
ISO/IEC JTC 1/SC 22/OWGV N 0216 
Markup of revised draft language-specific annex for Fortran 

 
Date 15 July 2009 
Contributed by Dan Nagle 
Original file name  
Notes Replaces N0211 

 
 

To: WG23 

Subject: Draft Fortran Annex 

From: Dan Nagle 

Date: 2009 June 4 

 

Draft of the Fortran Annex of the WG23 TR 24772 

 

This Annex provides Fortran-specific advice 

for the items in clause 6, specifically 

using Annex F from n0191. 

 

DRAFT 

 

Language Specific Vulnerability Outline 

 

Fortran This Annex provides Fortran-specific advice 

for the items in clause 6.  Each vulnerability is addressed, 

even if only to indicate that the vulnerability does not apply 

to Fortran. 

 

 

Fortran.1 Identification of standards 

ISO/IEC 1539-1 (2010) "Fortran 2008" 

 

 

Fortran.2 General Terminology 

The Fortran standard specifies the forms of Fortran programs (source 

code) 

may take, and the rules for interpreting them.  It also specifies 

the form of input and output files.  A processor is a combination 

of a computing system and the mechanism by which programs are transformed 

for use on that computing system.  The standard does not describe 

the processor, except that, if the program conforms to the standard 

then the processor shall interpret the program according to the standard. 

 

A requirement expressed in ISO/IEC 1539-1 is a requirement 

on the program, not the processor, unless explicitly stated otherwise. 

 

The processor is limited in its required ability to detect errors 

to those errors that can be found by reference to the numbered syntax 

rules 

and constraints of the standard. 



 

A behavior not completely specified by ISO/IEC 1539-1 

is said to be processor dependent. 

 

Some features from earlier revisions of ISO/IEC 1539-1 are considered 

redundant and largely unused, and are designated decremental 

features.  The two categories of decremental features are 

deleted features, which are no longer a part of the standard, 

and obsolescent features, which are part 

of the standard, but whose use is discouraged. 

There is a modern equivalent for every decremental feature 

that is considered easier to use and more clear in its meaning. 

 

A Fortran processor optionally cooperates 

with one or more companion processors, that may be compilers 

of other languages.  A processor is its own coprocessor, 

additional coprocessors may be compilers of other languages. 

The only requirement is that the other languages allow 

their data and procedures to be described in terms of C. 

The actions of routines written in a language other than Fortran 

are not subject to the rules of Fortran. 

 

 

%%%%% 

 

Fortran.3.1 Obscure Language Features [BRS] 

 

 

Fortran.3.1.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

 

Fortran.3.1.1 Fortran-specific terminology and features 

 

<Decremental Feature>: A decremental feature is a feature defined 

by an earlier revision of the Fortran language and is considered 

redundant and largely unused by modern programs. 

 

<Deleted Feature>: A deleted feature is a decremental feature 

that is not specified by the current revision of the standard. 

 

<Obsolescent Feature>: An obsolescent feature is a decremental feature 

that is specified by the current revision of the standard.  Its use 

is discouraged since a better alternative is specified by the current 

revision of the standard. 

 

<Storage Association>: Storage association is the association of two or 

more data objects that occurs when two or more  

storage sequences share or are aligned with one or more storage units. 

 

<Storage Sequence>: A storage sequence is a sequence of storage units. 

A storage unit is a numeric storage unit, a character storage unit, 

a file storage unit, or an unspecified storage unit. 



 

<Common Block>: A common block is a block of physical storage. 

 

<Common Statement>: A common statement specifies blocks 

of physical storage. 

 

<Save Attribute>: The save attribute specifies that a local data entity 

retains its definition status between subsequent references 

to the program unit that declares it. 

 

<Intrinsic Procedures>: Intrinsic procedures are procedures specified 

by the standard.  A processor is allowed to extend the set of instrnsic 

procedures it supports. 

 

 

Fortran.3.1.2 Description of vulnerability in Fortran 

 

Not all programmers are familiar with code written to decades-old 

standards, nor are they familiar with extensions, once common, 

used to add missing features to archaic Fortran.  Some of these 

extensions are the result of an incompletely-specified feature 

in an early revision of the standard which was later specified 

to be different than the feature supported by a processor.  The use 

of these features is error prone and obscure.  Some have unexpected 

changes of state that are likely to surprise modern programmers. 

 

An original programmer decades ago may have understood use of a feature 

whose use was common at the time, but the entirety of effects of some 

archaic featuresdecremental features, may not be known to modern 

programmers.  These effects 

may produce semantic results not in accord with the modern programmer's 

intentions.  They may be beyond the capability knowledge of modern code 

reviewers. 

 

For example, supplying an initial value in the declaration 

of a local variable implies that the variable has the save attribute. 

 

Also, a common statement may specify more than one common block, 

and the definition of a common block may be extended by a subsequent 

common statement in the same program unit. 

 

Any of the above situations may be unexpected by a modern programmer. 

 

 

Fortran.3.1.3 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

- Use the processor to detect and identify decremental features. 

All decremental features have modern counterparts that are safer, 

easier to understand, and more parallel to the semantics 

of other languages. 

- Use the processor to detect and identify extensions. 

The modern alternative should be preferred. 

-  Use a tool to detect any of the above. 



 

- Avoid the use of decremental features. 

- Avoid the use of processor extensions, including processor-defined 

intrinsic procedures. 

- Supply an external attribute for any name 

with the external attribute.  This will prevent the processor 

from substituting its own intrinsic of the same signature. 

- Place tThe entire definition of one a single common block should be 

entirely within 

one a single statement; one statement should define exactly one common 

block. 

- Be aware that an initial value of a variable implies static storage. 

 

 

Fortran.3.1.4 Implications for standardization of Fortran 

 

Future standardization efforts should consider: 

 

- Identifying and depreciating features 

whose use is problematic and where there is a safer and more clear 

alternative in the modern revisions of the language. 

 

 

Fortran.3.1.5 Bibliography 

 

None. 

 

 

%%%%% 

 

Fortran.3.2 Unspecified Behaviour [BQF] 

 

 

Fortran.3.2.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

  

 

Fortran.3.2.1 Fortran-specific terminology and features 

 

<Unspecified Behaviour>: The use of any form or relation not specified 

by the Fortran standard is unspecified.  The use of any form or 

relationship given a meaning not specified by the standard is 

unspecified. 

Any behaviour not specified by the standard is unspecified behaviour. 

 

 

Fortran.3.2.2 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

A Fortran processor is unconstrained unless the program 

uses only those forms and relations specified by the Fortran standard, 

and gives them the meaning described therein. 

 



What a processor does with non-standard code is unpredictable. 

The behavior of non-standard code can change between processors, 

or between releases of the same processor.  It is entirely unpredictable. 

 

Fortran.3.2.3 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

- Use processor options to detect and report use of non-standard 

features. 

- Use more than one processor to obtain diagnostics from more than 

one source. 

- Do not use intrinsic procedures not specified in the standard. 

 

 

Fortran.3.2.5 Implications for standardization in Fortran 

 

Future standardization efforts should consider: 

 

-Requiring processors to check character constants used 

as format specifiers. 

 

 

Fortran.3.2.6 Bibliography 

 

None. 

 

 

%%%%% 

 

Fortran.3.3 Undefined Behaviour [EWF] 

 

Fortran.3.3.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

  

This vulnerability is described by Fortran.3.2 Unspecified Behaviour 

[BQF] 

described above. 

 

 

%%%%% 

 

Fortran.3.4 Implementation-defined Behaviour [FAB] 

 

Fortran.3.4.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

  

Fortran.3.4.1 Fortran-specific terminology and features 

 

<Implementation-defined>: Implementation-defined behavior is called 

processor dependent behavior by the Fortran standard. 



See Annex A.2 of ISO/IEC 1539-1 for a list of processor dependencies. 

 

 

Fortran.3.4.2 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Different processors may process different processor-dependencies 

differently.  Relying on one behavior is not guaranteed 

by the Fortran standard. 

 

Reliance on one behavior where the standard explicitly allows 

several is not portable, and is liable to change between 

releases of a single processor, or between different processors. 

 

Fortran.3.4.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not rely on processor dependencies.  See Annex A.2 for a complete 

list. 

 

 

Fortran.3.4.5 Implications for standardization in Fortran 

 

Future standardization efforts should consider: 

 

-Requiring processors to diagnose more situations where 

the appearance of depending upon processor-dependent behaviour occurs. 

 

 

Fortran.3.4.6 Bibliography 

 

None. 

 

 

%%%%% 

 

 

Fortran.3.5 Deprecated Language Features [MEM] 

 

Fortran.3.5.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

  

Fortran.3.5.1 Fortran-specific terminology and features 

 

<Decremental Feature>: A decremental feature is a feature defined 

by an earlier revision of the Fortran language and is considered 

redundant and largely unused by modern programs. 

 

<Deleted Feature>: A deleted feature is a decremental feature 

that is not specified by the current revision of the standard. 

 

<Obsolescent Feature>: An obsolescent feature is a decremental feature 



that is specified by the current revision of the standard.  Its use 

is discouraged since a better alternative is specified by the current 

revision of the standard. 

 

 

Fortran.3.5.2 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Not all programmers are familiar with code written to decades-old 

standards, nor are they familiar with extensions, once common, 

used to add missing features to archaic Fortran.  Some of these 

extensions are the result of an incompletely-specified feature 

in an early revision of the standard which was later specified 

to be different than the feature supported by a processor.  The use 

of these features is error prone and obscure.  Some have unexpected 

changes of state that are likely to surprise modern programmers. 

 

An original programmer decades ago may have understood use of a feature 

whose use was common at the time, but the entirety of effects of some 

archaic features may not be known to modern programmers.  These effects 

may produce semantic results not in accord with the modern programmer's 

intentions.  They may be beyond the capability of modern code reviewers. 

 

See Annex B of the standard for a complete list. 

 

 

Fortran.3.5.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

- Do not use decremental features. 

- Use the processor to detect and identify decremental features; 

then replace them with a modern synonym. 

- Use processor options to require adherence to the latest standard. 

 

Fortran.3.5.5 Implications for standardization in Fortran 

 

None. 

 

 

Fortran.3.5.6 Bibliography 

 

None. 

 

 

%%%%% 

 

Fortran.3.6 Pre-processor Directives [NMP] 

 

Fortran.3.6.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

The Fortran Standard does not specify a preprocessor. 

 



 

%%%%% 

 

Fortran.3.7 Choice of Clear Names [NAI] 

 

Fortran.3.7.0 Status and history 

Original draft - DLN 

2009Jul14 - Updated in light of n0202 meeting 11 DLN 

 

  

Fortran.3.7.1 Fortran-specific terminology and features 

 

Fortran is a single case language, upper case and lower case 

must be treated identically by the processor. 

 

Fortran has keywords but no reserved words. 

 

 

Fortran.3.7.2 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use of names differing only in capitalization, intended to be distinct, 

in fact are not distinct.  While some processors have options to preserve 

case of names, others do not.  In any case, using case to distinguish 

names directly contradicts the standard and should be shunned. 

 

Use of a keyword as a name may be possible, but is confusing 

and should be shunned. 

 

The name distinguished by case is not standard, and even if it works 

with one processor, is not portable. 

 

Fortran.3.7.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

- Do not distinguish names by case only. 

 

- Do not use keywords as names. 

 

Fortran.3.7.5 Implications for standardization in Fortran 

 

Future standardization efforts should consider: 

 

- Requiring processors to detect and report the occurrence of names 

appearing to differ only in case. 

 

- Requiring processors to detect and report the occurrence of names 

indistinguishable from keywords. 

 

 

Fortran.3.7.6 Bibliography 

 

None. 

 



 

%%%%% 

 

Fortran.3.8 Choice of Filenames and other External Identifiers [AJN] 

 

Fortran.3.8.0 Status and history 

Original draft - DLN 

  

Fortran.3.8.1 Language-specific terminology 

 

Filenames appearing in OPEN and INQUIRE statements, and character 

variables 

in references to the GET_ENVIRONMENT_VARIABLE intrinsic 

and the EXECUTE_COMMAND_LINE intrinsic, have trailing blanks removed. 

 

Fortran considers any filename, environment variable name, or 

name specified on an INCLUDE line to be processor-dependent. 

 

Fortran.3.8.2 Description of application vulnerability 

 

Fortran.3.8.3 Mechanism of failure 

 

Filenames and environment variable names have trailing blanks 

removed before being passed to the operating system.  Thus, 

two names differing only by trailing blanks 

cannot be distinguished. 

 

Parameterize any directory name separators used. 

 

Fortran.3.8.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not attempt to distinguish names by trailing blanks. 

 

Fortran.3.8.5 Implications for standardization in Fortran 

 

Fortran.3.8.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.9 Unused Variable [XYR] 

 

Fortran.3.9.0 Status and history 

Original draft - DLN 

  

Fortran.3.9.1 Language-specific terminology 

 

Fortran.3.9.2 Description of application vulnerability 

 

Fortran.3.9.3 Mechanism of failure 

 

Fortran.3.9.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 



 

Use IMPLICIT NONE to require explicit declarations. 

Use any available processor options to report unused variables. 

 

Do not use common blocks, as the common may legitimately contain 

names of variables unused in one subprogram. 

 

Use ONLY clauses on USE statements to indicate the names 

being accessed by use association.  Use rename clauses 

to avoid name collisions. 

 

Fortran.3.9.5 Implications for standardization in Fortran 

 

Fortran might consider requiring processors to have the ability 

to detect and report the occurrence of unused variables. 

 

Fortran.3.9.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.10 Identifier Name Reuse [YOW] 

 

Fortran.3.10.0 Status and history 

Original draft - DLN 

  

Fortran.3.10.1 Language-specific terminology 

 

Fortran names may contain up to 63 characters, 

all of which are significant.  Thus, a name is either illegal 

or all its characters are used. 

 

Fortran.3.10.2 Description of application vulnerability 

 

Internal procedures access the names available in their hosts. 

Module procedures access the names available in their module. 

Blocks access the names available in their host. 

 

Fortran.3.10.3 Mechanism of failure 

 

Fortran.3.10.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not use BLOCKS.  Do not use nested declarations in DO CONCURRENT 

blocks. 

Use an ONLY clause on all USE statements.  Check names 

in nested procedures. 

 

Prefer placing subprograms in modules rather than 

as internal procedures.  Use different modules for data 

and for procedures. 

 

Fortran.3.10.5 Implications for standardization in Fortran 

 



Consider adding a means to control host association. 

Consider decrementing BLOCKS and declarations in DO CONCURRENT 

statements. 

 

Fortran.3.10.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.11 Type System [IHN] 

 

Fortran.3.11.0 Status and history 

Original draft - DLN 

  

Fortran.3.11.1 Language-specific terminology 

 

A type defined by the standard is an intrinsic type. 

A type defined by the programmer is a derived type. 

Some derived types are defined in standard defined modules. 

 

Fortran.3.11.2 Description of application vulnerability 

 

Fortran promotes operands in expressions from smaller to larger 

within a numeric type, and among types, from integer to real to complex. 

 

Fortran expressions are evaluated without regard to context; 

the type of an expression is converted as needed to the type 

of the designator receiving the value. 

 

Fortran.3.11.3 Mechanism of failure 

 

Fortran.3.11.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.11.5 Implications for standardization in Fortran 

 

Consider adding a capability to report, forbid, or control 

automatic conversions. 

 

Consider adding an inquiry intrinsic to provide the largest integer 

a real kind is capable of representing exactly. 

 

Fortran.3.11.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.12 Bit Representations [STR] 

 

Fortran.3.12.0 Status and history 

Original draft - DLN 

  

Fortran.3.12.1 Language-specific terminology 

 



A bit representation might be made visible when the same storage location 

in a storage sequence has names with different types.  This can occur 

when a common block has different names in different scopes, or 

when an equivalence has names of different types for the same location. 

Also, the TRANSFER intrinsic copies bits between variables without regard 

for their types. 

 

Misuse of the Interoperability with C features of Fortran 

may result in a violation of the Fortran type system. 

 

Fortran.3.12.2 Description of application vulnerability 

 

Fortran.3.12.3 Mechanism of failure 

 

Fortran.3.12.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Always use the same definition for a common block in every scoping unit. 

Better, convert common blocks to modules.  Use renames to retain 

previous names as needed. 

 

Keep the same type for all variables in an equivalence set. 

 

Do not use TRANSFER. 

 

Ensure type consistency when passing pointers to coprocessor routines. 

 

Fortran.3.12.5 Implications for standardization in Fortran 

 

Processor might have the ability to detect and report the occurrence 

of storage locations with more then one type, and report the use 

of the TRANSFER intrinsic. 

 

Fortran.3.12.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.13 Floating-point Arithmetic [PLF] 

 

Fortran.3.13.0 Status and history 

Original draft - DLN 

 

Fortran.3.13.1 Language-specific terminology 

 

A floating point number is of type REAL.  There are several (at least 

two) 

kinds of type real supported by any processor.  The type kind values 

parameterize the precision and range (of exponent) supported. 

 

Concerns over floating point characteristics also apply to complex 

data and operations. 

 

Possibly distinct type kind values are available via the IEEE intrinsic 



modules. 

 

Fortran.3.13.2 Description of application vulnerability 

 

Fortran.3.13.3 Mechanism of failure 

 

Fortran.3.13.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Where precise control of floating point operations is required, 

use the IEEE intrinsic modules. 

 

Use trusted libraries to perform common operations (such as 

linear algebra, Fourier transforms, minimax problems, and so on). 

 

Fortran.3.13.5 Implications for standardization in Fortran 

 

Processors might be required to have an option to detect 

and report the occurrence of tests for floating point equality. 

 

Fortran.3.13.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.14 Enumerator Issues [CCB] 

 

Fortran.3.14.0 Status and history 

  

Fortran.3.14.1 Language-specific terminology 

 

The Fortran enumerator type is designed solely for interoperability 

with the C enumerator type, and should not be used for other purposes. 

 

Fortran.3.14.2 Description of application vulnerability 

 

Fortran.3.14.3 Mechanism of failure 

 

Fortran.3.14.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.14.5 Implications for standardization in Fortran 

 

Fortran might consider defining a standard enumerator type 

for uses beyond interoperability with C. 

 

Fortran.3.14.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.15 Numeric Conversion Errors [FLC] 

 

Fortran.3.15.0 Status and history 



Original draft - DLN 

  

Fortran.3.15.1 Language-specific terminology 

 

Fortran.3.15.2 Description of application vulnerability 

 

Fortran.3.15.3 Mechanism of failure 

 

Fortran.3.15.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.15.5 Implications for standardization in Fortran 

 

Fortran might consider adding a requirement that processors have 

the ability to detect and report conversions that might result 

in loss of data. 

 

Fortran might consider adding an inquiry intrinsic 

to report the largest integer a real type can represent exactly. 

 

Fortran.3.15.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.16 String Termination [CJM] 

 

Fortran.3.16.0 Status and history 

Original draft - DLN 

  

Fortran.3.16.1 Language-specific terminology 

 

Fortran has two varieties of character assignment: One has 

a truncate or blank fill semantic; the other causes a re-allocation 

of the target of the assignment when needed.  No string terminator 

is used in the standard language. 

 

Fortran.3.16.2 Description of application vulnerability 

 

Fortran.3.16.3 Mechanism of failure 

 

Fortran.3.16.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.16.5 Implications for standardization in Fortran 

 

Fortran.3.16.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.17 Boundary Beginning Violation [XYX] 

 

Fortran.3.17.0 Status and history 



Original draft - DLN 

  

Fortran.3.17.1 Language-specific terminology 

 

Fortran uses the term <rank> for the number of dimensions 

of an array. 

 

An array of rank <n> is said to have <n> extents. 

Each extent has an upper and a lower bound. 

Using subscripts with values outside the bounds is prohibited. 

An index is called a subscript in Fortran. 

 

Fortran.3.17.2 Description of application vulnerability 

 

Fortran.3.17.3 Mechanism of failure 

 

Fortran.3.17.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use whole array operations and intrinsics where possible. 

Use inquiry intrinsics to determine upper and lower bounds. 

Choose upper and lower bounds that naturally describe the problem. 

Use assumed shape arrays when passing array arguments. 

Use allocatable, automatic, or fixed shape local arrays. 

 

Fortran.3.17.5 Implications for standardization in Fortran 

 

Fortran.3.17.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.18 Unchecked Array Indexing [XYZ] 

 

Fortran.3.18.0 Status and history 

Original draft - DLN 

  

Fortran.3.18.1 Language-specific terminology 

 

Fortran.3.18.2 Description of application vulnerability 

 

Fortran.3.18.3 Mechanism of failure 

 

Fortran.3.18.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use whole array operations and intrinsics where possible. 

Use inquiry intrinsics to determine upper and lower bounds. 

Choose upper and lower bounds that naturally describe the problem. 

Use assumed shape arrays when passing array arguments. 

Use allocatable, automatic, or fixed shape local arrays. 

 

Fortran.3.18.5 Implications for standardization in Fortran 

 



Fortran.3.18.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.19 Unchecked Array Copying [XYW] 

 

Fortran.3.19.0 Status and history 

  

Fortran.3.19.1 Language-specific terminology 

 

Fortran.3.19.2 Description of application vulnerability 

 

Fortran.3.19.3 Mechanism of failure 

 

Fortran.3.19.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use whole array operations and intrinsics where possible. 

Use inquiry intrinsics to determine upper and lower bounds. 

Choose upper and lower bounds that naturally describe the problem. 

Use assumed shape arrays when passing array arguments. 

Use allocatable, automatic, or fixed shape local arrays. 

 

Fortran.3.19.5 Implications for standardization in Fortran 

 

Fortran.3.19.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.20 Buffer Overflow [XZB] 

 

Fortran.3.20.0 Status and history 

Original draft - DLN 

  

Fortran.3.20.1 Language-specific terminology 

 

Fortran.3.20.2 Description of application vulnerability 

 

Fortran.3.20.3 Mechanism of failure 

 

Fortran.3.20.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use whole array operations and intrinsics where possible. 

Use inquiry intrinsics to determine upper and lower bounds. 

Choose upper and lower bounds that naturally describe the problem. 

Use assumed shape arrays when passing array arguments. 

Use allocatable, automatic, or fixed shape local arrays. 

 

Fortran.3.20.5 Implications for standardization in Fortran 

 

Fortran.3.20.6 Bibliography 



 

 

%%%%% 

 

Fortran.3.21 Pointer Casting and Pointer Type Changes [HFC] 

 

Fortran.3.21.0 Status and history 

Original draft - DLN 

  

Fortran.3.21.1 Language-specific terminology 

 

Fortran pointers are strongly typed, and may point only to variables 

named as targets. 

 

Fortran.3.21.2 Description of application vulnerability 

 

Fortran.3.21.3 Mechanism of failure 

 

Fortran.3.21.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.21.5 Implications for standardization in Fortran 

 

Fortran.3.21.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.22 Pointer Arithmetic [RVG] 

 

Fortran.3.22.0 Status and history 

Original draft - DLN 

  

Fortran.3.22.1 Language-specific terminology 

 

Fortran does not allow pointer arithmetic. 

 

Fortran.3.22.2 Description of application vulnerability 

 

Fortran.3.22.3 Mechanism of failure 

 

Fortran.3.22.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.22.5 Implications for standardization in Fortran 

 

Fortran.3.22.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.23 Null Pointer Dereference [XYH] 

 

Fortran.3.23.0 Status and history 



Original draft - DLN 

  

Fortran.3.23.1 Language-specific terminology 

 

Fortran.3.23.2 Description of application vulnerability 

 

Fortran.3.23.3 Mechanism of failure 

 

Fortran.3.23.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use the ALLOCATED and ASSOCIATED intrinsics to guard 

against using pointers without targets. 

 

Fortran.3.23.5 Implications for standardization in Fortran 

 

Fortran.3.23.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.24 Dangling Reference to Heap [XYK] 

 

Fortran.3.24.0 Status and history 

Original draft - DLN 

  

Fortran.3.24.1 Language-specific terminology 

 

Fortran.3.24.2 Description of application vulnerability 

 

Fortran.3.24.3 Mechanism of failure 

 

Fortran.3.24.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use assignment statements to give variables initial values 

on entry to procedures.  Be aware that an initial value 

in a declarative statement implies static storage. 

 

Do not apply the SAVE attribute to allocatable local variables. 

 

Fortran.3.24.5 Implications for standardization in Fortran 

 

Fortran.3.24.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.25 Templates and Generics [SYM] 

 

Fortran.3.25.0 Status and history 

Original draft - DLN 

  

Fortran.3.25.1 Language-specific terminology 



 

Fortran does not support templates or generics. 

 

Fortran.3.25.2 Description of application vulnerability 

 

Fortran.3.25.3 Mechanism of failure 

 

Fortran.3.25.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.25.5 Implications for standardization in Fortran 

 

Fortran.3.25.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.26 Inheritance [RIP] 

 

Fortran.3.26.0 Status and history 

Original draft - DLN 

  

Fortran.3.26.1 Language-specific terminology 

 

A type that inherits from another type is said to be a child type 

that extends the parent type.  Fortran supports single inheritance only. 

Polymorphic variables are limited to pointers, allocatable variables, 

and dummy arguments. 

 

Fortran.3.26.2 Description of application vulnerability 

 

Fortran.3.26.3 Mechanism of failure 

 

Fortran.3.26.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.26.5 Implications for standardization in Fortran 

 

Fortran might consider adding class invariants. 

 

Fortran.3.26.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.27 Initialization of Variables [LAV] 

 

Fortran.3.27.0 Status and history 

Original draft - DLN 

  

Fortran.3.27.1 Language-specific terminology 

 

Supplying an initial value to a variable implies 

that static storage will be used, not that the variable 



is initialized whenever the scope in which it is declared is entered. 

 

Fortran.3.27.2 Description of application vulnerability 

 

Fortran.3.27.3 Mechanism of failure 

 

Fortran.3.27.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use executable statements to supply initial values 

to procedure local variables. 

 

Fortran.3.27.5 Implications for standardization in Fortran 

 

Fortran might consider a way to supply an initial value 

for a variable every time the scope in which it is declared is entered. 

 

Fortran.3.27.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.28 Wrap-around Error [XYY] 

 

Fortran.3.28.0 Status and history 

Original draft - DLN 

  

Fortran.3.28.1 Language-specific terminology 

 

Fortran.3.28.2 Description of application vulnerability 

 

Fortran.3.28.3 Mechanism of failure 

 

Fortran.3.28.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not use the same variables for bit operations and for arithmetic; 

instead, use separate variables and check values upon conversion. 

 

Fortran.3.28.5 Implications for standardization in Fortran 

 

Fortran might consider a separate type for bit operations. 

 

Fortran.3.28.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.29 Sign Extension Error [XZI] 

 

Fortran.3.29.0 Status and history 

Original draft - DLN 

  

Fortran.3.29.1 Language-specific terminology 



 

Fortran does not have unsigned data types. 

 

Fortran.3.29.2 Description of application vulnerability 

 

Fortran.3.29.3 Mechanism of failure 

 

Fortran.3.29.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.29.5 Implications for standardization in Fortran 

 

Fortran.3.29.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.30 Operator Precedence/Order of Evaluation [JCW] 

 

Fortran.3.30.0 Status and history 

Original draft - DLN 

  

Fortran.3.30.1 Language-specific terminology 

 

Assignment is not an operator in Fortran. 

Bit operations are intrinsic functions, so precedence is clear. 

 

Fortran.3.30.2 Description of application vulnerability 

 

Fortran.3.30.3 Mechanism of failure 

 

Fortran.3.30.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.30.5 Implications for standardization in Fortran 

 

Fortran.3.30.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.31 Side-effects and Order of Evaluation [SAM] 

 

Fortran.3.31.0 Status and history 

Original draft - DLN 

  

Fortran.3.31.1 Language-specific terminology 

 

A Fortran processor need not evaluate any part of an expression 

not needed to compute the value of the expression.  Side effects 

of functions contributing to such portions of expressions 

are processor-dependent, and any values associated with such 

problematic evaluation is undefined. 

 



Fortran.3.31.2 Description of application vulnerability 

 

Fortran.3.31.3 Mechanism of failure 

 

Fortran.3.31.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not put functions in expressions where they might not be evaluated 

if the function has side effects. 

Prefer to use pure functions where that will achieve 

the programming objective. 

 

Fortran.3.31.5 Implications for standardization in Fortran 

 

Fortran might consider an attribute to control function evaluation 

in expressions. 

 

Fortran.3.31.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.32 Likely Incorrect Expression [KOA] 

 

Fortran.3.32.0 Status and history 

Original draft - DLN 

 

Fortran.3.32.1 Language-specific terminology 

 

Fortran.3.32.2 Description of application vulnerability 

 

Fortran.3.32.3 Mechanism of failure 

 

Fortran.3.32.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use variables to hold function results in complex expressions. 

 

Fortran.3.32.5 Implications for standardization in Fortran 

 

Fortran might consider an attribute to control function evaluation 

in expressions. 

 

Fortran.3.32.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.33 Dead and Deactivated Code [XYQ] 

 

Fortran.3.33.0 Status and history 

Original draft - DLN 

 

Fortran.3.33.1 Language-specific terminology 



 

Fortran.3.33.2 Description of application vulnerability 

 

Fortran.3.33.3 Mechanism of failure 

 

Fortran.3.33.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.33.5 Implications for standardization in Fortran 

 

Fortran might consider requiring processors to detect and report 

the presence of unreachable code. 

 

Fortran.3.33.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.34 Switch Statements and Static Analysis [CLL] 

 

Fortran.3.34.0 Status and history 

Original draft - DLN 

 

Fortran.3.34.1 Language-specific terminology 

 

Fortran.3.34.2 Description of application vulnerability 

 

Fortran.3.34.3 Mechanism of failure 

 

Fortran.3.34.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.34.5 Implications for standardization in Fortran 

 

Fortran might consider requiring processors to detect and report 

the presence of unreachable code. 

 

Fortran.3.34.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.35 Demarcation of Control Flow [EOJ] 

 

Fortran.3.35.0 Status and history 

Original draft - DLN 

 

Fortran.3.35.1 Language-specific terminology 

 

Fortran.3.35.2 Description of application vulnerability 

 

Fortran.3.35.3 Mechanism of failure 

 

Fortran.3.35.4 Avoiding the vulnerability or mitigating its effects 



in Fortran 

 

Note that the non-block form of the DO construct is a decremental 

feature, 

and as such, it should not be used. 

 

Use the block form of the DO loop. 

 

Fortran.3.35.5 Implications for standardization in Fortran 

 

Fortran.3.35.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.36 Loop Control Variables [TEX] 

 

Fortran.3.36.0 Status and history 

Original draft - DLN 

 

Fortran.3.36.1 Language-specific terminology 

 

It is not possible to modify the loop control variable 

of a DO loop in any way that the processor can detect. 

If the loop control variable is passed to a procedure, 

the processor might not be able to detect violations. 

 

Fortran.3.36.2 Description of application vulnerability 

 

Fortran.3.36.3 Mechanism of failure 

 

Fortran.3.36.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.36.5 Implications for standardization in Fortran 

 

Fortran might consider an option to require all procedures called 

with loop variables as arguments to have explicit interface and 

argument intents, so the dummy argument receiving 

the loop control variable can be checked to be intent( in). 

 

Fortran.3.36.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.37 Off-by-one Error [XZH] 

 

Fortran.3.37.0 Status and history 

Original draft - DLN 

 

Fortran.3.37.1 Language-specific terminology 

 

Fortran.3.37.2 Description of application vulnerability 



 

Fortran.3.37.3 Mechanism of failure 

 

Fortran.3.37.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Be clear about < versus <= and > versus >= operators. 

 

Use inquiry intrinsics to determine the upper and lower bounds 

of array extents. 

 

Fortran.3.37.5 Implications for standardization in Fortran 

 

Fortran.3.37.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.38 Structured Programming [EWD] 

 

Fortran.3.38.0 Status and history 

Original draft - DLN 

 

Fortran.3.38.1 Language-specific terminology 

 

Fortran.3.38.2 Description of application vulnerability 

 

Fortran.3.38.3 Mechanism of failure 

 

Fortran.3.38.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not use alternate returns. 

Do not use branches from input/output statements 

when status (error or end) conditions occur. 

 

Fortran.3.38.5 Implications for standardization in Fortran 

 

Fortran might consider an option to forbid branching 

from transfer statements, and alternate returns from subprograms. 

 

Fortran.3.38.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.39 Passing Parameters and Return Values [CSJ] 

 

Fortran.3.39.0 Status and history 

Original draft - DLN 

 

Fortran.3.39.1 Language-specific terminology 

 

Fortran does not specify a mechanism for passing values 



into or out of a subroutine.  This is governed by argument association 

rules, together with argument intents. 

 

Fortran.3.39.2 Description of application vulnerability 

 

Fortran.3.39.3 Mechanism of failure 

 

Fortran.3.39.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use argument intents. 

 

Fortran.3.39.5 Implications for standardization in Fortran 

 

Fortran might consider introducing a more complete set 

of argument intents, to cover all cases including pointers to constants 

versus constant pointers. 

 

Fortran.3.39.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.40 Dangling References to Stack Frames [DCM] 

 

Fortran.3.40.0 Status and history 

Original draft - DLN 

 

Fortran.3.40.1 Language-specific terminology 

 

Fortran.3.40.2 Description of application vulnerability 

 

Fortran.3.40.3 Mechanism of failure 

 

Fortran.3.40.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not assign local targets to pointers whose longevity 

is longer than the function's execution. 

 

Fortran.3.40.5 Implications for standardization in Fortran 

 

Fortran might consider providing that processors shall detect 

and report where pointers declared outside a procedure 

are pointer assigned to procedure local targets. 

 

Fortran.3.40.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.41 Subprogram Signature Mismatch [OTR] 

 

Fortran.3.41.0 Status and history 



Original draft - DLN 

 

Fortran.3.41.1 Language-specific terminology 

 

Fortran.3.41.2 Description of application vulnerability 

 

Fortran.3.41.3 Mechanism of failure 

 

Fortran.3.41.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use modules to package procedures so they will have explicit interfaces. 

Use interface bodies to describe external procedures, these might be 

generated automatically by a tool, or by the processor. 

 

Fortran.3.41.5 Implications for standardization in Fortran 

 

Fortran might consider providing that processors shall have the ability 

to require explicit interfaces for all procedures. 

 

Fortran.3.41.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.42 Recursion [GDL] 

 

Fortran.3.42.0 Status and history 

Original draft - DLN 

 

Fortran.3.42.1 Language-specific terminology 

 

Fortran.3.42.2 Description of application vulnerability 

 

Fortran.3.42.3 Mechanism of failure 

 

Fortran.3.42.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.42.5 Implications for standardization in Fortran 

 

Fortran.3.42.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.43 Returning Error Status [NZN] 

 

Fortran.3.43.0 Status and history 

Original draft - DLN 

 

Fortran.3.43.1 Language-specific terminology 

 

Fortran.3.43.2 Description of application vulnerability 



 

Fortran.3.43.3 Mechanism of failure 

 

Fortran.3.43.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Always check the STAT= or IOSTAT= specifier as appropriate. 

 

Fortran.3.43.5 Implications for standardization in Fortran 

 

Fortran might consider providing that processors shall have the ability 

to require all statements supporting a STAT= or IOSTAT= specifier 

to have one present on each occurrence. 

 

Fortran.3.43.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.44 Termination Strategy [REU] 

 

Fortran.3.44.0 Status and history 

Original draft - DLN 

 

Fortran.3.44.1 Language-specific terminology 

 

Fortran.3.44.2 Description of application vulnerability 

 

Fortran.3.44.3 Mechanism of failure 

 

Fortran.3.44.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Understand and use ALL STOP, STOP and SYNC IMAGES correctly. 

 

Fortran.3.44.5 Implications for standardization in Fortran 

 

Fortran.3.44.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.45 Extra Intrinsics [LRM] 

 

Fortran.3.45.0 Status and history 

Original draft - DLN 

 

Fortran.3.45.1 Language-specific terminology 

 

Fortran.3.45.2 Description of application vulnerability 

 

Fortran.3.45.3 Mechanism of failure 

 

Fortran.3.45.4 Avoiding the vulnerability or mitigating its effects 



in Fortran 

 

Give all external names the external attribute, 

or better, an explicit interface. 

 

Fortran.3.45.5 Implications for standardization in Fortran 

 

Fortran.3.45.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.46 Type-breaking Reinterpretation of Data [AMV] 

 

Fortran.3.46.0 Status and history 

Original draft - DLN 

 

Fortran.3.46.1 Language-specific terminology 

 

Fortran.3.46.2 Description of application vulnerability 

 

Fortran.3.46.3 Mechanism of failure 

 

Fortran.3.46.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Do not rely on different names with different types in storage sequences. 

Do not use TRANSFER. 

Do not cause storage association of objects of different type by 

using common or equivalence. 

 

Fortran.3.46.5 Implications for standardization in Fortran 

 

Fortran might consider requiring processors to detect and report 

when type breaking reuse of bits occurs. 

 

Fortran.3.46.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.47 Memory Leak [XYL] 

 

Fortran.3.47.0 Status and history 

Original draft - DLN 

 

Fortran.3.47.1 Language-specific terminology 

 

Fortran.3.47.2 Description of application vulnerability 

 

Fortran.3.47.3 Mechanism of failure 

 

Fortran.3.47.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 



 

Use allocatable or automatic variables in local procedures. 

Do not apply the SAVE attribute. 

 

Fortran.3.47.5 Implications for standardization in Fortran 

 

Fortran.3.47.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.48 Argument Passing to Library Functions [TRJ] 

 

Fortran.3.48.0 Status and history 

Original draft - DLN 

 

Fortran.3.48.1 Language-specific terminology 

 

Fortran.3.48.2 Description of application vulnerability 

 

Fortran.3.48.3 Mechanism of failure 

 

Fortran.3.48.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use explicit interfaces for libraries. 

Use tools, if needed, to create interfaces for libraries. 

 

Fortran.3.48.5 Implications for standardization in Fortran 

 

Fortran.3.48.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.49 Dynamically-linked Code and Self-modifying Code [NYY]  

 

Fortran.3.49.0 Status and history 

Original draft - DLN 

 

Fortran.3.49.1 Language-specific terminology 

 

Fortran does not support self-modifying code. 

 

Fortran.3.49.2 Description of application vulnerability 

 

Fortran.3.49.3 Mechanism of failure 

 

Fortran.3.49.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Fortran.3.49.5 Implications for standardization in Fortran 

 

Fortran.3.49.6 Bibliography 



 

 

%%%%% 

 

Fortran.3.50 Library Signature [NSQ] 

 

Fortran.3.50.0 Status and history 

Original draft - DLN 

 

Fortran.3.50.1 Language-specific terminology 

 

Fortran has no self-modifying code. 

 

Fortran.3.50.2 Description of application vulnerability 

 

Fortran.3.50.3 Mechanism of failure 

 

Fortran.3.50.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use explicit interfaces for libraries. 

Use tools, if needed, to create interfaces for libraries. 

 

Fortran.3.50.5 Implications for standardization in Fortran 

 

Fortran.3.50.6 Bibliography 

 

 

%%%%% 

 

Fortran.3.51 Unanticipated Exceptions from Library Routines [HJW] 

 

Fortran.3.51.0 Status and history 

Original draft - DLN 

 

Fortran.3.51.1 Language-specific terminology 

 

Fortran does not support handling exceptions from libraries. 

 

Fortran.3.51.2 Description of application vulnerability 

 

Fortran.3.51.3 Mechanism of failure 

 

Fortran.3.51.4 Avoiding the vulnerability or mitigating its effects 

in Fortran 

 

Use explicit interfaces for libraries. 

Use tools, if needed, to create interfaces for libraries. 

 

Fortran.3.51.5 Implications for standardization in Fortran 

 

Fortran might consider providing a way to handle exceptions. 

 

Fortran.3.51.6 Bibliography 



 

 

 

 

 

 


