Summary of the Discussion at the HIRTS DARP C/C++ workshop 25/4/2006

Introduction

HIRTS DARP (High-Integrity Real-Time Systems, Defence and Aerospace Research Partnership) recently held a conference and workshops in Newcastle. One of the associated workshops was for people interested in the use of C and C++ in safety related and safety critical systems.

The 15 participants were from the DARP partners (BAeS, Rolls Royce, QinetiQ and the University of York), other potential developers and tool vendors (noteably Praxis and MathWorks).

Requirements for the proposed ISO generic high-integrity software guidance

As part of the discussion, the question was asked ‘what would you like to see (or not see) in the proposed ISO generic high integrity software standard?’

The following were the main suggestions:

A requirement for more precise definition of the language/subset to be used in a high integrity environment

The view was that the language specification provides ‘a contract between the compiler implementer and the application developer’, and that natural language is an inappropriate medium in which to express such a contract. This definition could be extended to include other tool implementer as well.

The feeling was that, ideally, all language standards should be accompanied by a mathematical model of execution (with the mathematical model having precedence over the text). This certainly should be true for languages used to develop critical systems.

What there was less agreement on was what mathematical formalism would be most useful.

A requirement for a more structured and capable means of recording ‘intent’ and invariants in source code.
SPARK Ada defines annotations as structured comments that enable analysis tools to confirm the intended operation of a program. ASSERT statements and exception specifiers provided some limited indication of intent in C++. Lockheed Martin’s JSF++ has a number of rules that are formulated around preserving class invariants. These ideas are of great benefit to an IV&V team or system assessor.

It would be desirable if such facilities were more widespread, comprehensive and machine checkable. The recommendation was that any high-integrity guideline should define a formal language extension (for example, by the definition of SPARK-like structured comments) to capture design intent and verification properties.

A requirement for a means of collecting data on the effectiveness of any high-integrity guidelines

The concern was expressed that many high integrity guidelines get written without any consideration of how to judge whether or not they are effective, and without a systematic method of obtaining feedback for improvement. Such features should be a requirement.

Some suggestions as to the type of metrics that would be useful included:

· instances of false positives - for each guideline, how often is it reported as violated (by an analysis tool or review), but which subsequent investigation shows is in fact acceptable usage?

· instances of deviations - for each guideline, how often are they deviated and why?

The discussion also touched on who should have responsibility for collecting such information. The developers may regard some such metrics as commercially sensitive, and so be reluctant to publish them. The suggestion was that it was the major customers (e.g. DoD/MoD) and the certification authorities that were in the best place to collect and sanitise such data.

General discussion

The discussion was then broadened to other topics presented during the day, notably:

· progress on MISRA C++

· the formal definition of C++ semantics by NICTA,

· the implementation of ‘Resrticted
 C’ – a MISRA C compliant subset with further restrictions aimed to make it appropriate for safety-critical systems

Picking up the last point on the requirements for generic high-integrity guidelines, the question was asked to MISRA ‘what are you doing (for MISRA C++) to collect metrics to ensure that the guidance is effective?’ The basic answer was that MISRA have no contractual relationship with the users of their guidelines that could impose requirements for the collection of data, though MISRA could certainly request feedback. It was also pointed out to MoD that they were in a better position (as customer, and in some cases certification authority) to require metrics to be collected and delivered.

For the formal C++ semantics. it was confirmed that, although NICTA are developing the semantics for QinetiQ on behalf of an MoD research programme, the intent was to make the specification publicly available. The planned delivery date (to QinetiQ) is around August 2007.

It was noted that NICTA were providing an incremental delivery, with components of the semantics delivered every 2-3 months. It was asked whether these increments could be made available before the final delivery. Neither NICTA nor QinetiQ had any objection to this suggestion, so the feasibility of this will be investigated (to identify any contractual issues, and which of the 6 or so staged deliverables would make coherent interim publications).

For Resrticted C it was asked ‘what features eliminated from the language are going to be most sorely missed?’ There wasn’t a direct answer to this question, but it was observed that the formal C semantics on which Resrticted C is based has three principle omissions:

· no switch statement – this was felt to be a potential limitation

· no goto – as goto is barred in most high-integrity C coding standards, this is not likely to be an issue

· no floats – this might be problematical

Extract from a recent QinetiQ report evaluating a commercial C++ coding standard

Coding rules are created for a number of distinct, if occasionally overlapping, reasons. The primary reasons are:

· To avoid undefined behaviour.

The definitions of most programming languages include circumstances where the behaviour of a particular feature is unspecified. For example, in C and C++, dividing by zero or dereferencing a NULL pointer. In most cases, a program that attempts to divide by zero etc. will fail in an obvious manner (‘crash’), but as there is no correct behaviour defined by the language standard, the compiler is entitled to do something that allows the program to continue, albeit with uncertain consequences. Such behaviour can be hard to find by testing, for example in the case of a divide by zero vulnerability, the circumstances that lead to the divisor being 0 may involve a complex sequence of input events.

· To avoid implementation defined behaviour.

The definitions of most programming languages also include circumstances where the compiler can make a choice, and is required (by the language specification) to document the choice taken. For example, in C and C++ the size of the fundamental types must be stated (e.g. whether ‘int’ occupies 16, 32 or any other number of bits). Because the choice is documented for any particular compiler, a programmer can make use of that information and expect the program behave in a predictable manner. However, the program may then be fragile if the compiler changes, be it because of a new version, the programmer changing compiler vendor, or the code being reused on another project using a different compiler.

· To improve clarity for review and maintenance.

Programs are usually not just written by one person, then compiled and used. Particularly for safety related programs, the code is likely to be independently reviewed, and all programs are likely to be revisited after some time for maintenance or enhancement. This type of rule aims to aid the review and maintenance activities by eliminating possible sources of confusion. For example, not allowing variable names to differ by just replacing letter lower case ‘l’ by numeric ‘1’ or letter upper case ‘O’ and zero ‘0’ (“countl” vs. “count1”). Note that this is a human perception issue. The compiler or an analysis tool has no problem distinguishing “countl” from “count1”, but a reviewer or maintainer is likely to think that they refer to the same object.

· To provide a consistent style across a program or set of programs.

These rules are very similar to those that aim to improve clarity (above), but whilst the clarity rules are based on objective issues of human perception, style issues are more subjective. For example, the adoption of a particular layout style (amount of indenting, where a closing block ‘}’ can be found relative to the opening ‘{‘), or naming conventions (e.g. Hungarian notation, so that mpfMilesPerHours is a class member pointer to a float that represent speed). Such conventions, whilst having no impact on the interpretation of a program as far as the compiler or an analysis tool are concerned, can improve communication between project team members, reviewers and maintainers. Unlike the clarity issues, there is no ‘right’ approach; the benefit comes from having an agreed approach.

· To avoid common programmer errors.

Programmers work for the majority of the time using a small subset of the programming language. There is a tendency to get into the mental habit of saying ‘this feature works like...’, which is a subset of the behaviour actually defined by the language standard. These rules act as reminders of the ‘edge conditions’ where a familiar construct may behave in an unexpected manner. For example, in C and C++, enumeration types map to integers. The normal expectation is that each enumeration type member is distinct. However, if required, members can be assigned explicit values, as in:

enum {red=4, orange, yellow, green, blue, indigo=6, violet};

It may not be obvious to the programmer (though it is fully specified in the language) that yellow and indigo have been declared to be identical values (6), as are green and violet (7). The MISRA rule set addresses this by requiring that enumeration type declarations either:

· provide no explicit integer assignments

· assign a value to the first member only (the rest are then sequential)

· assign a value to all members, so any equivalence is explicit

· To incorporate good practice, particularly with regard to ‘future proofing’.

The particular coding standard being reviewed includes rules that programs should ‘only throw objects of class type’ and always ‘catch exceptions by reference’ . These don’t protect against any particular problems or assist clarity, but do allow code to be re-used with less likelihood that some limitation will require a major rewrite. If an exception is thrown as a class object, and the re-use requires more information to be passed, a derived class can be used to extend it. If exceptions are caught by reference, all the information in the derived class is available to the handler, particularly if the exception is re-thrown. This flexibility would not be available if the exception were thrown as a primitive type, or caught by copying.

� 	spelling changed to get this through our firewall! Now renamed as C(flat) - sorry cannot find the symbol in any loaded fonts!

