
ISO/IEC JTC 1/SC 22/OWGV N 0199 
Draft language-specific annex for Ada resulting from workshop at 2009 Ada Europe 
conference 
 
Date 22 June 2009 
Contributed by John Benito 
Original file name Annex Ada.doc 
Notes  
 
 



Annex Outline 

Annex Ada 
(informative) 

Language Specific Vulnerability Template 

Ada. Ada specific information for vulnerabilities 
Every vulnerability description of Clause 6 of the main document should be addressed in 
the annex in the same order even if there is simply a notation that it is not relevant to the 
language in question. 
 
This Annex specifies the characteristics of the Ada programming language that are 
related to the vulnerabilities defined in this Technical Report.  When applicable, the 
techniques to mitigate the vulnerability in Ada applications are described in the 
associated section on the vulnerability. 

Ada.1 Identification of standards and associated documentation 
ISO/IEC 8652:1995 Information Technology – Programming Languages—Ada. 
 
ISO/IEC 8652:1995/COR.1:2001, Technical Corrigendum to Information Technology – 
Programming Languages—Ada. 
 
ISO/IEC 8652:1995/AMD.1:2007, Amendment to Information Technology – 
Programming Languages—Ada. 
 
ISO/IEC TR 15942:2000, Guidance for the Use of Ada in High Integrity Systems. 
 
ISO/IEC TR 24718:2005, Guide for the use of the Ada Ravenscar Profile in high 
integrity systems. 
 
Lecture Notes on Computer Science 5020, “Ada 2005 Rationale: The Language, the 
Standard Libraries,” John Barnes, Springer, 2008. 
 
Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: 
Software Productivity Consortium, 1992. 

Ada.2 General terminology and concepts 
 
Use the LRM language here for implementation defined, unspecified, erroneous 
execution, bounded error, pragma. 
 
Erroneous Execution: 



Expanded name: A variable V inside subprogram S in package P can be named V, or P.S.V. The 
name V is called the direct name while the name P.S.V is called the expanded name.   

Ada.3.7 Choice of Clear Names [NAI] 
 

Ada.3.7.0 Status and history 
 
20090610 – J. Barnes & A. Burns at Workshop 
 

Ada.3.7.1 Language-specific terminology and features 
The term name used in this Technical Report corresponds to the term identifier in Ada. In 
this section, the term name will be used in this context. 
 
Ada is not a case-sensitive language. Names may use an underscore to improve clarity.  

Ada.3.7.2 Description of programming language vulnerability or 
application vulnerability 
There are two possible issues: the use of the identical name for different purposes (overloading) 
and the use of similar names for different purposes. 

This vulnerability does not address overloading, which should be covered elsewhere in this 
Technical Report. 

The risk of confusion by the use of similar names might occur through: 

• Mixed casing. Ada treats upper and lower case letters in names as identical. Thus no 
confusion can arise through an attempt to use Item and ITEM as distinct identifiers with 
different meanings. 

• Underscores and periods. Ada permits single underscores in identifiers and they are 
significant. Thus BigDog and Big_Dog are different identifiers. But multiple underscores 
(which might be confused with a single underscore) are forbidden, thus Big__Dog is 
forbidden. Leading and trailing underscores are also forbidden. Periods are not permitted 
in identifiers at all. 

• Singular/plural forms. Ada does permit the use of identifiers which differ solely in this 
manner such as Item and Items. However, the user might use the identifier Item for a 
single object of a type T and the identifier Items for an object denoting an array of items 
that is of a type array (…) of T. The use of Item where Items was intended or vice versa will 
be detected by the compiler because of the type violation and the program rejected so no 
vulnerability would arise. 

• International character sets. Ada compilers strictly conform to the appropriate 
international standard for character sets. 

• Identifier length. All characters in an identifier in Ada are significant. Thus 
Long_IdentifierA and Long_IdentifierB are always different. An identifier cannot be split 
over the end of a line. The only restriction on the length of an identifier is that enforced by 
the line length and this is guaranteed by the language standard to be no less than 200. 

Ada permits the use of names such as X, XX, and XXX (which might all be declared as integers) 
and a programmer could easily, by mistake, write XX where X (or XXX) was intended. Ada does 



not attempt to catch such errors. 

Ada.3.7.3 Mechanism of failure 
The use of the wrong name will typically result in a failure to compile so no vulnerability will arise. 
But if the wrong name has the same type as the intended name then an incorrect executable 
program will be generated. 

 

Ada.3.7.4 Avoiding the vulnerability or mitigating its effects in Ada 
This vulnerability can be avoided or mitigated in Ada in the following ways: avoid the use of 
similar names to denote different objects of the same type. See the Ada Quality and Style Guide. 

Ada.3.7.5 Implications for standardization 
This Technical Report should include a vulnerability to address concerns associated with 
overloading. 

Ada.3.7.6 Bibliography 
None 

Ada.3.10 Identifier Name Reuse [YOW] 

Ada.3.10.0 Status and history 
20090609:  Stephen Michell, JP Rosen – Ada Europe Vulnerabilities Workshop 

Ada.3.10.1 Language-specific terminology and Features 
Homograph: Two declarations are homographs if they have the same name, and do not overload 
each other according to the rules of the language. 

Overriding: A subprogram overrides another if they have identical names and signatures, except 
that the controlling operand of one is a derived type of the overridden subprogram. 

Hiding: A declaration can be hidden, either from direct visibility, or from all visibility, within certain 
parts of its scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name 
nor a selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using 
a selector_name is still possible. 

Ada.3.10.2 Description of programming language vulnerability or 
application vulnerability 
Ada is a language that permits local scope, and names within nested scopes can hide identical 
names declared in an outer scope. As such it is susceptible to the vulnerability of 6.10.  

Examples of the problem: 

package body P is 
I : Integer;   -- static object called I 

 
procedure Calculate( X : in out Float;  
                                       I : in        Integer) is -- parameter called I 
begin 

X := X * float(I*I); -- want to multiply static I * parameter I 



                               -- static I hidden, wrong product, no diagnostic 
I := I + 1; -- want to increment static I, hidden by parameter I 
                                 -- get compiler diagnostic since we cannot assign  
                               -- to an in parameter. 

end Calculate; 
… 
end P; 

 
Here, the parameter called I hides the static variable I because they have exactly the same type 
and the parameter hides” the outer name. This can be corrected by writing  

package body P is 
I : Float;   -- static object called P.I 
 
procedure Proc is  

I : Integer -– local variable called P.Proc.I 
begin 

I := 1; -- removal of local I causes diagnostic since must say I := 1.0 for float 
end Proc; 

end P; 
 

Consider an example with more nested scope: 

 
procedure P is 

type Age is range 0..125; 
I : Age; 

begin 
  <<INNER>> declare 

I : Integer := 0; 
begin 

P.Inner.I := P.Inner.I+1       -- increment local I 
                                             -- removal of Inner.I causes diagnostic 
P.I := P.I+1;                         -- increment outer I 
                                             -- suceeds even if inner.I removed 

end Inner; 
end P; 

 
In this example, P.I and P.Inner.I are expanded names. 

Ada.3.10.3 Mechanism of failure 
The failure associated with hiding due to nested scopes applies to Ada. For subprograms and 
other overloaded entities the problem is reduced by the fact that hiding also takes the signatures 
of the entities into account. Entities with different signatures, therefore, do not hide each other. 

The failure associated with common substrings of identifiers cannot happen in Ada because all 
characters in a name are significant (see section Ada.3.7). 

Name collisions with keywords cannot happen in Ada because keywords are reserved. Library 
names Ada, System, Interfaces, and Standard can be hidden by the creation of subpackages. For all 
except package Standard, the expanded name Standard.Ada, Standard.System and 
Standard.Interfaces provide the necessary qualification to disambiguate the names. 

Ada.3.10.4 Avoiding the vulnerability or mitigating its effects in Ada  
This vulnerability can be avoided or mitigated in Ada in the following ways: 

 A good way to be guaranteed to keep names separated is to always use the expanded 



name. This guarantees that, even if the simple name could produce a conflict, there is 
never any doubt as to usage in the mind of the human reader. Indeed, high integrity 
system guidelines recommend that distinct and representative names be used of items, 
and that each usage of a name be distinct.  

Ada.3.10.5 Implications for standardization 
 

 Ada could define a pragma Restrictions identifier No_Hiding that forbids the use of a 
declaration that result in a local homograph. 

Ada.3.10.6 Bibliography 
None 

Ada.3.11 Type System [IHN] 

Ada.3.11.0 Status and history 
08-06-09   Created, EP at Vulnerabilities Workshop 

Ada.3.11.1 Language-specific terminology and features 
Ada does not use the C-specific terms “coercion” and “cast”. It uses the terms “implicit 
conversion” and “explicit conversion” to refer to the same language concepts.  
Ada uses a strong type system based on name equivalence rules. It distinguishes types, 
which embody statically checkable equivalence rules, and subtypes, which associate 
dynamic properties with types, e.g., index ranges for array subtypes or value ranges for 
numeric subtypes. Subtypes are not types and their values are implicitly convertible to all 
other subtypes of the same type. All subtype and type conversions ensure by static or 
dynamic checks that the converted value is within the value range of the target type or 
subtype. If a static check fails, the program is rejected by the compiler. If a dynamic 
check fails, an exception Constraint_Error is raised.  
 
To effect a transition of a value from one type to another, three kinds of conversions can 
be applied in Ada: 

a) Implicit conversions: there are few situations in Ada that allow for implicit 
conversions. An example is the assignment of a value of a type to a polymorphic 
variable of an encompassing class. In all cases where implicit conversions are 
permitted, neither static nor dynamic type safety or application type semantics 
(see below) are endangered by the conversion. 
b) Unchecked conversions: Conversions that are obtained by instantiating the 
generic subprogram Unchecked-Conversion are unsafe and enable all 
vulnerabilities mentioned in the TR as the result of a breach in a strong type 
system.  Unchecked_Conversion is occasionally needed to interface with type-less 
data structures, e.g., hardware registers. 
c) Explicit conversions: various explicit conversions between related types are 
allowed in Ada. All such conversions ensure by static or dynamic rules that the 
converted value is a valid value of the target type. Violations of subtype 
properties cause an exception to be raised by the conversion. 



 
A guiding principle in Ada is that, with the exception of using instances of 
Unchecked_Conversion, no undefined semantics can arise from conversions and the 
converted value is a valid value of the target type.  

Ada.3.11.2 Description of programming language vulnerability or 
application vulnerability 
Unchecked conversions can cause all conceivable problems that result from 
circumventing a type system. 
 
Implicit conversions cause no application vulnerability, as long as resulting exceptions 
are properly handled. 
 
Explicit conversions can violate the application type semantics. e.g., conversion from feet 
to meter, or, in general, between types that denote value of different units, without the 
appropriate conversion factors can cause application vulnerabilities. However, no 
undefined semantics can result and no values can arise that are outside the range of legal 
values of the target type. 

Ada.3.11.3 Mechanism of failure 
Failure to apply correct conversion factors when explicitly converting among types for 
different units will result in application failures due to incorrect values. 
 
Applying instances of Unchecked_Conversion additionally risk undefined semantics, 
since the generated value may be a value that is not legal for the target type. 
 
Failure to handle the exceptions raised by failed checks of dynamic subtype properties 
cause systems, threads or components to halt unexpectedly. 

Ada.3.11.4 Avoiding the vulnerability or mitigating its effects in Ada 
The vulnerabilities of the type system can be avoided or mitigated in Ada in the 
following ways: 
 

• Instances of Unchecked_Conversions can be prohibited by using the Restriction 
pragma for No_Unchecked_Conversion. The restriction is then enforced by the 
compiler.  

• Additionally, the predefined ‘Valid attribute for a given subtype may be applied 
to any value to ascertain if the value is a legal value of the subtype. This is 
especially useful when interfacing with type-less systems or after 
Unchecked_Conversion. 

• A conceivable measure to prevent incorrect unit conversions is to restrict explicit 
conversions to the bodies of user-provided conversion functions that are then used 
as the only means to effect the transition between unit systems. These bodies are 
to be critically reviewed for proper conversion factors. 

• Exceptions raised by type and subtype conversions shall be handled.  



 
No other vulnerabilities exist.  

Ada.3.11.5 Implications for standardization 
None 

Ada.3.11.6 Bibliography 
None 

Ada.3.12 Bit Representation [STR] 

Ada.3.12.0 Status and history 
20090610:  T. Vardanega & M. Pinho at Vulnerabilities Workshop 

Ada.3.12.1 Language-specific terminology and features 
Operational and Representation Attributes: The values of certain implementation-
dependent characteristics can be obtained by querying the applicable attributes. Some 
attributes are can be specified by the user; for example: 

X'Alignment: allows the alignment of objects on a storage unit boundary at an 
integral multiple of a specified value. 
X'Size: denotes the size in bits of the representation of the object.  
X'Component_Size: denotes the size in bits of components of the array type X.  

 
Record Representation Clauses: provide a way to specify the layout of components 
within records, that is, their order, position, and size. 
 
Storage Place Attributes: for a component of a record, the attributes (integer) Position, 
First_Bit and Last_Bit are used to specify the component position and size within the 
record. 
 
Bit Ordering: Ada allows use of the attribute Bit_Order of a type to query or specify its 
bit ordering representation (High_Order_First and Low_Order_First). The default value 
is implementation defined and available at System.Bit_Order. 
 
Modular Types: a class of unsigned types in Ada that ranges 0..n, where n can be up to 
2**N for N-bit word architectures. These types have wrap-around semantics for 
arithmetic operations, bit-wise "and" and "or" operations, and arithmetic and logical shift 
operations. 
 
Atomic and Volatile: Ada can force every access to an object to be an indivisible access 
to the entity in memory instead of possibly partial, repeated manipulation of a local or 
register copy. In Ada, these properties are specified by pragmas. 
 
Endianness: the programmer may specify the endianness of the representation through 
the use of a pragma. 



Ada.3.12.2 Description of programming language vulnerability or 
application vulnerability 
In general, the type system of Ada protects against the vulnerabilities outlined in Section 6.12 of 
this Technical Report. However, the use of Unchecked_Conversion, calling foreign language 
routines, and unsafe manipulation of address representations voids these guarantees. 

The vulnerabilities caused by the inherent conceptual complexity of bit level programming remain.  

Ada.3.12.3 Mechanism of failure 
See this Technical Report for failures due to the conceptual complexity of bit-level programming.   

Ada.3.12.4 Avoiding the vulnerability or mitigating its effects in Ada 
The vulnerabilities associated with the complexity of bit-level programming can be mitigated by: 

• The use of record and array types with the appropriate representation specifications 
added so that the objects are accessed by their logical structure rather than their physical 
representation.  These representation specifications may address: order, position, and 
size of data components and fields.   

• The use of pragma Atomic and pragma Atomic_Components to ensure that all updates to 
objects and components happen atomically, 

• The use of pragma Volatile and pragma Volatile_Components to notify the language 
processor that objects and components must be read immediately before use as other 
devices or systems may be updating them between accesses of the program.  

• The default object layout chosen by the compiler may be queried by the programmer to 
determine the expected behavior of the final representation. 

For the traditional approach to bit-level programming, Ada provides modular types and literal 
representations in arbitrary base from 2 to 16 to deal with numeric entities and correct handling of 
the sign bit.  The use of pragma Pack on arrays of Booleans provides a type-safe way of 
manipulating bit strings and eliminates the use of error prone arithmetic operations. 

Ada.3.12.5 Implications for standardization 

None 

Ada.3.12.6 Bibliography 

None 

Ada.3.14 Enumerator Issues [CCB] 
Section 6.14 of this Technical Report provides an explanation of the collection of issues 
associated with enumerations.  This section of Appendix Ada specifies the characteristics 
of Ada that are symptomatic of these vulnerabilities and the mitigating features of the 
Ada programming language and associated toolset. 
 

Ada.3.14.0 Status and history 
 
20090609 – J. Tokar Vulnerabilities Workshop Input 



Ada.3.14.1 Language-specific terminology and features 

Enumeration Type: An enumeration type is a discrete type defined by an enumeration of 
its values, which may be named by identifiers or character literals.  In Ada, the types 
Character and Boolean are enumeration types.  The defining identifiers and defining 
character literals of an enumeration type must be distinct.  The predefined order relations 
between values of the enumeration type follow the order of corresponding position 
numbers. 

Enumeration Representation Clause:  An enumeration representation clause may be used to 
specify the internal codes for enumeration literals. 

Case Statement: A case statement selects for execution one of a number of alternative 
sequences of statements; the chosen alternative is defined by the value of an expression.  
The expression of a case statement is expected to be of any discrete type.  The choices of 
a case statement must be of the same type as the type of the expression in the case 
statement. 

Ada.3.14.2 Description of programming language vulnerability or 
application vulnerability 

The full range of possible values of the expression in a case statement must be addressed 
by the case choices.  Two distinct choices of a case statement can not cover the same 
value. The others clause may be used as the last choice of a case statement to capture any 
remaining values of the case expression type that are not covered by the case choices. 
These restrictions are enforced at compile time. 

The remaining vulnerability is that unexpected values are captured by the others clause.  
For example, when the range of the type Character was extended from 128 characters to 
the 256 characters in the Latin-1 character type, an others clause for a case statement 
with a Character type case expression originally written to capture cases associated with 
the 128 characters type now captures the 128 additional cases introduced by the extension 
of the type Character. Some of the new characters may have needed to be covered by the 
existing case choices or new case choices. 

Enumeration representation specification may be used to specify non-default representations of an 
enumeration type, for example when interfacing with external systems. All of the values in the 
enumeration type must be defined in the enumeration representation specification. The numeric values 
of the representation must preserve the original order. For example: 

type IO_Types is (   Null_Op, Open, Close, Read, Write, Sync); 
for IO_Types use (  Null_Op => 0, Open => 1, Close => 2,  
                                Read => 4, Write => 8, Sync => 16 ); 

 
An array may be indexed by such a type causing "holes" in the array object. Normally, these 
holes are not accessible in Ada due to the strict type checking on the array index type and 
constraint checking on the array index value.  However, the holes may be accessed as the result 
of the use of unchecked conversions.   



Ada.3.14.3 Mechanism of failure 
Use of the others clause for a case statement may result in unintended values being 
captured by this clause.   
 
Use of Unchecked_Conversion on enumeration types as array indices may result in 
access to undefined regions of the array and lead to erroneous execution. 

Ada.3.14.4 Avoiding the vulnerability or mitigating its effects in Ada 
This vulnerability can be avoided or mitigated in Ada in the following ways: 

• For case statements, do not use the others choice. 
• Do not use Unchecked_Conversion on enumeration types as array indices. 

Ada.3.14.5 Implications for standardization  
None 

Ada.3.14.6 Bibliography 
None 

Ada.3.27 Initialization of Variables [LAV] 

Ada.3.27.0 Status and history 
20090609 Tucker Taft, Rod Chapman – Workshop in Brest 

Ada.3.27.1 Language-specific terminology and features 
Pointer:  objects of an access type. 
Controlled types 
Pragma Suppress 
Pragma Normalize 

Ada.3.27.2 Description of programming language vulnerability or 
application vulnerability 
In Ada, uninitialized variables can only lead to value failure.  Pointers are initialized to 
null by default, therefore this is not an issue for Ada. 
 
In Ada, access to arrays with indices that are variables that have not been initialized will 
not update random memory. Similarly, case statements – more words are needed here to 
explain why wild jumps will not happen in Ada. 
 
Pragma Suppress implications. 
 



Ada.3.27.3 Mechanism of failure 
Failure can occur when a variable is not initialized at its point of declaration, and there is 
a reference to the value of the variable on a path that never assigned to the variable. 

Ada.3.27.4 Avoiding the vulnerability or mitigating its effects in Ada 
 
Scalars are not initialized by default in Ada. Default initialization for record types and 
controlled types may be specified by the user. 
 
Determine what else is needed here. 
 
This vulnerability can be avoided or mitigated in Ada in the following ways: 
 

• Whenever possible, a variable should be replaced by an initialized constant, if in 
fact there is only one assignment to the variable, and the assignment can be 
performed at the point of initialization.  Moving the object declaration closer to its 
point of use by creating a local declare block can increase the frequency of when 
replacing with a constant is possible.  Note that initializing a variable with an 
inappropriate default value such as zero can result in hiding underlying problems, 
because static analysis tools or the compiler itself will then be unable to identify 
use before correct initialization. 

 
• The pragma Normalize_Scalars can be used to ensure that scalars variables are 

always initialized by the compiler in a repeatable fashion.  This pragma is 
designed to initialize variables to an out-of-range value if there is one, to avoid 
hiding errors.  

 

Ada.3.27.5 Implications for standardization  
None 

Ada.3.27.6 Bibliography 
None 



Ada.SPARK SPARK Ada specific information for 
vulnerabilities 
Ada.SPARK.1 Identification of standards and associated 
documentation 

Ada.SPARK.2 General terminology and concepts 

Ada.SPARK.3 
 

Ada.SPARK.3.14 Enumerator Issues [CCB] 

For the SPARK Ada programming languages all of the discussion in section Ada.3.14 is 
applicable with the constraints described in this section. 
 

Ada.SPARK.3.14.1 Language-specific terminology and features 
 
As in Ada.3.14.1. 
 

Ada.SPARK.3.14.2 Description of programming language 
vulnerability or application vulnerability 
 
As in Ada.3.14.2. 
 

Ada.SPARK.3.14.3 Mechanism of failure 
 
<TBD> 
 

Ada.SPARK.3.14.4 Avoiding the vulnerability or mitigating its effects 
in SPARK 
This vulnerability can be avoided or mitigated in SPARK Ada in the following ways: 

… 
 
 

Ada.SPARK.3.27 Initialization of Variables [LAV] 
 



All uninitialized variables are always detectable prior to compilation using sound static 
information-flow analysis [1]. 

Ada.SPARK.3.27.1 Language-specific terminology and features 
Description of SPARK relevant features and terminology 

Ada.SPARK.3.27.2 Description of programming language 
vulnerability or application vulnerability 
Susceptibility and examples. 
 
None. All uninitialized variables are always detected. 

Ada.SPARK.3.27.3 Mechanism of failure 
 
Not applicable. 

Ada.SPARK.3.27.4 Avoiding the vulnerability or mitigating its effects 
in SPARK 
 
This vulnerability is eliminated by use of static information flow analysis. 

Ada.SPARK.3.27.5 Implications for standardization 
 
None. 

Ada.SPARK.3.27.6 Bibliography 
[1] Information-Flow and Data-Flow Analysis of while-Programs. Bernard Carré and 
Jean-Francois Bergeretti, ACM Transactions on Programming Languages and Systems 
(TOPLAS) Vol. 7 No. 1, January 1985. pp 37-61. 
 
 
OVERLOADING BASKET 
The enumeration literals that are associated with enumeration types that are declared 
within packages and accessed by other Ada program units through the with clause may 
be accessed without qualified notation with the inclusion of the use clause.  As 
mentioned previously in the <xxx> section of this annex, the use clause introduces a 
number of vulnerabilities that may result in an Ada program operating differently 
dependent upon the presence or absence of the use clause. 
 
The use type feature of Ada 2005 could be extended to include enumeration literals 
thereby avoiding the need to use fully extended names or the use clause to access 
enumeration literals. 
 
 


