
Implementation reality of WG21
standardization
Document number: P3962
Date: 2026-01-13​
Audience: All of WG21
Authors :
Nina Ranns
Erich Keane
Vlad Serebrennikov
Aaron Ballman
Iain Sandoe
Jonathan Caves
Cameron DaCamara
Gabriel Dos Reis
Gonzalo Brito
Christof Meerwald
Chuanqi Xu
Shafik Yaghmour
Cody Miller
Wyatt Childers
Waffl3x (Alex)
Bruno Cardoso Lopes
Hubert Tong
Louis Dionne

1. Introduction

At the Kona 2025 WG21 meeting, a group of implementers got together to discuss their
challenges. We had 20 in person attendees and 9 remote attendees. The group spent an
evening airing out their thoughts. We deliberately kept the meeting closed and encouraged
being open, honest, and unfiltered in hope of creating a safe space for everyone to feel heard.
This document is a summary of that discussion, documenting the general types of concerns
raised, and then following with suggestions on how to tackle them.

2. Topics discussed

This is not an extensive list of topics discussed. For brevity, only the major topics have been
included.

2.1 Cost, resources, and economic realities

The group highlighted the need for greater visibility and shared understanding of the real costs
associated with features. While individual proposals are often evaluated on technical merit and
basic feasibility, the cumulative cost of implementing, maintaining, testing, and supporting
features over time is less visible in committee discussions.

Compiler and library development operates under significant resource constraints. Many
implementers are volunteers or are only partially funded for standardisation work, and there is
often no dedicated staffing to implement all standardized features. As a result, full conformance
to recent standards remains difficult in practice, with some implementations still working toward
C++20 conformance with limited capacity to adopt newer standards. Not having a certain
feature available from all vendors makes the standard non-portable and lowers the chance of
adoption.

Participants emphasized that implementation cost is not limited to initial development. Ongoing
maintenance, performance implications, ABI stability, testing matrix growth, and interactions with
existing features all contribute substantially to the long-term burden.

There was broad agreement that clearer acknowledgment of cost and trade-offs would improve
decision-making. Additionally, it should be understood that adding new features to the standard
necessarily displaces other work, including bug fixes, conformance improvements, performance
tuning, and various high-value library enhancements.

2.2 Implementer voice and understanding implementation complexity

The groups expressed concern that implementers' role and expertise is not always fully
reflected in committee processes, particularly during early design discussions. Implementation
feedback is often introduced late, treated as adversarial, or framed primarily as an obstacle to
progress rather than as essential design input. Strengthening the visibility and influence of
implementer perspectives earlier in the process may help ensure that designs converge on
solutions that are both technically sound and practically deployable.

Several participants noted that there is sometimes an implicit assumption that proposals are
“straightforward” to implement, based on mental models that do not reflect the realities of large,
mature codebases. In practice, seemingly small or localized changes can require extensive
refactoring, interact in unexpected ways with existing features, or impose significant testing and
maintenance costs. Distinguishing between theoretical possibility and practical plausibility was
identified as an important lens that is not consistently applied today.

There was also concern that committee discussions impact upon areas of the toolchain
(especially the intermediate representation optimisers) where relevant expertise is not

well-represented by regular committee attendees. This does on occasion result in
implementation issues that were not addressed in the proposal.

Participants noted that what is often presented as “implementation experience” does not always
provide sufficient information to assess real-world feasibility. Partial prototypes, local forks, or
proof-of-concept implementations can be useful for exploring ideas, but they rarely reflect the
effort required to upstream, maintain, test, and deploy a feature across large and diverse
codebases. Similarly, a prototype based on a particular implementation can’t always be
extrapolated to all implementations as the cost of a feature may be widely different on different
implementations. Additionally, while we encourage implementation experience for new features,
the room also observed that we should do more as a committee to make implementation
experience a requirement for new features.

Overall, participants emphasized that implementers are not merely responsible for wording or
post-hoc execution, but for turning the standard into something coherent, performant, and
usable in real systems. Processes that better recognize this responsibility, and that provide clear
and respected channels for raising concerns, were seen as essential to improving outcomes for
both the committee and users.

2.3 Challenges participating in Evolution and Wording work

Implementers described significant difficulty staying engaged across both evolution and wording
work. The volume of proposals, number of parallel study groups, and pace of discussion already
place heavy demands on limited implementer time. Running EWG/LEWG and CWG/LWG in
parallel further amplifies this challenge, making it difficult for implementers to contribute
meaningfully to early design discussions while also participating in detailed semantic work.

As a result, implementation concerns may surface only after designs have advanced, when
revisiting decisions becomes costly and disruptive. Conversely, design discussions may proceed
without timely input on semantic constraints that would later need to be addressed in the
wording groups, increasing the risk of rework and misalignment between groups.

2.4 Alignment between committee priorities, user needs, and management
expectations

Participants discussed a growing gap between the features the committee is motivated to
standardize and the capabilities that users and organizations are able or willing to adopt. While
the committee continues to advance new language and library features, many users remain on
older standards such as C++17.

Implementers noted that management decisions strongly influence what ultimately gets
implemented and deployed. Management typically prioritizes stability, portability, performance,
and clear user value, and is less inclined to fund work on features that primarily benefit a small
subset of power users or that increase complexity without clear adoption demand. As a result,
even committee-approved features may not be implemented if they do not align with
organizational priorities or user needs.

Additionally, while any given proposal may fit a customer base the author has considered, the
implementers may serve a variety of customer bases with different needs and priorities.

2.5 New features vs bug fixes, and portability

Participants emphasized the importance of balancing new feature development with sustained
focus on bug fixes, conformance, and consolidation. New features take time away from
addressing existing defects and unresolved core issues while often simultaneously adding new
defects to the standard. All these unresolved issues lead to implementations that diverge in
behavior and interpretation. This divergence directly impacts portability, as code that works on
one implementation may behave differently or fail on another.

When features accumulate faster than they can be fully implemented, integrated, and adjusted,
they stack on top of incomplete or inconsistent foundations, further increasing the risk of
non-portable code.

Several participants suggested that dedicating more committee effort to defect resolution and
high-value fixes would lead to more predictable and interoperable C++ code across platforms
and implementations, and ease the adoption of existing features.

3. Suggested actions

3.1 Make cost and trade-offs more visible

We would like the committee to start exploring mechanisms to make cost, resource, and
technical debt impact more explicit, or to reason about an overall cost budget per release. We
should understand that putting features in the standard is not the end, and be more realistic
about the resources we have available.

3.2 Integrate implementer feedback earlier

We would like to ask the committee to start exploring ways of gathering implementer feedback
much earlier in the process. One way of doing that would be to create an advisory implementer

study group. Such a group could provide mandatory feedback to every proposal brought
forward. Some examples of an information that an implementer study group could provide are:

-​ Is this feature feasible in the way it is specified ?
-​ What is the cost of this feature for a given implementation?
-​ Is there any desire from any given customer base/management in this feature?
-​ Feedback on the reference implementation

It would be useful to have such a group operate on an ongoing basis, for example through
GitHub issues, so as to enable implementers who lack the time or resources to attend
committee meetings to contribute their perspectives.
Another benefit of having such a study group is that it would foster more collaboration between
implementers, which was another topic raised during the meeting.

3.3 Adjust pacing and release focus

We would like the committee to consider ways of slowing down the addition of features into the
standard to allow implementers to catch up, and to allow the existing features to improve in
quality.

The committee should consider longer standardization cycles or alternating feature-focused and
consolidation-focused releases.
​
We should also explicitly prioritize defect resolution, conformance, and portability work
alongside new features.​

3.4 Reduce scheduling and participation conflicts

We would like the committee to consider not running evolution and wording groups in parallel
where possible. This would allow people with detailed knowledge to be present during design
decisions so they can offer feedback early. It may also incentivise people who normally only
participate during design decisions to spend more time in the wording groups, which could result
in increasing wording knowledge in the committee. Additionally, such a setup would improve the
coherence of focus within the committee on any specific feature.

4 Summary

As a committee, we have a shared goal: maintaining a standard that delivers real value to users
while remaining implementable, performant, and portable. Our intention is to start a series of
conversations about constructive steps we can take as a group toward narrowing the gap
between standardization and implementation. We would like to see discussion about improving

early communication, making costs and trade-offs more visible, and adjusting pacing and
priorities between adopting further features and maturing previously adopted features.

	Implementation reality of WG21 standardization
	1. Introduction
	2. Topics discussed
	2.1 Cost, resources, and economic realities
	2.2 Implementer voice and understanding implementation complexity
	2.3 Challenges participating in Evolution and Wording work
	2.4 Alignment between committee priorities, user needs, and management expectations
	2.5 New features vs bug fixes, and portability

	3. Suggested actions
	3.1 Make cost and trade-offs more visible
	3.2 Integrate implementer feedback earlier
	3.3 Adjust pacing and release focus
	3.4 Reduce scheduling and participation conflicts

	4 Summary

