
Action item 38-08:

Part 1 6.29 TEX, Other issues around loop control variables are missing.

See N0564 for JSF AV 198. & 199

Background

The requirements in 6.29 (for part 1) are:

 Do not modifying a loop control variable in the body of its associated loop body.

 Using a static analysis tool that identifies the modification of a loop control variable.

 Some languages, such as C and C++ do not explicitly specify which of the variables appearing

in a loop header is the control variable for the loop. MISRA C [12] and MISRA C++ [16] have

proposed algorithms for deducing which, if any, of these variables is the loop control …

In part 3, 6.29’s guidance is:

 Apply the guidance of TR 24772-1 clause 6.29.5.

 Do not modify a loop control variable within a loop. Even though the capability exists in C, it

is still considered to be a poor programming practice.

In the JSF C++ rules:

198. The initialization expression in a for loop will perform no actions other than to initialize the

value of a single for loop parameter. Note that the initialization expression may invoke an

accessor that returns an initial element in a sequence

199. The increment expression in a for loop will perform no action other than to change a single

loop parameter to the next value for the loop

For MISRA C, the requirements for a for loop are:

 The loop counter shall not be of floating type

 The controlling expression shall not be invariant (applies to all loops)

 The for loop shall be well formed:

o First expression

 Shall be empty or

 Assign a value to the loop counter or

 Define and initialise the loop counter

o Second expression

 Shall be an expression with no persistent side effects and

 Shall use the loop counter and (optionally) any loop control flags (these

terms are defined) and

 Shall not use any objects modified in the loop body, unless their essentially

type is Boolean (these are the loop control flags)

o Third expression

 Shall be an expression whose only persistent side effect is to modify the

loop counter and

 Shall not use any object modified in the loop body

MISRA C++ adds:

 The third expression shall only modify the loop counter with one of: ++ -- += n or -= n

where n is an integer value that is not modified in the body of the loop

 The second expression shall only use the loop counter in a relational expression, and if the

loop counter is modified with += or -= this relationship shall not be equality or inequality

(== or !=)

Proposal

It’s not clear that the JSF rules apply to any other language than C and C++, as ‘initialization expression’ and
‘increment expression’ are essentially part of the C syntax. How would it apply to an Ada for loop for example?
 for i in Integer range 1 .. 10 loop

As such, I propose that no modification to part 1 of the document is needed.

For C/C++, the JSF rules are a subset of the MISRA rules, and clearly the MISRA rules are more detailed than
the guidelines currently in part 3. I suggest that expanding the guidance in part 3: 6.29 is considered as part of
the review of the current draft.

https://en.wikibooks.org/wiki/Ada_Programming/Keywords/for
https://en.wikibooks.org/wiki/Ada_Programming/Keywords/in
https://en.wikibooks.org/wiki/Ada_Programming/Keywords/range
https://en.wikibooks.org/wiki/Ada_Programming/Keywords/loop

