
It’s Scopes All the Way Down
Document Number: P3955R0
Date: 2026-01-14
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: LEWG, SG1

Abstract
This paper lays out an approach to achieving the same effect as regular, synchronous scopes in
the asynchronous domain (i.e. std::execution [1]), including asynchronous construction and
destruction of objects.

Background
Even C has scopes. Unlike C++, however, nothing (except consuming and allocating stack
space) can be accomplished on their boundaries.

The power of C++ constructors and destructors, referred to as “RAII” (even when resources are
not being acquired) is the ability to inject arbitrary code into the rising and falling edges of a
scope. This not only trivializes tasks which are error prone in languages such as C (allocating
and freeing memory, for example) but also allows for a wide range of creative and heterodox
applications.

Unfortunately C++ is a fundamentally synchronous language. Entering and leaving a scope, and
therefore the power of RAII, is only available synchronously. Even where C++ attempts to be an
asynchronous language it does not extend the power of its scopes thereto, saying instead
(§11.4.5.1 [class.ctor.general]):

“A constructor shall not be a coroutine.”

And (§11.4.7 [class.dtor]):

“A destructor shall not be a coroutine.”

But C++ is more than a language, it is also a library. So much so that C++ refuses fundamental
features of other languages, leaving them instead to the library. Sum and product types, for
example. An asynchronous simulacrum of itself, as another ([2] at §3):

“It is becoming apparent that all the sender/receiver features are language features being
implemented in library.”

Out of the box in C++26 this simulacrum, std::execution, featured an upgraded version of the
C++ language construct of a function (ibid.):

“Sender/Receiver itself is the implementation of an async-function.”

Unlike the built in function call protocol the asynchronous operations of std::execution are:

●​ Fundamentally asynchronous,
●​ Integrate cancellation as a first-class completion [3], and
●​ Offer more flexible representations of completions, including homogeneous completions

for both the value and error channels, and value completions which send multiple types
(i.e. explicit sum and product types are not needed in the completion signatures of a
sender)

This however just projects functions into the asynchronous domain. C has functions, but does
not have RAII. malloc and free are functions, unique_ptr is something else: An object.

To evolve its asynchronous ecosystem and achieve parity with its synchronous ecosystem C++
needs not only asynchronous functions, but also asynchronous objects [2].

Discussion

Prior Art

Kirk Shoop has previously explored this space [2]. With his permission the author of this paper
is continuing that exploration.

What Is an “Asynchronous Object?”

A synchronous object is an object whose lifetime begins via a synchronous function (i.e. a
constructor) and ends via a synchronous function (i.e. a destructor). Similarly ([2] at §1.1):

“An async-object is an object [...] that has async-functions to construct and destruct the
object.”

Put differently: An asynchronous object is an object whose constructor and destructor are
asynchronous.

Why Are Asynchronous Objects Needed?

With the idea of an asynchronous object described the next question is: Why is such a concept
needed or useful? Are asynchronous constructors and destructors really needed? Are they
something users of C++ would ever require or reach for?

Consider an object which represents and manages a TCP connection to a server. If it has an
invariant that it is connected (and that it is an error for it not to be) then it cannot be said to be
fully constructed until the asynchronous process of connecting (and perhaps resolving a DNS
address or trying other endpoints) has completed. Two phase init could clearly be used here,
but that is widely regarded as an antipattern in general (the Google style guide, for example,
has historically been much-maligned for featuring/requiring it). Therefore an asynchronous
constructor (or other factory) is needed.

But the above-described object still has a synchronous destructor: The POSIX close system
call on the file descriptor representing the connected socket. However the existence of io_uring,
a fundamentally asynchronous way to make Linux system calls, muddies these waters as it
features an asynchronous equivalent even of close: IORING_OP_CLOSE.

POSIX system calls and io_uring are beyond the purview of the standard, however, and for
justification of asynchronous destructors we need not look that far. C++26 actually contains
such a justification: Async scopes [4]. Consider the functionality of the synchronous destructor
of execution::simple_counting_scope (§33.14.2.2.2 [exec.simple.counting.ctor]):

“If state is not one of joined, unused, or unused-and-closed, invokes terminate.
Otherwise, has no effects.”

The scope is transitioned to the joined state by obtaining a sender via the scope’s join
member function, connecting it, starting the resulting operation state, and allowing that
asynchronous operation to run to completion. That is to say:
execution::simple_counting_scope has manual, asynchronous clean up which must be
performed before the object can be allowed to go out of scope. Clean up is the raison d'être of
RAII and one of C++’s greatest strengths, but because C++ doesn’t have asynchronous RAII
the clean up story for this type is more reminiscent of C: Make sure you follow the right idiom,
make sure you don’t forget, make sure whoever is maintaining the code after or with you does
the same.

A narrow solution to the specific problem above has been proposed:
execution::let_async_scope [5] (this will be returned to later in this paper), but we can do
better. We already have the principle of RAII which addresses this class of problem, we just
need to project it into the asynchronous domain.

Prior Design

The prior design (from [2]) centered around types which modelled the
execution::async_object and ::async_object_constructible_from concepts. Note that
a type which modelled the async object concept was not itself the object which would be
created or interacted with, but rather a factory which could be used to produce an object. One
can think of an async object in this design as a partially-curried, but asynchronous, version of a
constructor, in the same way a sender is a fully curried, but asynchronous, version of a function.

An async object was required to be shaped in the following way (id. at §4.2.0.1):

struct async_object {​
 using object = /* ... */;​
 using handle = /* ... */;​
 using storage = /* ... */;​
 execution::sender auto async_destruct(storage&) const noexcept;​
 template<typename... Args>​
 execution::sender auto async_construct(storage&, Args&&...) const;​
};

With:

●​ object being the actual type of the object to asynchronous construct and destroy,
●​ handle being the type through which above-mentioned object will be accessed (i.e. it is

the result of async construction), and
●​ storage being the type which provides storage for the object

The utility execution::make_packaged_async_object was proposed (id. at §4.2.0.6) to curry
arguments into an async object thereby rendering it “default async-constructible” (i.e. having an
async_construct member function which accepts no trailing arguments). This meant that the
above-described async object design followed the model of iterative currying already embodied
by senders and receivers wherein:

1.​ Arguments are applied into a sender by a sender factory, and then
2.​ A receiver is applied into an operation state by execution::connect

As follows:

1.​ Arguments are applied into an async object to yield an async object whose
async_construct member function is unary (i.e. requires only storage),

2.​ Storage is applied into an async object to yield a sender, and then
3.​ A receiver is applied into an operation state by execution::connect

This applicative model is powerful because it allows elegant separation of concerns, as
evidenced by the generic algorithms of std::execution.

Issues With the Prior Design

Reference Qualification

The most serious issue with the previous design is that it requires that async_construct and
async_destruct be invocable on const lvalue async objects. This means that either:

●​ Curried arguments must be copyable into the senders yielded by the above-mentioned
member functions (so they can be propagated from a const object), or

●​ The async object must remain within its lifetime until the completion of asynchronous
construction and destruction thereof

Even the latter of the two above possibilities, which has the fewest performance implications,
has a problem. Even if the async object remains within its lifetime, thereby allowing the
constructor and destructor senders (and their resulting asynchronous operations) to refer to the
contents thereof there’s still no way to use those contents consumptively (e.g. by moving
therefrom) because the capture occurred from a const-qualified object.

It might initially seem that the design can easily be extended to rectify the above: Simply cause
the async_object concept to check for invocability of async_construct and async_destruct
with the const-ness and reference-ness of whatever type is provided (for example
execution::sender_to does this with connectability). However the protocol consists of two
member function invocations: Both async_construct and async_destruct must be called for
the corresponding object to be created and destroyed. This means that if async_construct is
called on an rvalue-qualified object there must be a subsequent invocation of async_destruct
which might then arguably constitute a use after move.

Curried or Not?

Because of the unfixed arity of async_construct (i.e. it may have trailing arguments after the
reference to the storage) the previous design provides two concepts:
execution::async_object and ::async_object_constructible_from with only the latter
checking the entire protocol. I.e. it is possible to satisfy execution::async_object and have
no async_construct member function at all, because it’s impossible to check the
async_construct member function without knowing which arguments you expect to invoke it
with (in some sense this is similar to execution::sender and ::sender_in).

An advantage of the above-described design is that it mirrors regular, synchronous C++ objects.
Such objects can have many constructors, callable in many different ways. But there’s an
important difference between regular, synchronous objects and async objects: An async object

is not the object it constructs. The async object represents an indirection, hence the need for the
object nested type.

The above formulation creates blurred categories: An arbitrary async object is an async object,
but so is the async object created by execution::packaged_async_object. Despite being in
the same category they don’t support the same operations, and therefore can’t be interacted
with generically.

This creates a question with respect to the single responsibility principle: What is the
responsibility of the caller of async_construct? Is it to manage the lifetime of a certain object,
or is it to select and apply the arguments which will select the object to be constructed?

std::execution itself already contains an example of an alternate design: The arguments to
the asynchronous function call represented by a sender are provided to a sender factory which
generates a sender. This sender is isomorphic to a fully-curried synchronous function. There is
a single responsibility in selecting the arguments. Elsewhere, in another domain of
responsibility, that sender is connected and started. This decomposition is foundational to the
generic power of std::execution and its asynchronous algorithms and should be reflected in
the design of asynchronous RAII.

Object Primacy

Constructors and destructors are fundamentally associated with objects (since they respectively
start and end the lifetimes thereof). Objects have lifetimes which are associated with scopes
(note that a scope may be lexical or more abstract). Therefore constructors and destructors are
ways to run code when a scope is entered or exited, however they’re still coupled to an object.
This friction can be seen in the idiom of the “scope guard” [6] wherein an object is synthesized
solely to perform some action when its lifetime ends. In some sense this “scope guard” object is
not a “real” object and is instead an abuse of objects to instrument the exit from a scope, since
C++ does not have a native way to access such functionality.

The prior design of async RAII too engages in the above-described object primacy: Async
objects in that design are always associated with storage thereby marrying the running of code
when entering and exiting a scope to the provisioning of storage and the creation of an object.

Given how common the scope guard idiom is in C++ the design of async RAII should not cling
to the above-described limitation of C++ RAII in the same way that std::execution didn’t cling
to the limitations on the structure of synchronous function return (i.e. unlike regular,
synchronous functions the asynchronous functions can report completion in many ways with
each yielding potentially many values).

New Design

Scopes
The fundamental building block of the design proposed by this paper is a scope. As discussed
above such scopes are not coupled to storage or objects. Entering a scope requires some
action be performed, and leaving the scope also requires some action be performed. Both of
these actions are represented by senders and can therefore be performed asynchronously.

Unlike the prior design wherein a caller had immediate access to construction (i.e. entering a
scope) and destruction (i.e. leaving a scope) by calling the appropriate member functions of an
async object in this design the “enter scope sender” (which performs the action necessary to
enter the scope) yields the “exit scope sender” (which performs the action necessary to leave
the scope) upon completion, i.e. the enter scope sender is a higher order sender. This avoids
the problem of rvalue qualification because the enter scope sender is consumed to form the
enter scope operation, which then yields another entity, the exit scope sender, which may then
be consumed later in turn when the time comes to leave the scope.

Scope Algorithms

The fundamental scope algorithm is within. It establishes a scope by running an enter scope
sender. Thereafter it allows a child operation to run (in that scope since the exit scope sender
has not yet run), and then before completing the overall operation runs the exit scope sender
yielded by the enter scope sender.

Enter scope senders can be composed in one of two ways: In sequence, or in series. These two
patterns are reified by two scope sender adaptors:

●​ enter_scopes combines N enter scope senders into an enter scope sender that enters
all N scopes in parallel and then yields an exit scope sender that exits all N scopes in
parallel

●​ nest_scopes combines N enter scope senders into an enter scope sender that enters
each scope in order and then yields an exit scope sender that exits each scope in
reverse order

Note that if any enter scope sender’s operation fails the appropriate exit scope sender’s
operation will be synthesized and allowed to run before the overall operation fails.

Objects

Objects combine a scope with storage. Entering the scope constructs an object in the storage,
and exiting the scope destroys that object. An async object now has the following interface:

struct async_object {​
 using type = /* ... */;​
 execution::enter_scope_sender auto operator()(type*);​
};

Note that since this entity has a single basis operation (i.e. invocation) rvalue qualification of
invocation is trivially supportable.

The above design also reflects and extends the currying model of std::execution. The
workflow to run an asynchronous operation consists of:

1.​ Currying arguments into the sender,
2.​ Connecting the sender to a receiver, and then
3.​ Starting the asynchronous operation

Whereas synthesis of an asynchronously-constructed and -destroyed object consists of:

1.​ Currying constructor arguments into the async object,
2.​ Currying the storage pointer into the enter scope sender,
3.​ Connecting the sender to a receiver, and then
4.​ Starting the asynchronous operation

With only one responsibility present at each step (selection of arguments, followed by selection
of storage, followed by selection of continuation).

Object Algorithms

The fundamental async object algorithm is lifetime. It accepts N async objects and provides
storage for all of them. Once the asynchronous operation is underway it constructs all objects in
parallel and then provides references thereto to a user-provided invocable which synthesizes a
sender in response (like execution::let_value et al.). This sender is connected and started
and once it completes the exit scope senders are connected and started to destroy all async
objects after which the operation ends.

Commentary on Naming

Maybe we should’ve called a “scope” [4] a “nursery.” The author is not particularly attached to
the names in this paper and imagines they will be changed.

Note that none of the names in this paper, unlike the previous one [2], feature the async_ prefix.
This is because the author believes that entities in the std::execution namespace are
presumptively async [7].

Proposal
This does not purport to be formal wording, it merely aims to describe the proposed design for
the purpose of feedback.

Concepts

exit_scope_sender

Unary concept. Modeled if the type:

●​ Models execution::sender, and
●​ Does not throw when decay-copied or moved

exit_scope_sender_in

Binary concept. Let the arguments be Sender and Env. Modeled if:

●​ Sender models execution::exit_scope_sender,
●​ Sender models execution::sender_in<Env>,
●​ Sender is nothrow connectable to any receiver with environment type Env [8], and
●​ execution::completion_signatures_of_t<Sender, Env> is

execution::completion_signatures<execution::set_value_t()>

enter_scope_sender

Equivalent to execution::sender. Without an environment nothing further can be gleaned.

enter_scope_sender_in

Binary concept. Let the arguments be Sender and Env. Modeled if:

●​ Sender models execution::enter_scope_sender,
●​ Sender models execution::sender_in<Env>,
●​ execution::completion_signatures_of_t<Sender, Env> contains exactly one

value completion signature, and that completion signature is unary, and the type of the
sole argument models execution::exit_sender_in<Env>, and

●​ As a semantic requirement: The above-mentioned exit sender undoes the actions of the
enter scope sender which sent it

object

Unary concept. Modeled if the type:

●​ Has (after removing cv- and ref-qualification) a nested type alias type which denotes an
object type, and

●​ Is unary invocable with a pointer to type and that invocation yields a type which models
execution::enter_scope_sender

object_in

Binary concept. Let the arguments be Object and Env. Modeled if:

●​ Object models execution::object,
●​ The unary invocation described in the above-mentioned concept yields a type which

models execution::enter_scope_sender_in<Env>, and
●​ As a semantic requirement: The above-mentioned enter sender forms an asynchronous

operation which constructs an object of type type in the storage indicated by the
provided pointer if it completes successfully (note that the fact that the resulting exit
sender destroys said object is implicit in the semantic requirements of
execution::enter_scope_sender_in)

Type Aliases

exit_scope_sender_of_t

Binary type alias accepting an enter scope sender and an environment. Yields the type of the
exit scope sender which an asynchronous operation formed from that enter scope sender yields
on completion.

type_of_object_t

Determines the type of object constructed by an async object. Equivalent to
std::remove_cvref_t<T>::type.

enter_scope_sender_of_object_t

Determines the type of enter scope sender yielded by an async object. Equivalent to
std::invoke_result_t<T, execution::type_of_object_t<T>*>.

Sender Factories

enter_scopes
N-ary sender factory which accepts enter scope senders. Result is an enter scope sender which
behaves as follows:

When connected: Connects each of the child senders provided to the factory to form child
operation states (possibly with a different environment than that of the final receiver to allow for
a separate stop source to emit stop requests, see following).

When the resulting operation state is started: Starts each child operation state.

When each child operation completes:

●​ If a value completion, store the exit scope sender, otherwise
●​ If this is the first non-value completion, store this completion and request all other

children stop (see above)

When all children have completed: After doing the above for the final completing child:

●​ If no child completed with a non-value completion, complete with
execution::set_value sending the result of execution::when_all(...) (note this
relies on LWG4502 being resolved) of all stored exit scope senders (see above),
otherwise

●​ Complete sending the stored non-value completion (see above)

nest_scopes

Composes N enter scope senders into a single enter scope sender which enters the scopes
represented by the N provided senders in sequence (i.e. the first scope will be entered, and
then the second, and so on, with them being exited in the reverse order). More formally:

When connected: Connects each of the child senders provided to the factory to form child
operation states.

When the resulting operation state is started: Starts the first child operation state.

When each child operation completes:

●​ If this is the operation created from an enter scope sender
○​ If a value completion, store the exit scope sender and start the next operation

state, otherwise
○​ Store this completion, connect all stored exit scope senders (see above), and

start the final exit scope sender (this runs them in reverse order)
●​ If this is the operation created from an exit scope sender, start the previous operation

state

When all children have completed:

●​ If no enter scope operation failed, complete with an exit scope sender which is
equivalent to exec::sequence [9] over all exit scope senders in reverse order, otherwise

●​ Complete with the stored non-value completion (see above)

within
Binary sender factory whose first argument models execution::enter_sender and whose
second argument models execution::sender (referred to below as the “other sender”). Result
is a sender which behaves as follows:

When connected: Connects the provided enter sender and decay-copies the other sender into
the operation state.

When the resulting operation state is started: Starts the child operation state (see above).

When the enter sender’s operation completes:

●​ If a non-value completion, complete the overall operation immediately with that
completion, otherwise

●​ Decay-copy the exit sender, optionally move the other sender (perhaps to extract it from
the active alternative of a variant), connect the other sender, and start the resulting
operation state

When the other sender’s operation completes: Store the completion, optionally move the exit
sender (same reason as above), connect the exit sender, and start the resulting operation state.

When the exit sender’s operation completes: Complete sending the stored completion (see
above).

lifetime
N-ary sender factory whose first argument is an invocable and whose trailing arguments are
async objects (see concept above). The invocable must be invocable with Ts&... where Ts...
is a pack containing the type of each async object, respectively (see type alias above). Result is
a sender which behaves as follows:

When connected:

1.​ Invokes all provided async objects with a pointer to appropriate storage within the
operation state,

2.​ Passes all senders synthesized in step 1 as a pack to execution::enter_scopes
3.​ Synthesizes a sender which, when connected and started:

a.​ Invokes the invocable with a pack of references, each referring to an object in the
above-mentioned storage,

b.​ Connects the resulting sender, and then
c.​ Starts the resulting operation state

4.​ Passes the senders synthesized in steps 2 and 3, respectively, to execution::within,
and then

5.​ Connects the sender synthesized in step 4

When started: Starts the child operation state.

Note that the receiver provided to this operation’s connect function is simply passed through
when connecting the execution::within sender in step 4.

Classes

sync_object

This is a minimal archetype of the execution::object & ::object_in concepts. It simply
allows regular C++ objects with regular synchronous constructors and destructors to be
managed by execution::lifetime.

Example implementation:

template<typename T, typename... Args>

 requires

 is_constructible_v<T, Args...> &&

 is_destructible_v<T>

struct sync_object {

 using type = T;

 template<typename... Ts>

 requires (is_constructible_v<Args, Ts> && ...)

 constexpr explicit sync_object(Ts&&... ts) noexcept(

 (is_nothrow_constructible_v<Args, Ts> && ...))

 : args_((Ts&&)ts...)

 {}

 template<typename Self>

 constexpr execution::enter_scope_sender auto operator()(

 this Self&& self,

 type* storage)

 noexcept(

 is_nothrow_constructible_v<

 tuple<Args...>,

 decltype(std::forward_like<Self>(declval<tuple<Args...>&>()>)

 {

 return

 execution::just(std::forward<Self>(self).args_) |

 execution::then([storage](tuple<Args...>&& tuple) noexcept(

 is_nothrow_constructible_v<

 T,

 Args...>)

 {

 const auto ptr =

 new(storage) T(make_from_tuple<T>(std::move(tuple)));

 return

 execution::just() |

 // It's important we capture ptr not storage because storage

 // just points to storage whereas ptr actually points to an​
 // object

 execution::then([ptr]() noexcept {

 ptr->~T();

 });

 });

 }

private:

 tuple<Args...> args_;

};

This utility provides a superior alternative to the idiom of execution::just(...) |
execution::let_value(...) ([10] at 40:06) which is commonly used to place one or more
objects in an operation state and thereby attach them to an asynchronous scope. Note that this
utility is superior to the aforementioned idiom because:

●​ It does not require that the object(s) be movable (ibid.)
●​ It has lower storage requirements in the status quo [11]

Put differently, whereas local variables with automatic storage duration are attached to the
scope of the regular, synchronous function which contains them execution::lifetime(...,
execution::sync_object<...>(...)) attaches a variable to the scope of the asynchronous
function represented by the sender yielded by the invocable which is the first argument to
execution::lifetime.

Examples

let_async_scope

As mentioned earlier in the paper the join operation of execution::simple_counting_scope
and ::counting_scope is simply an asynchronous destructor. There’s no need for a new

algorithm execution::let_async_scope [5], we can simply expose both of the
aforementioned types as async objects:

template<typename Scope>​
struct scope_object {​
 using type = Scope;​
​
 execution::enter_scope_sender auto operator()(type* storage) const noexcept​
 {​
 return​
 execution::just(storage) |​
 execution::then([](type* storage) {​
 const auto ptr = new(storage) type();​
 return​
 ptr->join() |​
 execution::then([ptr]() noexcept {​
 ptr->~type();​
 });​
 });​
 }​
​
};

Asynchronous Mutex
A straightforward design of an asynchronous mutex using std::execution might look like this
([10] at 29:37):

struct async_mutex {​
 template<std::execution::sender Sender>​
 std::execution::sender auto with(Sender&& sender);​
};

Notice that the with member function, which is a sender factory, isn’t nullary. This is because it
needs to wrap another operation so that it can:

●​ Acquire the lock before running that other operation, and
●​ Release the lock after running that other operation

Notably the shape of the above API makes it difficult (or impossible) to acquire multiple mutexes
in parallel. But also note that the above description of the with member function mirrors our
understanding of a scope exactly: An action taken upon entering the scope, and a
corresponding action taken upon leaving the scope.

With the above understanding, and the primitives proposed by this paper, we can reformulate
our asynchronous mutex as:

struct async_mutex {​
 std::execution::enter_scope_sender auto acquire();​
};

Now the mutex can be acquired and released, and an operation run while holding the lock,
using the within operation proposed by this paper:

async_mutex m;​
auto critical_section =​
 std::execution::just() |​
 std::execution::then([&]() {​
 std::cout << "Holding the async mutex" << std::endl;​
 });​
auto snd = std::execution::within(m.acquire(), std::move(critical_section));

But this only mirrors the functionality available with the previous design. What if we wish to
acquire and release several mutexes at the same time? With the new design this is trivial:

async_mutex a, b, c;​
auto critical_section =​
 std::execution::just() |​
 std::execution::then([&]() {​
 std::cout << "Holding all async mutexes" << std::endl;​
 });​
auto snd = std::execution::within(​
 std::execution::enter_scopes(a.acquire(), b.acquire(), c.acquire()),​
 std::move(critical_section));

But note that the above assumes a regular, synchronous, exterior scope in which the mutex
objects can safely live. That is, there’s an implicit assumption that snd will be connected,
started, and run to completion before a, b, or c go out of scope. As mentioned in the discussion
of the proposed execution::sync_object, one way to workaround this in the status quo is
with execution::just(...) | execution::let_value(...):

auto snd =​
 std::execution::just(async_mutex{}, async_mutex{}, async_mutex{}) |​
 std::execution::let_value([](​
 async_mutex& a, async_mutex& b, async_mutex& c)​
 {​
 auto critical_section =​
 std::execution::just() |​
 std::execution::then([&]() {​

 std::cout << "Holding all async mutexes" << std::endl;​
 });​
 return std::execution::within(​
 std::execution::enter_scopes(a.acquire(), b.acquire(), c.acquire()),​
 std::move(critical_section));​
 });

This places the three asynchronous mutexes in the operation state formed when the sender is
connected, thereby ensuring that the mutexes remain valid for the lifetime of the resulting
asynchronous operation. Unfortunately however it assumes that async_mutex is movable to:

●​ Store the mutexes in execution::just,
●​ Compose execution::just with execution::let_value,
●​ Connect snd, and
●​ Propagate the mutexes from the operation state of execution::just to the operation

state of execution::let_value

Not only is that quite a few moves, but mutexes are generally not movable. In the status quo this
would be difficult to workaround but execution::sync_object provides a solution:

auto snd = std::execution::lifetime(​
 [](async_mutex& a, async_mutex& b, async_mutex& c) {​
 auto critical_section =​
 std::execution::just() |​
 std::execution::then([&]() {​
 std::cout << "Holding all async mutexes" << std::endl;​
 });​
 return std::execution::within(​
 std::execution::enter_scopes(a.acquire(), b.acquire(), c.acquire()),​
 std::move(critical_section));​
 },​
 std::execution::sync_object<async_mutex>{},​
 std::execution::sync_object<async_mutex>{},​
 std::execution::sync_object<async_mutex>{});

This works because execution::sync_object<async_mutex>{}, unlike async_mutex{},
doesn’t actually construct an async_mutex. Instead it curries arguments to an asynchronous
constructor which doesn’t run until the sender yielded by execution::lifetime is connected
and the resulting operation state is started. Since execution::lifetime asynchronously
constructs and destroys async objects in storage within its operation state these async_mutex
objects are never moved and therefore the fact that they are immovable is not an issue.

io_uring Socket Pair
The below example uses io_uring to:

1.​ Asynchronously create two sockets (via IORING_OP_SOCKET),
2.​ Listen on one of the sockets (via IORING_OP_BIND and IORING_OP_LISTEN),
3.​ Connect to the socket from step 2 from the other socket (via IORING_OP_CONNECT on the

connecting side and IORING_OP_ACCEPT on the listening side),
4.​ Send a string from the socket connected in step 3 (via IORING_OP_WRITE),
5.​ Read that string from the socket accepted in step 3 (via IORING_OP_READ), and then
6.​ Asynchronously destroy all three sockets (listening, connecting, and accepted) (via

IORING_OP_CLOSE)

const std::string_view sv("Hello world!");

std::vector<std::byte> buffer(sv.size());

std::this_thread::sync_wait(

 run_on_blocking_io_uring(

 [&](io_uring_context& ctx) {

 const socket_object object(

 ctx,

 AF_INET,

 SOCK_STREAM,

 IPPROTO_TCP);

 return std::execution::lifetime(

 [&](file_descriptor& server, file_descriptor& client)

 -> std::execution::task<void>

 {

 sockaddr_in addr;

 std::memset(&addr, 0, sizeof(addr));

 addr.sin_family = AF_INET;

 co_await bind(server, addr);

 co_await listen(server, SOMAXCONN);

 socklen_t out = sizeof(addr);

 if (getsockname(

 server.native_handle(),

 reinterpret_cast<sockaddr*>(&addr),

 &out) == -1)

 {

 throw std::runtime_error("getsockname failed");

 }

 co_await std::execution::when_all(

 [&]() -> std::execution::task<void> {

 co_await connect(client, addr);

 co_await write(

 client,

 std::span{

 reinterpret_cast<const std::byte*>(sv.data()),

 sv.size()});

 }(),

 std::execution::lifetime(

 [&](file_descriptor& accepted) {

 return read(accepted, buffer);

 },

 accept_object(server)));

 },

 object,

 object);

 },

 32,

 io_uring_params{}));

Note that io_uring operations which simply perform I/O (IORING_OP_CONNECT,
IORING_OP_WRITE, et cetera) are presented such that they yield a regular sender (which can be
co_awaited due to std::execution::task [12]) whereas io_uring operations which create a
file descriptor (IORING_OP_SOCKET and IORING_OP_ACCEPT) are wrapped by an async object
and reified via execution::lifetime to ensure the proper asynchronous destruction occurs on
scope exit.

Importantly the above code is materially different from (note important differences in bold):

const std::string_view sv("Hello world!");

std::vector<std::byte> buffer(sv.size());

std::this_thread::sync_wait(

 run_on_blocking_io_uring(

 [&](io_uring_context& ctx) {​
 file_descriptor server(​
 ctx,​
 co_await socket(​
 ctx,

 AF_INET,

 SOCK_STREAM,

 IPPROTO_TCP));

 file_descriptor client(​
 ctx,​
 co_await socket(​
 ctx,

 AF_INET,

 SOCK_STREAM,

 IPPROTO_TCP));

 sockaddr_in addr;

 std::memset(&addr, 0, sizeof(addr));

 addr.sin_family = AF_INET;

 co_await bind(server, addr);

 co_await listen(server, SOMAXCONN);

 socklen_t out = sizeof(addr);

 if (getsockname(

 server.native_handle(),

 reinterpret_cast<sockaddr*>(&addr),

 &out) == -1)

 {

 throw std::runtime_error("getsockname failed");

 }

 co_await std::execution::when_all(

 [&]() -> std::execution::task<void> {

 co_await connect(client, addr);

 co_await write(

 client,

 std::span{

 reinterpret_cast<const std::byte*>(sv.data()),

 sv.size()});

 }(),​
 [&]() -> std::exceution::task<void> {​
 file_descriptor accepted(​
 ctx,​
 co_await accept(server));​
 co_await read(accepted, buffer);​
 }());

 },

 32,

 io_uring_params{}));

Because in this example file_descriptor has been reimagined as a regular, synchronous
object with a regular, synchronous destructor. Therefore the synchronous close syscall must be
used for clean up rather than the asynchronous IORING_OP_CLOSE. Note that in both cases the
sockets are constructed asynchronously (via IORING_OP_SOCKET and IORING_OP_ACCEPT), it is
only in destruction that the examples materially differ.

Implementation Experience
The author has implemented this design on top of nVidia’s stdexec [13]. The implementation is
not yet published.

Acknowledgements
The author would like to thank Kirk Shoop for his permission to continue his exploration of this
problem space.

The author would like to thank Eric Niebler and Mark Hoemmen for feedback on this paper.

References
[1] M. Dominiak et al. std::execution P2300R10
[2] K. Shoop. async-object - aka async-RAII P2849R0
[3] K. Shoop et al. Cancellation is serendipitous-success P1677R2
[4] I. Petersen et al. async_scope - Creating scopes for non-sequential concurrency P3149R7
[5] A. Williams. Let_async_scope P3296R4
[6] P. Sommerlad et al. Generic Scope Guard and RAII Wrapper for the Standard Library
P0052R10
[7] R. Leahy. Rename async_scope_token P3685R0
[8] R. Leahy. When Do You Know connect Doesn’t Throw? P3388R3
[9]
https://github.com/NVIDIA/stdexec/blob/485160802ee5ca42ca4915e3a2330579efae4ea3/includ
e/exec/sequence.hpp
[10] R. Leahy. Evolving C++ Networking with Senders & Receivers (Part 2). Core C++ 2024
[11] R. Leahy Of Operation States and Their Lifetimes P3373R2
[12] D. Kühl et al. Add a Coroutine Task Type P3552R3
[13] https://github.com/NVIDIA/stdexec

	It’s Scopes All the Way Down
	Abstract
	Background
	Discussion
	Prior Art
	What Is an “Asynchronous Object?”
	Why Are Asynchronous Objects Needed?
	Prior Design
	Issues With the Prior Design
	Reference Qualification
	Curried or Not?
	Object Primacy

	New Design
	Scopes
	Scope Algorithms
	Objects
	Object Algorithms

	Commentary on Naming

	Proposal
	Concepts
	exit_scope_sender
	exit_scope_sender_in
	enter_scope_sender
	enter_scope_sender_in
	object
	object_in

	Type Aliases
	exit_scope_sender_of_t
	type_of_object_t
	enter_scope_sender_of_object_t

	Sender Factories
	enter_scopes
	nest_scopes
	within
	lifetime

	Classes
	sync_object

	Examples
	let_async_scope
	Asynchronous Mutex
	io_uring Socket Pair

	Implementation Experience
	Acknowledgements
	References

