
ISO/IEC JTC 1/SC 22/WG 23 N 0318 1

Meeting #17 markup of, Strawman draft, “Code Signing for Source Code” 2

 3

Date 2011-03-23

Contributed by Secretary

Original file name

Notes Replaces N0317

 4

 5

Code Signing for Source Code 6

 7

1 Introduction 8

Code Signing is a capability that identifies to customers the company responsible for the 9

code and confirms that it has not been modified since the signature was applied. In 10

traditional software sales where a buyer can physically touch a package containing 11

software, the buyer can confirm the source of the application and its integrity by 12

examining the packaging. However, most software is now procured via the Internet. This 13

is not limited to complete applications as code snippets, plug-ins and add-ins, libraries, 14

methods, drivers, etc. are all downloaded over the Internet. Verification of the source of 15

the software is extremely important since the security and integrity of the receiving 16

systems can be compromised by faulty or malicious code. In addition to protecting the 17

security and integrity of the software, code signing provides authentication of the author, 18

publisher or distributor of the code, and protects the brand and the intellectual property 19

of the developer of the software by making applications uniquely identifiable and more 20

difficult to falsify or alter. 21

When software (code) is associated with a publisher's unique signature, distributing 22

software on the Internet is no longer an anonymous activity. Digital signatures ensure 23

accountability, just as a manufacturer's brand name does on packaged software. If an 24

organization or individual wants to use the Internet to distribute software, they should be 25

willing to take responsibility for that software. Accountability can be a strong deterrent to 26

the distribution of harmful code. Even though software may be acquired or distributed 27

from an untrusted site or a site that is unfamiliar, the fact that it is written and signed by 28

someone known and trusted allows the software to be used with confidence that it is 29

legitimate. 30

Multiple signatures for one piece of code would be needed in some cases so as to create a 31

digital trail through the origins of the code. Consider a signed piece of code. Someone 32

should be able to modify some portion of the code, even one character, without assuming 33

responsibility for the integrity of the remainder of the code. Similarly, a recipient of the 34

code should be able to identify the responsible party for each portion of the code. For 35

instance, a very trustworthy company A produces a driver. Company B modifies their 36

driver for a particular use. Company B is not as trusted or has an unknown reputation. 37

The recipient should be able to determine what part of the code originated with and was 38

unaltered by Company B so as to be able to concentrate their evaluation on the sections of 39

code that Company B either added or altered. Therefore, a means is needed to keep track 40

of the modifications made from one signature to the next. Each signature would create 41

another layer on top of the preceding one. 42

 43

 44

 45

1.1 Scope 46

This document defines the utility programs and supporting data structures necessary to support the 47
signing of code and executables. It is intended to be used by both applications developers and systems 48
implementers. 49

The following areas are outside the scope of this specification: 50

 Graphics interfaces 51

 Object or binary code portability 52

 System configuration and resource availability 53

2. Terminology 54

3. APIs 55

certcreate 56

Description 57

creates the file outCerFile that will contain a certificate that complies with ITU-T X.509. 58

Comment [JWM1]: There are actually two
cases. In one case, I’m passing on a product
unchanged along with some additional stuff. In
another case, I’m changing a product and passing it
on.

Comment [JWM2]: Mention that these specs
are language-independent. Particular language
bindings will have to make choices, e.g. where is
error reporting done?

Syntax 59

certcreate [options] outputCertificateFile 60

Options 61

TBD 62

Errors 63

TBD 64

Examples 65

createcert certfile 66
 will create the file certfile containing a certificate 67

 68

certsigncode 69

Description 70

Generates a digital signature (encrypted hash) of the source code file filename using 71

public certificate myCertificate and private key myPrivateKey. The default hashing 72

algorithm for signing shall be MD5. Alternatively SHA1 could be specified with the –s 73

option. The digital signature and publisher’s certificate are stored in file filename.ds 74

unless otherwise specified with the –o option. 75

Syntax 76

certsigncode [options] myCertificate myPrivateKey filename 77

Options 78

-n overwrite the current signature with a new signature 79

-o filename put signature in filename instead of the default output filename 80

-s Use SHA1 hash instead of the default MD5 81

TBD 82

Comment [JWM3]: Explain that language
bindings are allowed to pick an appropriate
convention for specifying options – in fact, all
aspects of the syntax.

Comment [JWM4]: This needs to be generalized
to support more than two choices. The choices
should probably be tied to some international
standard – perhaps ISO/IEC 10118-3.
The product of signing should probably carry the
information of which hash algorithm was used.

Errors 83

If filename.ds or the file specified with the –o option already exists, certsigncode will 84

report that the signature operation could not be completed since filename.ds or the 85

specified file already exists and that the –n operation should be used. 86

If myCertificate or myPrivateKey are in an unknown format or do not contain proper 87

keys, certsigncode will report that the signature operation could not be completed since 88

a key could not be read or used. 89

Example 90

certsigncode myCertificate.cer myPrivateKey.pvk sourceCode.c 91
will create the file sourcecode.c.ds containing the digital signature, an encrypted hash 92

computed using the MD5 algorithm, and the public key. 93
certsigncode –n myCertificate.cer myPrivateKey.pvk sourceCode.c 94

will overwrite the existing file sourceCode.c.ds with a file containing the digital signature 95
and public key. 96
certsigncode –o signatureFile.ds myCertificate.cer myPrivateKey.pvk sourceCode.c 97
 will create the file signatureFile.ds containing the digital signature and the public key. 98
certsigncode –s myCertificate.cer myPrivateKey.pvk sourceCode.c 99
 will create the file sourceCode.c.ds containg the digital signature, an encrypted hash 100
computed using SHA1 algorithm, and the public key. 101

 102

certsignwrap 103

Description 104

Incorporates changes to a previously signed file in such a way that the changes can be 105

unwrapped later on in order to revert to a previously signed version. Generates a digital 106

signature (encrypted hash) of the source code file filename using public certificate 107

myCertificate and private key myPrivateKey. The hashing algorithm for signing shall be 108

MD5 by default, or optionally sha1. The digital signature, publisher’s certificate and diff 109

output are added to file outputFile.ds. 110

Syntax 111

certwrap [options] myCertificate myPrivateKey originalFile modifiedFile 112

Options 113

-s Use sha1 hash instead of the default MD5 114

Comment [JWM5]: It should be difficult to
overwrite an input file.

Comment [JWM6]: Since diff files can
sometimes be mistakenly large, it may be better to
handle diff files explicitly rather than implicitly to
increase the chance that humans look at them.

-o filename Use filename as signature file instead of default originalFile.ds 115

TBD 116

Errors 117

If originalFile.ds, or a file specified by the –o option, does not exist, certwrap will report 118

that the signature wrapping could not be completed because an existing signature does 119

not exist and that a signature file would need to be created before the operation could 120

be completed. 121

If there are no differences between originalFile and modifiedFile, certwrap will report 122

that the signature operation could not be completed since there have not been any 123

changes to the source code files. 124

 125

If the hash of originalFile does not match the encrypted hash stored within 126

originalFile.ds, or a file specified by the –o option, certwrap will report that the 127

originalFile differs from the file which was signed and that the signature operation could 128

not be completed. 129

Example 130

certwrap myCertificate myPrivateKey file1.c file1_modified.c 131
 will update the file file1.c.ds containing the signature of file file1.c and the changes 132

necessary to create file1_modified.c 133
certwrap –s myCertificate myPrivateKey file1.c file1_modified.c 134

 will update the file outputFile containing the signature of file file1.c, an encrypted hash 135
computed using the SHA1 algorithm, and the changes necessary to create file1_modified.c 136
certwrap –o signatureFile myCertificate myPrivateKey file1.c file1_modified.c 137

 will update the file signatureFile containing the signature of file file1.c and the changes 138
necessary to create file1_modified.c as well as the signature of file1_modified.c and the public 139
key from file myCertificate 140

 141

 142

certhash 143

Description 144

Generates a digital finger print (hash) of the source code. The algorithm for computing the 145

hash shall be MD5 by default, or optionally sha1. 146

Syntax 147

certhash [options] filename 148

Options 149

-s -- use sha1 hash instead of the default MD5 150

TBD 151

Errors 152

If more or less than one filename is provided an error shall be signaled and certhash will 153

report its proper usage. 154

Example 155

certhash sourceCode.c 156
 will compute the hash of sourceCode.c using the MD5 algorithm 157
certhash –s sourceCode.c 158
 will compute the hash of sourcecode.c using the SHA1 algorithm 159

 160

certdecryptsignature 161

Description 162

Verifies the digital signature of a source code file and returns the decrypted signature. 163

Syntax 164

certdecryptsignature [options] filename 165

Options 166

-s signatureFile Use signature in signatureFile instead of default 167

Errors 168

If the signature file does not exist, certdecryptsignature will report that the signature 169

could not be verified because the signature file is missing. 170

If the signature file exists yet does not contain the properly formatted signature and 171

public key components, certdecryptsignature will report that the signature file is 172

corrupt. 173

Example 174

certdecryptsignature sourceCode.c 175
 will verify the digital signature contained in sourceCode.c.ds and return the hash 176
decrypted using the public key contained within the signature file. 177
certdecryptsignature –s signatureFile sourceCode.c 178
 will verify the digital signature contained in the specified signatureFile and return the 179
hash decrypted using the public key contained within signatureFile 180

 181

certverifysignature 182

Description 183

Verifies the latest digital signature of a source code file filename compares the hash computed 184
for filename and returns either “signature valid” or “signature not valid”. This accomplishes in 185
one step what certhash() and certdecryptsignature() do in multiple steps. Note the hashing 186
algorithm is inferred by the length of the signed hash and thus need not be specified by the 187
user. 188

Syntax 189

certverifysignature [options] filename 190

Options 191

-s filename -- use digital signature contained in file filename instead of the default 192

filename 193

Errors 194

If the signature file does not exist, certverifysignature will report that the signature file is 195

missing. 196

If the signature file exists yet does not contain the properly formatted signature and 197

public key components, certverifysignature will report that the signature file is corrupt. 198

Example 199

certverifysignature sourceCode.c 200
 will compare the signature contained in the file sourceCode.c.ds with hash of 201
sourceCode.c 202
certverifysignature –s signatureFile.ds sourceCode.c 203
 will compare the signature contained in the file signatureFile.ds with the hash of 204
sourceCode.c 205

 206

certunwrap 207

Description 208

Unwrap a previously signed file to revert to the last previously signed version. Certunwrap will 209
remove the most recent signature from the filename.ds file and the most recent set of changes 210
in order to revert to the next most recent signature and file. 211

After the operation is complete, the user should run certverifysignature to ensure the files they 212
are viewing is the previous version of source code and has a valid signature. 213

Syntax 214

certunwrap [options] modifiedFile 215

Options 216

-n newSignatureFile – places modified signature file in newSignatuerFile instead of modifying the 217
one used to unwrap the changes 218

-o newFileName -- sets the name of the output file to “newfilename” 219

-s signatureFile -- uses signatureFile instead of the default filename 220

Errors 221

If the signature file does not contain a valid signature or is missing any components such 222

as certificates or file diffs, certunwrap will report that the unwrap operation could not 223

be completed because of corruption. 224

TBD 225

Example 226

certunwrap sourceCode.c 227

 will unwrap sourceCode.c.ds as well as modify sourceCode.c to the previously signed 228
source code file 229
certunwrap sourceCode.c –o modified_sourceCode.c 230
 will unwrap sourcecode.c.ds as well as produce a modified copy of sourceCode.c in the 231
file specified by the –o option 232
certunwrap sourceCode.c –o modified_sourceCode.c –n modified_signatureFile 233
 will unwrap sourcecode.c.ds by placing the previous version of the signed file in the file 234
specified by the –n option, and produce a modified copy of sourceCode.c in the file specified by 235
the –o option 236
certunwrap sourceCode.c –o modified_sourceCode.c –n modified_signatureFile –s signedFile 237
 will unwrap signedFile, the file specified by the –s option, by placing the previous 238
version of the signed file in the file specified by the –n option, and produce a modified copy of 239
sourceCode.c in the file specified by the –o option 240

 241

 242

 243

Appendix 1: 244

A Proposed method of operation 245

1. Publisher obtains a Code Signing Digital ID (Software Publishing Certificate) from a 246

global certificate authority 247

(how one obtains a Code Signing Digital ID may be out of scope and might be better left to other 248
standards bodies such as the World Wide Web Consortium (W3C)) 249

A software publisher's request for certification is sent to the Certification Authority (CA). 250

It is expected that the CAs will have Web sites that walk the applicant through the 251

application process. Applicants will be able to look at the entire policy and practices 252

statements of the CA. The utilities that an applicant needs to generate signatures 253

should also be available. 254

Digital IDs can be either issued to a company or an individual. In either case, the global 255

certificate authority must validate the identification of the company and applicant. 256

Validation for applicants would be in the form of a federally issued identification for 257

applicants and a Dun & Bradstreet number. Tables 1 and 2, respectively, contain the 258

criteria for a commercial and individual code signer. 259

Proof of identification of an applicant must be made. Simply trusting the applicant’s ID 260

via a web site is insufficient. Additional verification of the applicant’s ID should be 261

commensurate with the application process for a federally issued ID, such as a passport. 262

Sending in a federally issued ID, such as a passport, to the CA would be sufficient for 263

proof of identification. 264

The applicant must generate a key pair using either hardware or software encryption 265

technology. The public key is sent to the CA during the application process. Due to the 266

identity requirements, the private key must be sent by mail or courier to the applicant. 267

Identification Applicants must submit their name, address, and other material along
with a copy of their federally issued id that proves their identity as
corporate representatives. Proof of identify requires either personal
presence or registered credentials.

Agreement Applicants must agree to not distribute software that they know, or
should have known, contains viruses or would otherwise harm a user's
computer or code.

Dun &
Bradstreet
Rating

Applicants must achieve a level of financial standing as indicated by a D-
U-N-S number (which indicates a company's financial stability) and any
additional information provided by this service. This rating identifies the
applicant as a corporation that is still in business. (Other financial rating
services are being investigated.) Corporations that do not have a D-U-N-
S number at the time of application (usually because of recent
incorporation) can apply for one and expect a response in less than two
weeks.

Table 1: Criteria for Commercial Code Publishing Certificate 268

 269

Identification Applicants must submit their name, address, and other material along
with a copy of their federally issued id that proves their identity as
citizens of the country where they reside. Information provided will be
checked against an independent authority to validate their credentials.

Agreement Applicants must agree that they cannot and will not distribute software
that they know, or should have known contains viruses or would
otherwise maliciously harm the user's computer or code.

Table 2: Criteria for Individual Code Publishing Certificate 270

 271

 272

2. Publisher develops code or modifies previously signed code 273

 274

 275

3. Calculate a hash of the code and create a new file containing the encrypted hash, the 276

publisher's certificate and the code 277

 278

A one-way hash of the code is produced using certsigncode, thereby signing the code. 279

The hash and publisher’s certificate are inserted stored in a separate file. 280

 281

In order to be able to verify the integrity of previously signed code, it must be possible 282

to identify the responsible party for each section of code. When new code modifies or 283

in some way encapsulates previously signed code, the original code must be able to be 284

identified so that its signature can be checked. Therefore, iterative changes to code 285

must be able to be reversed to identify previously signed versions. 286

 287

 288

 289

4. The digitally signed file is transmitted to the recipient 290

 291

 292

5. The recipient produces a one-way hash of the code 293

 294

 295

6. Using the publisher's public key contained within the publisher's Digital ID and the 296

digital signature algorithm, the recipient browser decrypts the signed hash with the 297

sender’s public key 298

 299

 300

7. The recipient compares the two hashes 301

 302

If the signed hash matches the recipient's hash, the signature is valid and the document 303

is intact and hasn't been altered since it was signed. 304

 305

Software that has multiple signings must be able to be “unwrapped” in order to recreate 306

previously signed versions. Iterative changes to code can be reversed to identify 307

previously signed versions through the use of certunwrap. 308

 309

 310

 311

Existing techniques currently in use to create and verify a digital 312

signature 313

 314

Already there exists several different code signing implementations. It would be a major 315

advance to be able to start to unify these under one standard implementation. 316

 317

 Microsoft® Authenticode® 318

o Digitally sign .exe, .cab, .dll, .ocx, .msi, .xpi, and .xap files 319

o Microsoft requires all files with the following extensions: exe, dll, ocx, sys, cpl, 320

drv, scr to be signed with an Authenticode certificate to receive Windows Vista 321

Logo Certification. 322

 Sun Java® (JavaSoft Developer Certificate) 323

o Digitally sign .jar files for desktop and midlet mobile Java platforms 324

 Microsoft® Office and VBA 325

 (VBA Developer Certificate is identical to Authenticode certificates) (Digitally 326

sign Microsoft VBA Macros for Microsoft Office) 327

 Adobe® AIR® 328

o Digitally sign .air or .airi files for use in Adobe AIR 329

 Macromedia Shockwave® 330

o Digitally sign files created with Macromedia Director 8 Shockwave Studio 331

 Authentic IDs for BREW® 332

o BREW™: Binary Runtime Environment for Wireless 333

o Digitally sign BREW applications 334

http://www.verisign.com/code-signing/content-signing-certificates/microsoft-authenticode/index.html
http://www.verisign.com/code-signing/content-signing-certificates/sun-java/index.html
http://www.verisign.com/code-signing/content-signing-certificates/microsoft-office-vba/index.html
http://www.verisign.com/code-signing/content-signing-certificates/adobe-air/index.html
http://www.verisign.com/code-signing/content-signing-certificates/macromedia-shockwave/index.html
http://www.verisign.com/code-signing/content-signing-certificates/authentic-ids-brew/index.html

 Apple developer certificate 335

 Digitally sign extensions to be installed on the Safari web browser/platform 336

 337

 338

 339

References 340

 341

1. http://msdn.microsoft.com/en-us/library/ms537361(VS.85).aspx 342

2. https://www.verisign.com/code-signing/information-center/index.html 343

3. http://www.verisign.com/code-signing/information-center/certificates-faq/index.html 344

4. http://www.drdobbs.com/web-345

development/210004209;jsessionid=IFYXVK2HGN0WJQE1GHRSKH4ATMY32JVN?pgno=346

2 347

5. http://www.windowsecurity.com/articles/Code-Signing.html?printversion 348

6. http://www.tech-pro.net/code-signing-for-developers.html 349

7. http://www.microsoft.com/whdc/driver/install/drvsign/best-practices.mspx 350

 351

http://developer.apple.com/programs/safari/
http://msdn.microsoft.com/en-us/library/ms537361(VS.85).aspx
https://www.verisign.com/code-signing/information-center/index.html
http://www.verisign.com/code-signing/information-center/certificates-faq/index.html
http://www.drdobbs.com/web-development/210004209;jsessionid=IFYXVK2HGN0WJQE1GHRSKH4ATMY32JVN?pgno=2
http://www.drdobbs.com/web-development/210004209;jsessionid=IFYXVK2HGN0WJQE1GHRSKH4ATMY32JVN?pgno=2
http://www.drdobbs.com/web-development/210004209;jsessionid=IFYXVK2HGN0WJQE1GHRSKH4ATMY32JVN?pgno=2
http://www.windowsecurity.com/articles/Code-Signing.html?printversion
http://www.tech-pro.net/code-signing-for-developers.html
http://www.microsoft.com/whdc/driver/install/drvsign/best-practices.mspx

