
ISO/IEC JTC 1/SC 22/WG 23 N 0312-V2 1

 2

6.36 Returning Error Status or Raising Exceptions[NZN] 3

6.36.1 Description of application vulnerability 4
Unpredicted error conditions—perhaps from hardware (such as an I/O device error), perhaps from 5
software (such as heap exhaustion)—sometimes arise during the execution of code. Programming 6
languages provide a surprisingly wide variety of mechanisms to deal with such errors. The choice of a 7
mechanism that doesn't match the programming language can lead to errors in the execution of the 8
software or unexpected termination of the program.All of them are somewhat difficult to use. 9
Particulary when components meet that employ different fault detection and reporting strategies, the 10
opportunity for errors increases that create vulnerablilities resulting in anything from This could lead to a 11
simple decrease in the robustness of a program or it could be exploited in a denial of service attack. 12

6.36.2 Cross reference 13
CWE: 14
754: Improper Check for Unusual or Exceptional Conditions 15
JSF AV Rules: 115 and 208 MISRA C 2004: 16.10 16
MISRA C++ 2008: 15-3-2 and 19-3-1 17
CERT C guidelines: DCL09-C, ERR00-C, and ERR02-C 18

6.36.3 Mechanism of failure 19
Even in the best-written programs, error conditions sometimes arise. Some errors occur because of 20
defects in the software itself, but some result from external conditions in hardware, such as errors in I/O 21
devices, or in the software system, such as exhaustion of heap space. If left untreated, the effect of the 22
error might result in termination of the program or continuation of the program with incorrect results. 23
To deal with the situation, designers of programming languages have equipped their languages with 24
different mechanisms to detect and treat such errors. The mechanism of failure is very similar however. 25
It is either the omission of a reaction to a reported error or an inappropriately late reaction. The cause 26
might be simply laziness or ignorance on the part of the programmer, or, more commonly, a mismatch in 27
the expectations of where fault detection and fault recovery is to be done. The risk of failure is 28
particularly high when components meet that were designed with different idioms of error detection 29
and recovery. 30
 These mechanisms are typically intended to be used in specific programming idioms. However, the 31
mechanisms differ among languages. A programmer expert in one language might mistakenly use an 32
inappropriate idiom when programming in a different language with the result that some errors are left 33
untreated, leading to termination or incorrect results. Attackers can exploit such weaknesses in denial of 34
service attacks. 35
In general, languages make no distinction between dealing with programming errors (like an access to 36
protected memory), unexpected hardware errors (like device error), expected but unusual conditions 37
(like end of file), and even usual conditions that fail to provide the typical result (like an unsuccessful 38
search). This description will use the term "error" to apply to all of the above. The description applies 39
equally to error conditions that are detected via hardware mechanisms and error conditions that are 40
detected via software during execution of a subprogram (such as an inappropriate parameter value). 41

6.36.4 Applicable language characteristics 42
Different programming languages provide remarkably different mechanisms for treating errors. In 43
languages that provide a number of error detection and treatment mechanisms, it becomes a design 44
issue to match the mechanism to the condition. This clause will describe the mechanisms that are 45
provided in widely used languages. 46

The simplest case is the set of languages that provide no special mechanism for the notification and 47
treatment of unusual conditions. In such languages,when error conditions are signaled by the value of an 48
auxiliary status variable, sometimes a subprogram parameter. The programming language C standard 49
library functions use a variant of this approach; the error status is provided as the return value and 50
sometimes in an additional global error value. Obviously, in such languagesthis case, it is imperative to 51
check and act upon the status variable after every call to a subprogram that might provide an error 52
indication. If error conditions can occur in an asynchronous manner, it is necessary to provide means to 53
check for errors in a systematic and periodic manner. 54
Some languages permit the passing of a label parameter. If an error is encountered, the subprogram 55
returns to the indicated label rather than to the point at which it was called. Similarly some languages 56
accept the name of a subprogram to be used to handle errors. In either case, it is imperative to provide 57
labeled code or a subprogram to deal with all possible error situations. 58
The approaches described above have the disadvantage that error checking of error conditions must be 59
provided at every call to a subprogram. This can clutter the code immensely to deal with situations that 60
may occur rarely. Partly fFor this reason, some languages provide an exception mechanism that 61
automatically transfers control to an exeption handler of an enclosing construct when an error is 62
encountered. This has the potential advantage of allowing error treatment to be factored into distinct 63
error handlers, leaving the main execution path to deal with the usual results. The disadvantages, of 64
course, are that the language design is complicated and the programmer must deal with the 65
conceptually more complex problem of providing error handlers that are removed from the immediate 66
context of a specific call to a subprogram. Furthermore, different languages provide exception-handling 67
mechanisms that differ in the manner in which various design issues are treated, wich in turn may lead 68
to misunderstandings by the programmmer: 69
• How is the occurrence of an exception bound to a particular handler? 70
• What happens when no handler is local to an exception occurrence? Is the exception propagated in 71
some manner or is it lost? 72
• What happens after an exception handler executes? Is control returned to the point before the call or 73
after the call, or is the calling routine terminated in some way? If the calling routine is terminated, is 74
there some provision for finalization, such as closing files or releasing resources? 75
• Are programmers permitted to define additional exceptions? 76
• Does the language provide default handlers for some exceptions or must the programmer explicitly 77
provide for all of them? 78
• Can predefined exceptions be raised explicitly? 79
 • Under what circumstances can error checking be disabled? 80
 Common to all these mechanisms of error reporting is the principle mechanism of failure, 81
namely the omission of handling the error in the right place. For status variables, checks are often 82
omitted at the call site so that the error is ignored, execution continues despite the preceeding fault and 83
causes further faults. For exceptions, the necessary handler may be omitted at an approriate enclosing 84
context. While execution does not simply continue despite the fault as for an unchecked error status 85
variable, the exception may be handled by an inappropriate handler or by none at all, leading to the 86
unexpected termination of a program or program component. 87
 88

6.36.5 Avoiding the vulnerability or mitigating its effects 89
Given the variety of error handling mechanisms, it is difficult to write general guidelines. However, 90
dealing with exception handlers can stress the capability of many static analysis tools and can, in some 91
cases, reduce the effectiveness of their analysis. Inversely, the use of error status variables can lead to 92
confusingly complicated control structures, particularly when recovery is not possible locally. Therefore, 93
for situations where the highest of reliability is required, the application should be designed so 94
thatdecision for or against exception handling deserves careful thoughtis not used at all. In the more 95

Formatted: Bullets and Numbering

general case, exception-handling mechanisms should be reserved for truly unexpected situations and 96
other situations (possibly hardware arithmetic overflow) where no other mechanism is availablelocal 97
recovery is possible. Situations which are merely unusual, like end of file, should be treated by explicit 98
testing—either prior to the call which might raise the error or immediately afterward. 99
 100
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 101
 • Checking error return values or auxiliary status variables following a call to a subprogram is 102
mandatory unless it can be demonstrated that the error condition is impossible. 103
 • Equally, exceptions need to be handled by the exception handlers of an enclosing construct as 104
close as possible to the origin of the exception but as far out as necessary to be able to deal with the 105
error. In dealing with languages where untreated exceptions can be lost (for example, an exception that 106
goes untreated within an Ada task), it is mandatory to deal with the exception in the local context before 107
it is lost. 108
 • When execution within a particular context is abandoned due to an exception or error 109
condition, it is important to finalize the context by closing open files, releasing resources and restoring 110
any invariants associated with the context. 111
 • It is often not appropriate to repair an error condition and retry the operation. In such cases, 112
one often treats a symptom but not the underlying problem. It is usually a better solution to finalize and 113
terminate the current context and retreat to a context where the situation is known. 114
 • Error checking provided by the language, the software system, or the hardware should never 115
be disabled in the absence of a conclusive analysis that the error condition is rendered impossible. 116
 • Because of the complexity of error handling, careful review of all error handling mechanisms is 117
appropriate. 118
 • In applications with the highest requirements for reliability, defense-in-depth approaches are 119
often appropriate, for example, checking and handling errors thought to be impossible. 120
 121

6.36.6 Implications for standardization 122
In future standardization activities, the following items should be considered: 123
 • A standardized set of mechanisms for detecting and treating error conditions should be 124
developed so that all languages to the extent possible could use them. This does not mean that all 125
languages should use the same mechanisms as there should be a variety (for example, label parameters, 126
auxiliary status variables), but each of the mechanisms should be standardized. 127
 128

 129

