ISO/IEC JTC 1/SC 22/OWGV N 0156
Proposed revision of "6.20 Buffer Overflow [XZB]," contributed by Erhard Ploedereder
30 September 2008

6.20
Buffer Overflow [XZB]

[Note: Recommend merging this with XYW.]

6.20.0
Status and history

2008-09-29, major updates by Erhard Ploedereder

2008-02-13, Edited by Derek Jones

2007-12-15, updated status, Jim Moore

2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.20.1
Description of application vulnerability

A buffer overflow arises when, due to unchecked array indexing or unchecked array copying, storage outside the buffer is accessed. Usually overflows describe the situation where such storage is then written to. Depending on where the buffer is located, logically unrelated portions of the stack or the heap can be modified maliciously or unintentionally. Usually, buffer overflows describe accesses to contiguous memory beyond the end of the buffer data, as may arise when arrays are copied without length checks. However, accessing before the beginning of the buffer data is equally possible, dangerous and maliciously exploitable. See also 6.18.

6.20.2
Cross reference

CWE:

122. Heap-based Buffer Overflow

JSF AV Rule: 15

MISRA C 2004: 21.1

CERT/CC guidelines: ARR33-C, STR31-C and MEM35-C

6.20.3
Mechanism of failure

Overwriting adjacent data (or data at arbitrarily computed locations) outside the area allocated for an array leads to value failures of the application. The incorrect program statements causing the buffer overflow are often difficult to find. But not only data storage can be corrupted. Buffer overflow may also inadvertently or even maliciously overwrite function pointers that may be living in memory, pointing them to the attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually store function pointers in memory. For example, object methods in object-oriented languages are generally implemented using function pointers in data structures that are kept in memory. Since the consequence of a buffer overflow can be targeted to cause arbitrary code execution, this vulnerability can be used to subvert any security service.

6.20.4
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Copying of arrays can be done without an automatic length check ensuring that source and target locations are of the same size. Some languages provide for whole array operations that may obviate the need for library routines for efficiently copying array values. 

· Indexing of array elements can be done without an automatic check that the indexing is within the bounds of the array. 

· Accesses might violate the physical bounds of the entire array or violate the logical bounds of a particular extent. The vulnerability is somewhat mitigated, if the former violation is checked for and detected by the implementation although the latter is not. 

· The bounds of an array are not automatically extended to accommodate accesses that might otherwise have been beyond the bounds. (This may or may not match the programmer's intent.)

6.20.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Use a language or compiler that performs automatic bounds checking on elements accesses and automatic length checking on copying entire arrays.

· Use an abstraction library to add checks on top of library functions that copy arrays without length checks.

· Checks that prevent overflows can be disabled in some languages to increase performance. This option should be used very carefully. 

· Implementation-defined checks that prevent overflows can be enabled in some languages that do not require such checks. This option should be used whenever feasible. 

<<<<< I have no idea what “canary style bounds checking” is or “validity of chunk data” is, so I left the text here, lest I delete something important, but, barring good arguments, would ask for deletion of these 2 bullets.>>>>>>.

· Canary style bounds checking, library changes which ensure the validity of chunk data and other such fixes are possible, but should not be relied upon.

· OS-level preventative functionality can be used, but is also not a complete solution.

6.20.6
Implications for standardization

· Languages should provide save copying of arrays as built-in operation.

· Languages should consider only providing array copy routines in libraries that perform checks on the parameters to ensure that no buffer overrun can occur.

· Languages should perform automatic bounds checking on accesses to array elements. This capability may need to be disabled at times for performance reasons.

6.20.7
Bibliography

[None]

