
Document:	 WG	 23/N0439	

1	

	

Fundamental Vulnerabilities
Larry Wagoner

February 23, 2013

Many so-called vulnerabilities or weaknesses in software are not vulnerabilities, per se, but symptoms or
attack methods that exploit weaknesses. For instance, consider a buffer overflow. To exploit a buffer
overflow, an attacker provides input specially crafted to exceed the capacity of a buffer so that the return
address is overwritten. A “buffer overflow” is how the attacker exploits what are a series of weaknesses
or vulnerabilities in the software that allow the exploitation to occur. A buffer overflow is not the
weakness or vulnerability in the software that allows this exploit to occur.

In a paper entitled "Vulnerabilities Analysis."1, Matt Bishop describes how a buffer overflow can be
decomposed into primitive conditions that must hold for the vulnerability to exist. The primitive
conditions he identified for a buffer overflow are:

• C1. Failure to check bounds when copying data into a buffer.
• C2. Failure to prevent the user from altering the return address.
• C3. Failure to check that the input data was of the correct form (user name or network address).
• C4. Failure to check the type of the words being executed (data loaded, not instructions).

These preconditions are the weaknesses or vulnerabilities that must exist for a buffer overflow exploit to
occur.

Bishop further states that invalidating any of these conditions in the following ways would prevent an
attacker from exploiting this vulnerability:

• C1’. If the attacker cannot overflow the bounds, the control flow will continue in the text
• (instruction) space and not shift to the loaded data.
• C2’. If the return address cannot be altered, then even if the input overflows the bounds, the

control flow will resume at the correct place.
• C3’. As neither a user name nor a network address is a valid sequence of machine instructions on

most UNIX systems, this would cause a program crash and not a security breach.
• C4’. If the system cannot execute data, the return into the stack will cause a fault.

For instance, if bounds checking (C1) were to be in place when copying the data into a buffer, then even
though the input data was not of the correct form and the return address could be altered, the attack could
not be accomplished. By understanding the component factors of a buffer overflow, a thoughtful
approach can be used as to which of the factors is the best one to invalidate.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Bishop,	 Matt.	 "Vulnerabilities	 analysis."	 Proceedings	 of	 the	 Recent	 Advances	 in	 Intrusion	 Detection.	 1999,	
http://nob.cs.ucdavis.edu/bishop/papers/1999-‐raid/1999-‐vulclass.pdf	 .	 	 Additional	 work	 in	 this	 area	 is	 contained	 in	
Bishop,	 Matt,	 et	 al.	 A	 taxonomy	 of	 buffer	 overflow	 preconditions.	 Tech	 Report:	 CSE-‐2010-‐1,	 Computer	 Science,	 UC	
Davis,	 2010.	

Document:	 WG	 23/N0439	

2	

	

These four primitive conditions are not unique to buffer overflows. For instance, C3, failure to check
input data, is a primitive condition for many vulnerabilities/attack methods.

The concept of primitive conditions as the basis for vulnerabilities in software provides an understanding
of the underlying causes as to why a vulnerability/attack method exists and can be exploited.

These primitive conditions can be used to determine fundamental vulnerabilities (FVs). Fundamental
vulnerabilities are the root causes underlying the vulnerabilities/weaknesses that are in software. The
difference between a primitive precondition is simply the way that each is stated. A FV is a statement of
fact of a situation. A precondition is stated as a failure to do something.

Software languages make trade-offs to allow certain features or functionality. FVs should not be
considered as something that is wrong. FVs are simply a statement of fact that a situation exists or a
choice has been made. For instance, hardware architectures vary. There are many reasons for this and
having many different hardware architectures leads to vulnerabilities when software is run on different
architectures and the variances are not addressed. This can be stated as the FV:

• Hardware is not standardized (i.e. Size of short, int, long differ between platforms)

So even though we cannot expect that hardware architectures will be standardized to alleviate this
problem, the fact is that hardware architectures vary and this underlies some vulnerabilities, it is a FV.

Mitigating a FV may stop all instances of a particular exploitation of a vulnerability or multiple
vulnerabilities. Another FV may only stop some portion of the exploit occurrences of a single
vulnerability. There may be reasons to select the mitigation of one FV over another.

Since FVs are simply a statement of a situation, by understanding the FVs, more knowledge and structure
can be added to the choices made by language designers that balance performance, flexibility, security,
functionality, usability, and so on. Identification of these root causes would allow targeted efforts at
stopping multiple categories of vulnerabilities and expose new vulnerabilities or categories of
vulnerabilities.

Analysis to Determine Fundamental Vulnerabilities

FVs of CWE-121 Stack-based Buffer Overflow

The fundamental vulnerabilities for CWE-121, Stack-based Buffer Overflow, can be directly found by
building upon Bishop’s work. Recall that Bishop proposed four pre-conditions:

• C1. Failure to check bounds when copying data into a buffer.
• C2. Failure to prevent the user from altering the return address.
• C3. Failure to check that the input data was of the correct form (user name or network address).
• C4. Failure to check the type of the words being executed (data loaded, not instructions).

These can be restated directly as FVs:

• Array bounds check before array access does not exist or is faulty

Document:	 WG	 23/N0439	

3	

	

• Function return address is not immutable (return address can be altered by user)
• Input verification does not exist or is faulty
• Code and data are indistinguishable in memory (Code and data are segregated in memory)

FVs of CWE-369 Divide by Zero

Many named CWE vulnerabilities encompass a variety of exploitation means. For instance, CWE-369,
Divide by Zero, has several fundamental vulnerabilities underlying it, but not all apply to all instances of
a division by zero.

A division by zero can be prevented by a check of the divisor before the operation is performed. As the
operation is being performed, an exception could be generated to handle the occurrence. This leads to the
following FV:

• Divisor is not checked for zero value before division operation is performed

The value of zero for the divisor variable could occur for many reasons. One reason is that the variable
was never initialized and assumed the value of zero. This could be caused by input to the program that
forces the execution of the program along a path that skips the initialization step. Alternatively, the
divisor variable may be initialized, but input may cause the divisor variable to assume a value of zero. In
each of these cases the divisor variable will be zero, but how it assumed that value can vary greatly.
Therefore, there are many primitive conditions, but not every primitive condition applies to all instances.

The following FVs underlie some instances of division by zero:

• Initialization of variable is not performed
• Input verification does not exist or is faulty
• Program logic is faulty
• Exception is not generated in response to a fault condition
• Exception is not acted upon

Derivation	 of	 FVs	 through	 CWE	 analysis	

Determining FVs can be thought of as answering three basic questions:

• What could have been done before to prevent the issue from happening?
• What could have been done during the occurrence of the issue to stop the issue from happening?
• What could have been done after the occurrence of the issue to negate what happened?

A few CWEs will now be analyzed to demonstrate how these questions could be used to determine FVs.
Note that only a few CWEs are presented as examples as the goal is to determine the set of FVs, not to
analyze all CWEs to determine their underlying FVs.

FVs of CWE-128 Wrap-around Error

• Check that an integer computation will not overflow available space does not exist or is faulty
• Exception is not generated in response to a fault condition

Document:	 WG	 23/N0439	

4	

	

• Exception is not acted upon

FVs of CWE-311 Missing Encryption of Sensitive Data

• Sensitive data is exposed to unauthorized entity
• Cryptographic algorithm does not exist or is faulty

FVs of CWE-416 Use After Free

• Automatic management of buffers does not occur
• Exception is not generated in response to a fault condition

FVs of CWE-137 Representation errors

This is a broad category of weaknesses that are introduced when inserting or converting data from one
representation to another. As a result there are many FVs:

• Different format types exist for numbers (e.g. character ‘5’ and numerical 5)
• Dynamic typing is used
• Data is converted from one data type to another
• Data type is converted from one data size (within the same data type) to another
• Hardware is not standardized

FVs of CWE-798 Use of Hard-coded Credentials

The use of hard coded credentials is the general problem of sensitive data being available to an attacker.
In order for the credentials to be useful to the attacker, they must be either hardcoded and/or reusable. In
addition the sensitive data must be accessible by the unauthorized person. Therefore the FVs would be:

• Sensitive data is exposed to unauthorized entity (e.g. person or process)
• Sensitive data is hardcoded/reusable for use by a security function

One	 to	 One	 with	 CWE	

Several CWEs translate into a single FV:

FVs of CWE-20 Improper input validation

• Input checks do not exist or are faulty

FVs of CWE-561 Dead Code

• Code exists in a program that is not on any execution path

Document:	 WG	 23/N0439	

5	

	

List	 of	 Fundamental	 Vulnerabilities	

The previous analyses and other analyses have been used to construct an initial set of FVs that are listed
in the following table. The list is a start, it is definitely not complete. It is also not clear whether entries
such as:

• Persons writing or managing the code development did not use generally accepted software
development best practices

belong in this list of FVs. Entries such as these are fundamental issues that are the root of vulnerabilities,
but these may be straying too far from tangible issues with programming languages.

More analysis will need to be conducted to ensure that the set of FVs is as accurate and complete as
possible.

 Fundamental Vulnerability Comment/Rationale CWE reference entry
1. Application does not have a

dedicated resource pool
Resource availability would
be unpredictable leading to
resource exhaustion

2. Array bounds check before
array access does not exist or
is faulty

 129: Unchecked Array Indexing

3. Authentication check does
not exist or is faulty

 287: Improper Authentication

4. Authentication credential is
spoofed

 290: Authentication Bypass by
Spoofing

5. Automatic management of
buffers does not occur

6. Binary compilation is not
functionally equivalent to its
source

Either compiler mistake or
intentional compiler
miscompilation

14: Compiler Removal of Code to
Clear Buffers

7. Check that an integer
computation will not
overflow size of the integer
does not exist or is faulty

Computation result exceeds
size of data type

190: Integer Overflow or Wraparound

8. Code and data are
indistinguishable in memory

Code and data are not
segregated in memory

9. Code exists in a program that
is not on any execution path

 561: Dead Code

10. Cryptographic algorithm does
not exist or is faulty

 311: Missing Encryption of Sensitive
Data

11. Data is converted from one
data type to another

 681: Incorrect Conversion between
Numeric Types

12. Data type is converted from
one data size (within the same
data type) to another

e.g. converting 16 bit integer
to 8 bit integer
e.g. short, long int; single
byte, multi-byte characters

681: Incorrect Conversion between
Numeric Types

Document:	 WG	 23/N0439	

6	

	

13. Deprecated construct is used e.g. as a language evolves,
outdated construct is
available, but not removed

14. Different format types exist
for numbers

e.g. character ‘5’ and
numerical 5

15. Divisor is not checked for
zero value before division
operation is performed

Applies to both division and
modulo operators

369: Divide By Zero

16. Dynamic typing is used
17. Dynamically loaded code is

used without authentication
e.g. use of dynamically linked
resource

494: Download of Code Without
Integrity Check

18. Exception is not acted upon Fault condition exception can
be generated, but not acted
upon

CWE-248: Uncaught Exception

19. Exception is not generated in
response to a fault condition

 CWE-391: Unchecked Error
Condition

20. Function has a side effect
21. Function prototype is not

used to specify function
interface

 CWE-628: Function Call with
Incorrectly Specified Arguments

22. Function return address is not
immutable

Return address can be altered

23. Hardware is not standardized Size of short, int, long differ
between platforms

24. History and provenance is not
available for use at
authentication points

No basis for determining the
integrity of dynamically
linked or used resource

25. Incorrect use of a language
construct or function due to
ease of incorrect use

e.g. confusion of “=” and
“==”
This is definitely an issue, but
is it something that should be
included?

26. Index is calculated that is
outside of the indexable
resource

 118 Improper Access of Indexable
Resource ('Range Error')

27. Initialization of variable is
not performed

Assignment of value to
variable is not performed
before use in operation

665: Improper Initialization

28. Input verification does not
exist or is faulty

 20. Improper input validation

29. Interface between languages
is in contrast with one or both
languages

30. Limitation on the execution
of code is insufficient to
protect system

e.g. untrusted code may be
dynamically linked and
executed using admin
privileges of main program

31. Multiple exceptions without
prioritization generated from

e.g. No hierarchical order to
exceptions

Document:	 WG	 23/N0439	

7	

	

a single event
32. Multiple operations are

needed to complete common
functionality

e.g. cwe-227 calling chdir
after calling chroot –this leads
to only one part of a
necessary operation being
accomplished

33. Object passed by reference
34. Ownership of a resource

expires
e.g. memory containing
sensitive information can then
be read by some other
program

35. Persons writing or managing
the code development did not
use generally accepted
software development best
practices

This is definitely an issue, but
is it something that should be
included?

36. Persons writing or managing
the code development were
unaware of security issues

This is definitely an issue, but
is it something that should be
included?

37. Production code and debug
code are indistinguishable
from each other

 489: Leftover Debug Code

38. Program logic is faulty
39. Race condition for shared

resource exists
 362: Concurrent Execution using

Shared Resource with Improper
Synchronization ('Race Condition')

40. Relative pathname is used 23: Relative Path Traversal
41. Resource assigned a

permission allowing an
unauthorized person to access

 282: Improper Ownership
Management

42. Resource comes from an
untrusted source

 399: Resource Management Errors

43. Resource is owned 399: Resource Management Errors
44. Resource is shared without

access control
 402: Transmission of Private

Resources into a New Sphere
('Resource Leak')

45. Resource permissions are
incorrect

e.g. unauthorized users
allowed to use

732 Incorrect Permission Assignment
for Critical Resource

46. Resource remains allocated
but is never used again

 404: Improper Resource Shutdown or
Release

47. Resource transaction and
consumption are not synced

 399: Resource Management Errors

48. Resource use does not have
an imposed limit

 CWE 770: Allocation of Resources
without Limits of Trottling

49. Security check is not
performed local to the
application

e.g. security check is
performed on client for a
server application

50. Sensitive data is exposed to
unauthorized entity

(e.g. person or process) 200: Information Exposure

Document:	 WG	 23/N0439	

8	

	

51. Sensitive data is
hardcoded/reusable for use by
a security function

 798: Use of Hard-coded Credentials

52. Signature to verify integrity
of dynamically loaded code is
not available

53. Signed and unsigned data
types are converted from one
the other

 195: Signed to Unsigned Conversion
Error
196: Unsigned to Signed Conversion
Error

54. Signed integer is used where
an unsigned integer could be
used

55. Stack is used when calling a
function

e.g. pointers to local variables
can exist after the return

56. String termination sentinel
character is not immutable

There is a duality of a string
and a null terminated array

CWE-463: Deletion of Data Structure
Sentinel

57. There are multiple privilege
levels available

This allows a permission that
is not the minimum needed to
be used when performing an
operation

58. There is a difference between
the actual size of a resource
and the recorded size (due to
the need for a sentinel)

e.g. string length is calculated
incorrectly

59. There is a disconnect between
a pointer and the resource that
it represents

 416: Use After Free
465: Pointer Issues

60. There is an insufficient or
non-existent restriction on a
file access or command
execution

61. There is non-constant scaling
of pointers

 465: Pointer Issues
469: Use of Pointer Subtraction to
Determine Size
682: Incorrect Calculation

62. There is syntactic ambiguity
in the language

63. Type checking is weak or
non-existent

64. Value returned from a call
does not exist or is not as
expected

 394: Unexpected Status Code or
Return Value

