

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 1

ISO/IEC JTC 1/SC 22/WG 23 N 0320 1

Meeting #17 markup of Proposed Annex for Ruby Language 2

 3

Date 2011-03-11

Contributed by James Johnson

Original file name Ruby_Annex.docx

Notes Markup of N0308

 4

 5

 6

Annex Ruby 7

 8

Ruby. Vulnerability descriptions for the language Ruby Standards and terminology 9

 10

Ruby.1 Identification of standards and associated documents 11

 12

IPA Ruby Standardization WG Draft – August 25, 2010 13

 14

Ruby.2 General Terminology and Concepts 15

 16

block: A procedure which is passed to a method invocation. 17

 18

class: An object which defines the behaviour of a set of other objects called its instances. 19

 20

class variable: A variable whose value is shared by all the instances of a class. 21

 22

constant: A variable which is defined in a class or a module and is accessible both inside and outside the 23

class or module. The value of a constant is ordinarily expected to remain unchanged during the 24

execution of a program, but IPA Ruby Standardization Draft does not force it. 25

 26

exception: An object which represents an exceptional event. 27

 28

global variable: A variable which is accessible everywhere in a program. 29

 30

implementation-defined: Possibly differing between implementations, but defined for every 31

implementation. 32

 33

instance method: A method which can be invoked on all the instances of a class. 34

 35

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 2

instance variable: A variable that exists in a set of variable bindings which every object has. 1

 2

local variable: A variable which is accessible only in a certain scope introduced by a program construct 3

such as a method definition, a block, a class definition, a module definition, a singleton class definition, 4

or the top level of a program. 5

 6

method: A procedure which, when invoked on an object, performs a set of computations on the object. 7

 8

method visibility: An attribute of a method which determines the conditions under which a method 9

invocation is allowed. 10

 11

module: An object which provides features to be included into a class or another module. 12

 13

object: A computational entity which has states and behaviour. The behaviour of an object is a set of 14

methods which can be invoked on the object. 15

 16

singleton class: An object which can modify the behaviour of its associated object. 17

 18

singleton method: An instance method of a singleton class. 19

 20

unspecified behaviour: Possibly differing between implementations, and not necessarily defined for any 21

particular implementation. 22

 23

variable: A computational entity that refers to an object, which is called the value of the variable. 24

 25

variable binding: An association between a variable and an object which is referred to by the variable. 26

 27

 28

Ruby.3 Type System [IHN] 29

 30

Ruby.3.1 Applicability to language 31

Ruby employs a dynamic type system usually referred to as “duck typing”. In this system the class or 32

type of an object is less important than the interface, or methods, it defines. Two different classes may 33

respond to the same methods, i.e. instances of each class will handle the same method call. Usually an 34

object is not implicitly changed into another type. 35

Automatic conversion occurs for some built-in types in certain situations. For example with the addition 36

of a float and an integer, the integer will be converted automatically to a float. 37

 a = 2 38

 b = 2.0 39

 a + b #=> 4.0 40

Another instance of automatic conversion is when an integer becomes too large to fit within a machine 41

word. On a 32-bit machine Ruby Fixnums have the range -230 to 230-1. When an integer becomes such 42

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 3

that it no longer fits within said range it is converted to a Bignum. Bignums are arbitrary length 1

integers bounded only by memory limitations. 2

Explicit conversion methods exist in Ruby to convert between types. The integer class contains the 3

methods to_s and to_f which return the integer represented as a string object and float object, 4

respectively. 5

 10.to_s #=> “10” 6

 10.to_f #=> 10.0 7

Strings likewise support conversion to integer and float objects. 8

 “5”.to_i #=> 5 9

 “5”.to_f #=> 5.0 10

Duck typing grants programmers of Ruby great flexibility. Strict typing is not imposed by the language, 11

but if a programmer chooses, he or she can write programs such that methods mandate the class of the 12

objects on which they operate. This is discouraged in Ruby. If an object is called with a method it does 13

not know, an exception will be raised. 14

Ruby.3.2 Guidance to language users 15

Knowledge of the types or objects used is a must. Compatible types are ones which can be 16

intermingled and convert automatically when necessary. Incompatible types must be converted 17

to a compatible type before use. 18

Do not check for specific classes of objects unless there is good justification. 19

 20

 21

Ruby.4 Bit Representations [STR] 22

 23

Ruby.4.1 Applicability to language 24

Ruby abstracts internal storage of integers. Users do not need to concern themselves about the size (in 25

bits) of an integer. Since integers grow as needed the user does not need to worry about overflow. Ruby 26

provides a mechanism to inspect specific bits of an integer through the [] method. For example to read 27

the 10th bit of a number: 28

 number = 42 29

 number[10] #=> 0 30

 number = 1024 31

 number[10] #=> 1 32

 33

Note that the bits returned are not required to correspond to the internal representation of the 34

number, just that it returns a consistent representation of the number in that implementation. 35

Ruby supports a variety of bitwise operators. These include ~ (not), & (and), | (or), ^ (exclusive or), << 36

(shift left), and >> (shift right). Each of these operators works with integers of any size. 37

 38

Ruby offers a pack method for the Array class (Array#pack) which produces a binary sequence 39

dictated by the user supplied template. In this way members of an array can be converted to different 40

bit representations. For instance an option for numbers is to store them in one of three ways: native 41

endian, big-endian, and little endian. In this way bit sequences can be constructed for a particular 42

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 4

interaction or purpose. There is a similar unpack method which will extract data given a template and bit 1

sequence. 2

 3

Ruby.4.2 Guidance to language users 4

For values created within Ruby the user need not concern themselves with the internal 5

representation of data. In most situations using specific binary representations makes code 6

harder to read and understand. 7

Network packets that go on the wire are one case where bit representation is important. In 8

situations like this be sure to use the Array#pack to produce network endian data. 9

Binary files are another situation where bit representation matters. The file format description 10

should indicated big-endian or little endian preference. 11

 12

 13

Ruby.5 Floating-point Arithmetic [PLF] 14

 15

Ruby.5.1 Applicability to language 16

Ruby supports the use of floating-point arithmetic with the Float class. The precision of floats in Ruby is 17

implementation defined, however if the underlying system supports IEC 60559, the representation of 18

floats shall be the 64-bit double format as specified in IEC 60559, 3.2.2. 19

 20

Floating-point numbers are usually approximations of real numbers and as such some precision is lost. 21

This is problematic when performing repeated operations. For example adding small values to numbers 22

sometimes results in accumulation errors. Testing numbers for equality is sometimes unreliable as well. 23

For this reason floating-point numbers should not be used to terminate loops. 24

 25

Ruby.5.2 Guidance to language users 26

Do not use a floating-point value in Boolean test for equality. Instead use code which 27

determines if the number resides within an acceptable range. 28

 29

 30

Ruby.6 Enumerator Issues [CCB] 31

Ruby.6.1 Applicability to language 32

Ruby provides symbols for enumeration. Sometimes all which is required is to have unique ???, there is 33

no value associated with the enumeration. In Ruby, symbols are lightweight objects which need not be 34

defined ahead of time. For example, 35

 travel(:north) 36

is a valid use of the symbol :north. (Ruby’s literal syntax for symbols is a colon followed by a word.) 37

There is no danger of accidentally getting to the “value” of an enumeration. So this: 38

 travel(:north + :south) 39

is not allowed. Symbols do not support addition, or any method which alters the symbol. 40

 41

Comment [JWM1]: There is a general principle
that if a vulnerability is discussed in the body of the
document, then it should be mentioned in the
annex. This one is an example. The main body says
that using an enumerated type in a case statement
can be problematic. This annex description should
mention that and explain whether or not it is a
problem in the language.

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 5

Sometimes it is helpful to have values associated with enumerations. In Ruby this can be accomplished 1

by using a hash. For example, 2

 traffic_light = { 3

 :green => “go” 4

 :yellow => “caution” 5

 :red => “stop”} 6

 7

 traffic_light[:yellow] 8

 9

In this way values can be associated with the symbols. 10

Ruby.6.2 Guidance to language users 11

Use symbols for enumerators 12

Do not define named constants to represent enumerators 13

 14

 15

Ruby.7 Numeric Conversion Errors [FLC] 16

Ruby.7.1 Applicability to language 17

Integers in the Ruby language are of unbounded length (the actual limit is dependent on the machine’s 18

memory). When an integer exceeds the word size for the machine there is no rollover and no errors 19

occur. Instead Ruby converts the integer from one type to another. When possible, integers in Ruby are 20

stored in a Fixnum object. Fixnum is a class which has limited integer range, yet is able to store the 21

number efficiently in one machine word. Typically on a 32-bit machine the range is usually -230 to 230-1. 22

These ranges are implementation defined. 23

 24

Once calculations exceed this range, integers are stored in a Bignum object. Bignum class allows any 25

length (memory providing) integer. This all takes place without the user’s explicit instruction. 26

 27

Ruby converts integers to floating point with the user’s explicit intent. Loss of precision can occur 28

converting from a large magnitude integer to a floating point number. This does not generate an error. 29

 30

Ruby.7.2 Guidance to language users 31

Have no concern for rollover errors or the magnitude of integers 32

Enforce ranges on size dependent on the application 33

 34

 35

Ruby.8 String Termination [CJM] 36

 37

This vulnerability is not applicable to Ruby. 38

 39

 40

Ruby.9 Buffer Boundary Violation [HCB] 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 6

 1

This vulnerability is not applicable to Ruby. 2

 3

 4

Ruby.10 Unchecked Array Indexing [XYZ] 5

 6

This vulnerability is not applicable to Ruby. 7

 8

 9

Ruby.11 Unchecked Array Copying [XYW] 10

 11

This vulnerability is not applicable to Ruby. 12

 13

 14

Ruby.12 Pointer Casting and Pointer Type Changes [HFC] 15

 16

This vulnerability is not applicable to Ruby. 17

 18

 19

Ruby.13 Pointer Arithmetic [RVG] 20

 21

This vulnerability is not applicable to Ruby. 22

 23

 24

Ruby.14 Null Pointer Dereference [XYH] 25

 26

This vulnerability is not applicable to Ruby. 27

 28

 29

Ruby.15 Dangling Reference to Heap [XYK] 30

 31

This vulnerability is not applicable to Ruby. 32

 33

 34

Ruby.16 Wrap-around Error [XYY] 35

 36

This vulnerability is not applicable to Ruby. 37

 38

 39

Ruby.17 Sign Extension Error [XZI] 40

 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 7

This vulnerability is not applicable to Ruby. 1

 2

 3

Ruby.18 Choice of Clear Names [NAI] 4

 5

Ruby.18.1 Applicability to language 6

 7

Ruby is susceptible to errors resulting from similar looking names. Ruby provides scoping of local 8

variables. However, this can be confusing. Local variables cannot be accessed from another method, but 9

local variables can be accessed from a block. Ruby features variable prefixes for non-local variables. The 10

dollar sign signifies a global variable. A single “@” symbol signifies a variable scoped to the current 11

object. A double at symbol signifies a class wide variable, accessible from any instance of said class. 12

 13

Ruby.18.2 Guidance to language users 14

Use names that are clear and visually unambiguous 15

Be consistent in choosing names 16

Use names which are rich in meaning 17

Code will be reused in ways the original developers have not imagined 18

 19

 20

 21

Ruby.19 Dead Store [WXQ] 22

 23

Ruby.19.1 Applicability to language 24

 25

Ruby is susceptible to errors of accidental assignments resulting from typos of variable names. Since 26

variables do not need to declared before use such an assignment may go unnoticed. 27

 28

Ruby.19.2 Guidance to language users 29

Check that each assignment is made to the intended variable identifier 30

Use static analysis tools, as they become available, to mechanically identify dead stores in the 31

program 32

 33

 34

Ruby.20 Unused Variable [YZS] 35

 36

This vulnerability is not applicable to Ruby 37

 38

 39

Ruby.21 Identifier Name Reuse [YOW] 40

 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 8

Ruby.21.1 Applicability to language 1

 2

Ruby employs various levels of scope which allow users to name variables in different scopes with the 3

same name. This can cause confusion in situations where the user is unaware of the scoping rules, 4

especially in the use of blocks. 5

 6

Modules provide a way to group methods and variables without the need for a class. To use these 7

module and method names must be completely specified. For example: 8

 Base64::encode(text) 9

However modules can be included, thus putting the contents of the module within the current scope. 10

So: 11

 include Base64 12

 encode(text) 13

can cause clashes with names already in scope. When this occurs the current scope takes precedence, 14

but the user may not realize this resulting in unknown errors. 15

 16

Ruby.21.2 Guidance to language users 17

Ensure that a definition does not occur in a scope where a different definition is accessible. 18

Know what a module defines before including. If any definitions conflict, do not include the 19

module, instead use the fully qualified name to refer to any definitions in the module. 20

 21

 22

Ruby.22 Namespace Issues [BJL] 23

 24

Ruby.22.1 Applicability to language 25

 26

This is indeed an issue for Ruby. The interpreter will resolve names to the most recent definition as the 27

one to use, possibly redefining a variable. Scoping provides some means of protection, but there are 28

some cases where confusion arises. A method definition cannot access local variables defined outside of 29

its scope, yet a block can access these variables. For example: 30

 x = 50 31

 def power(y) 32

 puts x**y 33

 end 34

 power(2) #=> NameError: undefined local variable or method „x‟ 35

 36

But the following can access the x variable as defined: 37

 x = 50 38

 def execute_block(y) 39

 yield y 40

 end 41

 execute_block(2) {|y| x**y} #=> 2500 42

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 9

 1

 2

Ruby.22.2 Guidance to language users 3

Avoid unnecessary includes 4

Do not access variables outside of a block without justification 5

 6

 7

Ruby.23 Initialization of Variables [LAV] 8

 9

This vulnerability is not applicable to Ruby. 10

 11

 12

Ruby.24 Operator Precedence/Order of Evaluation [JCW] 13

 14

Ruby.24.1 Applicability to language 15

Ruby provides a rich set of operators containing over fifty operators and twenty levels of precedence. 16

Confusion arises especially with operators which mean something similar, but are for different purposes. 17

For example, 18

 x = flag_a or flag_b 19

The above assigns the value of flag_a to x. If flag_a evaluates to false, then the value of the entire 20

expression is flag_b. The intent of the programmer was most likely assign true to x if either flag_a 21

or flag_b are true: 22

 x = flag_a || flag_b 23

 24

 25

Ruby.32.2 Guidance to language users 26

Use parenthesis around operators which are known to cause confusion and errors 27

Break complex expressions into simpler ones, storing sub-expressions in variables as needed 28

 29

 30

Ruby.25 Side-effects and Order of Evaluation [SAM] 31

 32

Ruby.25.1 Applicability to language 33

 34

Ruby by definition strives on side-effects. Method invocations can change the state of the receiver 35

(object whose method is invoked). This occurs not just for input and output for which side-effects are 36

unavoidable, but also for routine operations such as mutating strings, modifying arrays, or defining 37

methods. Ruby has adopted a naming convention which indicates destructive methods (those which 38

modify the receiver) instead of creating a new object which is a modified copy. For example, 39

 array = [1, 2, 3] #=> [1, 2, 3] 40

 array.slice(1..2) #=> [2, 3] 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 10

 array #=> [1, 2, 3] 1

 array.slice!(1..2) #=> [2, 3] 2

 array #=> [1] 3

The method name with the exclamation signifies the object itself will be modified, whereas the other 4

method does not modify it. Sometimes though the method is understood by the user to modify the 5

object or cause side-effects. For example, 6

 array = [1, 2, 3] 7

 array.concat([4, 5, 6]) 8

 array #=> [1, 2, 3, 4, 5, 6] 9

These behaviours are documented and with little effort the user will be able recognize which methods 10

cause side-effects and what those effects are. 11

 12

The order of evaluation in Ruby is left to right. Order of evaluation and order of precedence are 13

different. Precedence allows the familiar order of operations for expressions. For example, 14

 a + b * c 15

a is evaluated, followed by b and c, then the value of b and the value of c are multiplied and added to 16

the value of a. This is a subtle point which matters only if a, b, or c cause side effects. The following 17

illustrates this: 18

def a; print “A”; 1; end 19

def b; print “B”; 2; end 20

def c; print “C”; 3; end 21

a + b * c #=> 7, and “ABC” is printed to standard output 22

 23

 24

Ruby.25.2 Guidance to language users 25

Read method documentation to be aware of side-effects 26

Do not depend on side-effects of a term in the expression itself 27

 28

 29

Ruby.26 Likely Incorrect Expression [KOA] 30

 31

Ruby.26.1 Applicability to language 32

 33

Ruby has operators which are typographically similar, yet which have different meanings. The 34

assignment operator and comparison operators are examples of these. Both are expressions and can be 35

used in conditional expressions. 36

 if a = 3 then #… 37

 if a == 3 then #… 38

The first example assigns the value 3 to the variable a. 3 evaluates to true and the conditional is 39

executed. The second checks that the variable a is equal to the value 3 and executes the conditional if 40

true. 41

 42

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 11

Another instance is the use of assignments in Boolean expressions. For instance, 1

 a = x or b = y 2

This expression assigns the value x to a. If x is false then the value of y will be assigned to b. This should 3

be avoided as the second assignment will not always occur. This could possibly be the intention of the 4

programmer, but a more clear way to write the code which accomplishes that is: 5

 a = x 6

 b = y if a 7

There is no confusion here as the second assignment clearly has an if-modifier. This is common and well 8

understood in the Ruby language. 9

 10

Ruby.26.2 Guidance to language users 11

Avoid assignments in conditions 12

Do not perform assignments within Boolean expressions 13

 14

 15

Ruby.27 Dead and Deactivated Code [XYQ] 16

 17

Ruby.27.1 Applicability to language 18

 19

Dead and deactivated, as in any programming language with code branching, can be a problem in Ruby. 20

The existence of code which can never be reached is not a problem itself. Its existence indicates the 21

possibility of a coding error. Code coverage tools can help analyze which portions of code can and 22

cannot be reached. 23

 24

In particular the developer should ensure each branch can evaluate to true or false. If a condition only 25

ever evaluates to true, then only one branch will be taken. This situation creates dead code. 26

 27

Ruby.27.2 Guidance to language users 28

Use analysis tools to identify unreachable code 29

 30

 31

Ruby.28 Switch Statements and Static Analysis [CLL] 32

 33

Ruby.28.1 Applicability to language 34

 35

Ruby provides a case statement. This construct is similar to C’s switch statement with a few important 36

differences. Cases do not “flow through” from one to the next. Only one case will be executed. An else 37

case can be provided, but is not required. If no cases match then the value of the case statement is nil. 38

 39

Ruby.28.2 Guidance to language users 40

Include an else clause, unless the intention of cases not covered is to return the value nil 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 12

Multiple expressions (separated by commas) may be served by the same when clause 1

 2

 3

Ruby.29 Demarcation of Control Flow [EOJ] 4

 5

This vulnerability is not applicable to Ruby. 6

 7

 8

Ruby.30 Loop Control Variables [TEX] 9

 10

Ruby.30.1 Applicability to language 11

 12

Ruby allows the modification of loop control variables from within the body of the loop. This is usually 13

not performed, as the exact results are not always clear. 14

 15

Ruby.30.2 Guidance to language users 16

Do not modify loop control variables inside the loop body 17

 18

 19

Ruby.31 Off-by-one Error [XZH] 20

 21

Ruby.31.1 Applicability to language 22

 23

Like any programming language which supplies equality operators and array indexing, Ruby is vulnerable 24

to off-by-one-errors. These errors occur when the developer creates an incorrect test for a number 25

range or does not index arrays starting at zero. 26

 27

Some looping constructs of the language alleviate the problem, but not all of them. For example this 28

code 29

 for i in 1..5 30

 print i 31

 end #=> 12345 32

 33

In addition to this is the usual confusion associated between <, <=, >, and >= in a test 34

 35

Also unique to Ruby is the confusion of these particular loop constructs: 36

 5.times {|x| p x} 37

and 38

 1.upto(5) {|x| p x} 39

Each loop executes the code block five times. However the values passed to the block differ. With 40

5.times the loop starts with the value 0 and the last value passed to the block is 4. However in the 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 13

case of 1.upto(5), it starts by passing 1, and ends by passing 5. 1

 2

Ruby.31.2 Guidance to language users 3

 Use careful programming practice when programming border cases 4

 Use static analysis tools to detect off-by-one errors as they become available 5

 Instead of writing a loop to iterate all the elements of a container sue the each method 6

supplied by the object’s class 7

 8

 9

 10

Ruby.32 Structured Programming [EWD] 11

 12

Ruby.32.1 Applicability to language 13

 14

Ruby makes structured programming easy for the user. Its object-oriented nature encourages at least a 15

minimum amount of structure. However, it is still possible to write unstructured code. One feature 16

which allows this is the break statement. The statement ends the execution of the current innermost 17

loop. Excessive use of this may be confusing to others as it is not standard practice. 18

Ruby.32.2 Guidance to language users 19

While there are some cases where it might be necessary to use relatively unstructured programming 20

methods, they should generally be avoided. The following ways help avoid the above named failures of 21

structured programming: 22

Instead of using multiple return statements, have a single return statement which returns a 23

variable that has been assigned the desired return value 24

In most cases a break statement can be avoided by using another looping construct. These 25

are abundant in Ruby. 26

Use classes and modules to partition functionality 27

 28

 29

 30

Ruby.33 Passing Parameters and Return Values [CSJ] 31

Ruby.33.1 Applicability to language 32

Ruby uses call by reference. Each variable is a named reference to an object. Return values in Ruby are 33

merely the object of the last expression, or a return statement. Note that Ruby allows multiple return 34

values by way of array. The following is valid: 35

return angle, velocity #=> [angle, velocity] 36

or less verbosely: 37

[angle, velocity] #as the last line of the method 38

 39

While pass by reference is a low over-head way of passing parameters, sometimes confusion can arise 40

for programmers. If an object is modified by a method, then the possibility exists that the original object 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 14

was modified. This may not the intended consequence. For example, 1

def pig_latin(word) 2

 word = word[1..-1] << word[0] if !word[/^[aeiouy]/] 3

 word << “ay” 4

end 5

 6

The above method modifies the original object if it is that string starts with a vowel. The effect is the 7

value outside the scope of the method is modified. The following revised method avoids this by calling 8

the dup method on the object word: 9

def pig_latin_revised(word) 10

 word = word[/^[aeiouy]/] ? word.dup : word[1..-1] << 11

word[0] 12

 word << “ay” 13

end 14

 15

 16

Ruby.33.3 Guidance to language users 17

Methods which modify their parameters should have the exclamation mark suffix. This is a 18

standard Ruby idiom alerting users to the behaviour of the method 19

 Make local copies of parameters inside methods if they are not intended to be modified 20

 21

 22

 23

 24

Ruby.34 Dangling References to Stack Frames [DCM] 25

 26

This vulnerability is not applicable to Ruby. 27

 28

 29

Ruby.35 Subprogram Signature Mismatch [OTR] 30

 31

Ruby.35.1 Applicability to language 32

 33

Subprogram signatures in Ruby only consist of an arity count and name. A mismatch in the number of 34

parameters will thus be caught before a call is executed. The type of each parameter is not enforced by 35

the interpreter. This is considered strength of Ruby, in that an object that responds to the same 36

methods can imitate an object of another type. If an object does not respond to a method an error will 37

be thrown. Also if the implementer chooses they can query the object to test its available methods and 38

choose how to proceed. 39

 40

Ruby.35.2 Guidance to language users 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 15

 The Ruby interpreter will provide error messages for instances of methods called with an 1

inappropriate number of arguments 2

 3

 4

 5

 6

Ruby.36 Recursion [GDL] 7

 8

Ruby.36.1 Applicability to language 9

 10

Recursion can exhaust the finite stack space within a program. When this happens in Ruby, a 11

“SystemStackError: stack level too deep” error occurs, which can be caught. 12

For methods which have the possibility of exhausting the stack, they should be implemented in an 13

imperative style instead of the more mathematical, perhaps elegant, recursive manner. 14

There is no set amount of recursion an interpreter must support. Recursive methods which run 15

successfully inside one conforming Ruby implementation may or may not successfully run inside a 16

different implementation. 17

Ruby.36.2 Guidance to language users 18

 When possible, design algorithms in an imperative manner 19

 Test recursive methods extensively in the intended interpreter for stack overflow errors 20

 21

 22

Ruby.37 Returning Error Status [NZN] 23

 24

Ruby.37.1 Applicability to language 25

 26

Ruby provides the class Exception which is used to communicate between raise methods (methods 27

which throw an exception) and rescue statements. Exception objects carry information about the 28

exception including its type, possibly a descriptive string, and optional trace back. 29

 30

Given this information the programmer can deal with exception appropriately within rescue statements. 31

In some cases this might be program termination, while in other cases an error may be par for the 32

course. 33

Ruby.37.2 Guidance to language users 34

 Extend Ruby’s exception handling for your specific application 35

 Use the language’s built-in mechanisms (rescue, retry) for dealing with errors 36

 37

 38

Ruby.38 Termination Strategy [REU] 39

 40

Ruby.38.1 Applicability to language 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 16

 1

Ruby standard does not explicitly state a termination strategy. The behaviour is unspecified. Differing 2

implementations therefore can have different strategies. 3

Ruby.38.2 Guidance to language users 4

 Consult implementation documentation concerning termination strategy 5

 Do not assume each implementation behaves handles termination in the same manner 6

 7

 8

Ruby.39 Type-breaking Reinterpretation of Data [AMV] 9

 10

This vulnerability is not applicable to Ruby. 11

 12

 13

Ruby.40 Memory Leak [XYL] 14

 15

This vulnerability is no applicable to Ruby. 16

 17

 18

Ruby.41 Templates and Generics [SYM] 19

 20

This vulnerability is not applicable to Ruby. 21

 22

 23

Ruby.42 Inheritance [RIP] 24

 25

Ruby.42.1 Applicability to language 26

Ruby allows classes to inherit from one parent class. In addition to this modules can be included in a 27

class. The class inherits the module’s instance methods, class variables, and constants. Including 28

modules can silently redefine methods or variables. Caution should be exercised when including 29

modules for this reason. At most a class will have one direct superclass. 30

Ruby.42.2 Guidance to language users 31

 Provide documentation of encapsulated data, and how each method affects that data 32

 Inherit only from trusted sources, and, whenever possible check the version of the superclass 33

during initialization 34

 Provide a method that provides versioning information for each class 35

 36

 37

Ruby.43 Extra Intrinsics [LRM] 38

 39

This vulnerability is not applicable to Ruby. 40

 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 17

 1

Ruby.44 Argument Passing to Library Functions [TRJ] 2

 3

Ruby.44.1 Applicability to language 4

The original Ruby interpreter is written in the C language. Because of this many libraries for Ruby have 5

been written to interface with the Ruby and C. The library designer should make the library validate any 6

input before its use. 7

Ruby.44.2 Guidance to language users 8

 Develop wrappers around library functions that check the parameters before calling the 9

function 10

 Use only libraries known to have been consistent and validated interface requirements 11

 12

 13

 14

 15

Ruby.45 Dynamically-linked Code and Self-modifying Code [NYY] 16

 17

Ruby.45.1 Terminology and features 18

Dynamically-linked code might be a different version at runtime than what was tested during 19

development. This may lead to unpredictable results. Self-modifying code can be written in Ruby. 20

 21

Ruby.45.2 Description of vulnerability 22

 Verify dynamically linked code being used is the same as that which was tested 23

 Do not write self-modifying code 24

 25

 26

 27

Ruby.46 Library Signature [NSQ] 28

 29

Ruby.46.1 Terminology and features 30

Ruby implementations which interface with libraries must have correct signatures for functions. 31

Creating correct signatures for a large library is cumbersome and should be avoided by using tools. 32

 33

Ruby.46.2 Description of vulnerability 34

 Use tools to create signatures 35

 Avoid using libraries without proper signatures 36

 37

 38

 39

Ruby.47 Unanticipated Exceptions from Library Routines [HJW] 40

 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 18

Ruby.47.1 Terminology and features 1

Ruby interfaces with libraries which could encounter unanticipated exceptions. In some situations, 2

largely dependent on the interpreter implementation, exceptions can cause unpredictable and possibly 3

fatal results. 4

 5

Ruby.47.2 Description of vulnerability 6

 Use library routines which specify all possible exceptions 7

 Use libraries which generate Ruby exceptions that can be rescued 8

 9

 10

 11

Ruby.48 Pre-processor Directives [NMP] 12

 13

This vulnerability is not applicable to Ruby. 14

 15

 16

Ruby.49 Obscure Language Features [BRS] 17

 18

This vulnerability is not applicable to Ruby. 19

 20

 21

Ruby.50 Unspecified Behaviour [BQF] 22

 23

Ruby.50.1 Applicability of language 24

 25

Unspecified behaviour occurs where the proposed Ruby standard does not mandate a particular 26

behaviour. 27

Unspecified behaviour in Ruby is abundant. In the proposed standard there are 136 instances of the 28

phrase “unspecified behaviour.” Examples of 29

unspecified behaviour are: 30

A for-expression terminated by a break-expression, next-expression, or redo-expression 31

Calling Numeric#coerce(numeric) with the value NaN 32

Calling Integer#&(other) if other is not an instance of the class Integer. This also 33

applies to Integer#|, Integer#^, Integer#<<, and Integer#>> 34

Calling String#*(num) if other is not an instance of the class Integer 35

 36

Ruby.50.2 Guidance to language users 37

 Do not rely on unspecified behaviour because the behaviour can change at each instance. 38

 Code that makes assumptions about the unspecified behaviour should be replaced to make it 39

less reliant on a particular installation and more portable. 40

 Document instances of use of unspecified behaviour 41

ISO/IEC JTC 1/SC 22/WG 23 N0308 Page 19

 1

 2

Ruby.51 Undefined Behaviour [EWF] 3

 4

Ruby.51.1 Applicability to language 5

Undefined behaviour in Ruby is cover by sections [BQF] and [FAB]. 6

 7

Ruby.51.2 Guidance to language users 8

 Avoid using features of the language which are not specified to an exact behaviour. 9

 10

 11

 12

Ruby.52 Implementation –defined Behaviour [FAB] 13

 14

Ruby.52.1 Applicability to language 15

 16

The proposed Ruby standard defines implementation-defined behaviour as: possibly differing between 17

implementations, but defined for every implementation. 18

The proposed Ruby standard has documented 98 instances of implementation defined behaviour. 19

Examples of implementation defined behaviour are: 20

Whether a singleton class can have class variables or not 21

The direct superclass of Object 22

The visibility of Module#class_variable_get 23

Kernel.p(* args) return value 24

 25

Ruby.52.3 Guidance to language users 26

 The abundant nature of implementation-defined behaviour makes it difficult to avoid. As much 27

as possible users should avoid implementation defined behaviour. 28

 Determine which implementation-defined implementations are shared between 29

implementations. These are safer to use than behaviour which is different for every 30

 31

 32

 33

Ruby.53 Deprecated Language Features [MEM] 34

 35

This vulnerability is not applicable to Ruby. 36

 37

