July	2003	

[43]	 Ada	95	Quality	and	Style	Guide,	SPC-91061-CMC,	version	02.01.01.	Herndon,	Virginia:	Software	
Productivity	Consortium,	1992.		Available	from:	http://www.adaic.org/docs/95style/95style.pdf	

[44]	 Ghassan,	A.,	&	Alkadi,	I.	(2003).	Application	of	a	Revised	DIT	Metric	to	Redesign	an	OO	Design.	Journal	of	
Object	Technology	,	127-134.	

[45]	 Subramanian,	S.,	Tsai,	W.-T.,	&	Rayadurgam,	S.	(1998).	Design	Constraint	Violation	Detection	in	Safety-
Critical	Systems.	The	3rd	IEEE	International	Symposium	on	High-Assurance	Systems	Engineering	,	109	-	
116.	

[46]	 Lundqvist,	K	and	Asplund,	L.,	“A	Formal	Model	of	a	Run-Time	Kernel	for	Ravenscar”,	The	6th	International	
Conference	on	Real-Time	Computing	Systems	and	Applications	–	RTCSA	1999	

[47]	 ISO/IEC	TS	17961,	Information	technology	–	Programming	languages,	their	environments	and	system	
software	interfaces	–	C	secure	coding	rules	

[48]	 GNU	Project.		GCC	Bugs	“Non-bugs”		http://gcc.gnu.org/bugs.html#nonbugs_c		(2009).	
	

	 	

	

©	ISO/IEC	2015	–	All	rights	reserved	 49	
	

	

	

Index	

	

		
LHS	(left-hand	side),	22
	

