
return_value & return_void Are Not
Mutually Exclusive
Document Number: P3950R0
Date: 2025-12-21
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: EWG, SG1, SG17

Abstract
This paper proposes that the function-body of a function which is a coroutine be able to
simultaneously contain statements both of the form co_return; and co_return v;.

Background
The standard specifies the effect of co_return statements in terms of equivalent statements
within the context of a replacement body (§9.6.4 [dcl.fct.def.coroutine]). Like a regular return
statement co_return statements have two distinct forms: Those that return void and those that
return some value. These are specified as follows (§8.8.5 [stmt.return.coroutine]):

“If the operand is a braced-init-list or an expression of non-void type, S is
p.return_value(expr-or-braced-init-list). [...] Otherwise, S is the compound-statement
{ expressionopt ; p.return_void(); }.”

At first this appears to permit coroutines whose body contains co_return statements of void
and of non-void provided the promise type admits corresponding invocations of return_value
and return_void. Unfortunately the standard bans this by fiat (§9.6.4 [dcl.fct.def.coroutine]):

“If searches for the names return_void and return_value in the scope of the promise type
each find any declarations, the program is ill-formed.”

This restriction has been present in its current form since N4499 ([1] at §6.6.4):

“If the promise type defines both return_value and return_void member functions, the
program is ill-formed.”

A different form of this restriction was present in N4403 ([2] at §18.11.3):

“A promise type must contain at most one declaration of set_result.”

These early coroutine proposals contained the notion of a coroutine’s “eventual type.” This
concept was eventually dropped (there is no trace thereof in [3] or in the working draft).

There has previously been a paper by a different author with the same goal as this paper [4]. It
had no consensus in Cologne in 2019, however the author of this paper feels there is new
information [5][6].

Discussion

Implementing Promise Types

The restriction in the current working draft says (emphasis added):

“If searches for the names [...] find any declarations, the program is ill-formed.”

Note the reference to “names” and “declarations.” This restriction can only be implemented by
the compiler. Regular C++ code cannot check for “names” or “declarations,” it can only check for
well-formed expressions. The above restriction does not require the expressions
promise.return_void() or promise.return_value(vs...) (for some/any invented vs) to be
(or not to be) well-formed, instead it says that if the names are found the program is ill-formed.

A consequence of the above is that promise types cannot be implemented using the following
strategy:

template<typename ReturnType>​
struct some-promise-type {​
 void return_void() requires std::is_same_v<void, ReturnType> { /* ... */ }​
 template<typename T = ReturnType>​
 requires std::is_same_v<T, ReturnType>​
 void return_value(T t) { /* ... */ }​
 // ...​
};

Because despite the fact expressions which invoke return_void and return_value will never
be simultaneously well-formed the names are declared.

Coroutines With Heterogeneous Return Types
C++ functions return in exactly one way, and they return exactly one type. This is the case
despite the irregularity of void [6] and the existence of [[noreturn]]. Importantly this means
that there is no way, as a first-class feature of the language, for a C++ function to:

●​ Return in zero ways (e.g. always throw) (note that despite the existence of
[[noreturn]] there is no generic way to inspect a function or invocable and ascertain
that it will never yield a value)

●​ Return in multiple ways (e.g. int or double)
●​ Return multiple types (e.g. both int and double)

The latter two have library solutions, but at the language level those library solutions present as
a single return modality with a single type (note that even where a function call expression is
immediately bound to structured bindings the function call expression still yields a single value
of a single type).

While the body of a C++ coroutine may syntactically resemble the body of a C++ function it is
nothing of the sort. The standard makes this clear:

●​ The function body of a function which is a coroutine is rewritten so that it is no longer a
function body, but instead a protocol by which the code interfaces with the promise
(§9.6.4 [dcl.fct.def.coroutine])

●​ When a coroutine is invoked the value yielded thereby is not determined by the function
body but instead by evaluating the get_return_object or
get_return_object_on_allocation_failure nullary invocable member functions of
the promise (ibid.)

●​ Allowing control to flow off the end of a coroutine is either undefined behavior, or
equivalent to promise.return_void() (ibid.)

●​ The statements by which regular functions end their execution are disallowed in the
function body of a coroutine (§8.8.5 [stmt.return.coroutine]) even if those statements are
discarded (ibid.)

C++ is sufficiently powerful that the library may be used to fill in for missing language features.
One instance of this is discussed above: Library features adding the ability for C++ functions to,
in effect, return multiple values and in multiple ways. std::execution, which will ship in
C++26, provides “the [library] implementation of an async-function” ([8] at §6).

The library implementation of a function provided by std::execution’s senders and receivers
is breathtakingly more powerful than C++’s language-level functions, being:

●​ Fundamentally asynchronous through the decoupling of initiation and completion
●​ Capable of:

○​ Abandoning forward progress via std::execution::set_stopped
○​ Completing with errors beyond an exception throw
○​ Expressing the concept of a function which:

■​ Completes successfully with no values without the use of an irregular type
■​ Does not complete successfully
■​ Completes successfully in multiple ways (obviating the need for a

separate sum type)

■​ Completes successfully with multiple values (obviating the need for a
separate product type)

The capabilities with respect to successful completion are expressed by an instantiation of
std::execution::completion_signatures whose template arguments include, respectively:

●​ std::execution::set_value_t()

●​ No types of the form std::execution::set_value_t(...)
●​ Multiple types of the form std::execution::set_value_t(...)
●​ At least one type of the form std::execution::set_value_t(T, U, ...)

Were coroutines C++ functions this would leave us in an awkward place: “[A] Standard C++
model for asynchrony” (i.e. std::execution) which is library-based with capabilities wildly in
excess of the corresponding language feature (i.e. coroutines).

Fortunately, as discussed above, coroutines are not C++ functions. They are a protocol for
interacting with the promise. The shell of a C++ function which surrounds a coroutine exists only
to yield a return object from the promise.

The promise is simply an instance of a C++ type. C++ types may have member function
templates. Templates permit metaprogramming. Therefore promises can be authored which
expose the power of the std::execution model:

●​ co_return statements need not accept an expression with the same type, or even with
a common type, provided return_value can be invoked with the result of that
expression, and therefore behind the scenes these can be plumbed through to different
std::execution::set_value completion signatures

●​ The tuple-like protocol can be used to resolve individual values to
std::execution::set_value completion signatures with multiple values

The above works. The author has implemented it.

Trying to accept std::execution::set_value_t() (i.e. successful completion with no values)
alongside any other std::execution::set_value_t(...) form, on the other hand, does not
work. Not for any conceptual reason, but simply because the standard bans it by fiat.

For further support of the above consider: The author of such a promise type can accept a value
of a special tag type and map it to std::execution::set_value(rcvr) (the author has
implemented this), but cannot simply write a return_void member function which maps to the
same.

Conclusion
Disallowing return_void alongside return_value is fundamentally arbitrary, unnecessarily
making void a special case. The method by which it is disallowed unnecessarily restricts the

ways in which generic promise types can be implemented. Disallowing it either disadvantages
coroutines vis-à-vis std::execution or necessitates library workarounds (e.g. the tag type
approach discussed in the preceding section). Said restriction should for all the preceding
reasons be removed.

Wording

[dcl.fct.def.coroutine]

If searches for the names return_void and return_value in the scope of the promise type
each find any declarations, the program is ill-formed.

[Note 2: If the expression promise.return_void() is foundwell-formed, flowing off the end of
a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off the end of a
coroutine results in undefined behavior. — end note]

Acknowledgements
The author would like to thank Lewis Baker for permission to continue pursuing a solution to this
problem.

References
[1] G. Nishanov et al. Draft wording for Coroutines (Revision 2) N4499
[2] G. Nishanov. Draft wording for Resumable Functions N4403
[3] Programming Languages — C++ Extensions for Coroutines N4680
[4] L. Baker. Allowing both co_return; and co_return value; in the same coroutine
P1713R0
[5] M. Dominiak et al. std::execution P2300R10
[6] D. Kühl et al. Add a Coroutine Task Type P3552R3
[7] M. Calabrese. Regular Void P0146R1
[8] K. Shoop. async-object - aka async-RAII P2849R0

	return_value & return_void Are Not Mutually Exclusive
	Abstract
	Background
	Discussion
	Implementing Promise Types
	Coroutines With Heterogeneous Return Types

	Conclusion
	Wording
	[dcl.fct.def.coroutine]

	Acknowledgements
	References

