
 
Safety Strategy Requirements for C++ 

●​ Document Number: P3874R0 
●​ Date: 2024-10-06 
●​ Reply-to: Jon Bauman <jonbauman@rustfoundation.org> 
●​ Audience: SG23, Safety and Security 

Abstract 
C++ is the dominant systems1 language and for much of its existence has had no serious 
competition in that niche. That has begun to change and though it seems inevitable that C++ will 
continue to be used for the foreseeable future, whether it continues to be a first-choice language 
for new code and greenfield projects depends on how it addresses the problem of memory 
safety which has been identified by users, industry, government and academia as the source of 
most serious defects and vulnerabilities2. In its four decade history, C++ has changed 
dramatically, and while the work to add memory safety to the language would be significant, 
there is demonstrable evidence it is technically feasible while maintaining compatibility with 
legacy code. There is no way to guarantee the safety of legacy C++ code, but developing a safe 
mode of operation could ensure C++ remains viable for new development if two key criteria are 
met: 

1.​ Safety by construction: no undefined behavior without explicitly invoking unsafe code 
such as legacy C++ 

2.​ Backwards compatibility: direct access to existing C++ 
Research has shown that the vast majority of vulnerabilities reside in new or recently modified 
code. Since there are now viable alternative languages providing safety by construction, C++ 
must achieve parity. The benefit of retaining access to all unsafe legacy code is a compelling 
benefit that enables intentional, targeted migration to memory safety and ensures forward 
progress. Therefore, C++ should adopt these requirements for its language safety strategy. This 
committee clearly takes safety seriously and has already initiated major efforts to improve 
language safety, but the specific language goals are not yet sufficient. Making this clear and 
decisive commitment is in the best interests of C++, its users, and all people who are affected 
by the technologies it powers. 

2 See statements from Microsoft, Google, OpenSSF, NSA, the cybersecurity 
authorities of the United States, Australia, Canada, the United Kingdom, and New Zealand, and ACM 

1 Used here in the sense of resource-constrained programming. In addition to operating systems and 
embedded programming, this includes applications such as games, databases, and web browsers.​
 

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://research.google/pubs/secure-by-design-googles-perspective-on-memory-safety/
https://openssf.org/oss-security-mobilization-plan/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://cacm.acm.org/opinion/it-is-time-to-standardize-principles-and-practices-for-software-memory-safety/
https://github.com/rustfoundation/interop-initiative/blob/main/problem-statement.md#user-content-fnref-1-efcc2169978727b77b4f72dce1a635a2


What Is Memory Safety? 
Outside of systems languages, nearly all modern programming languages are considered 
memory safe. To a programmer and user, there is no inherent benefit to memory unsafety. 
Rather, it is a sometimes necessary sacrifice for performance or low-level access necessary in 
systems programming. The advent of systems languages which provide memory safety by 
default3 has led to much concern about C++’s lack of such facilities. While it’s possible to give a 
good definition of memory safety, the real problem is the consequence of unsafe memory 
usage: undefined behavior (UB). Most discussion tends to focus on memory safety because UB 
is an abstruse, technical concept and because ensuring memory safety (particularly lifetime and 
data race safety) is the hardest part of eliminating undefined behavior. Also, while the most 
common and severe defects often stem from memory unsafety in particular, the potential 
consequences are the same regardless of how UB is encountered. To be precise, this paper is 
advocating for a commitment to develop a mode of operation where C++ is free of UB. But since 
the conversation in industry tends to be in terms of memory safety, this paper uses the term 
“safe” to mean no undefined behavior. After all, memory safety doesn’t provide any sort of 
meaningful guarantees in the face of UB which can be caused in many other ways. What’s 
really important is the distinction between heuristically reducing UB, and UB freedom by 
construction. 

Why not just reduce UB? 
C++ has seen numerous improvements in its history, and many changes have been intended to 
make it easier for developers to avoid defects, including UB. Additionally, static and dynamic 
analysis tools have made UB reduction more efficient. Despite this, UB and the vulnerabilities it 
entails remain common and its consequences are devastating. Part of the problem is that while 
a reduction in code defects generally leads to a proportionate reduction in operational failures, 
UB is particularly dangerous because of the potential for exploitable vulnerabilities. And unlike 
failures which are stochastically encountered by regular users, adversaries seek out and exploit 
vulnerabilities, so even a very low rate of UB in the context of many billions of lines of C++ 
represents a high degree of risk. 
 
It is still very valuable to reduce UB as much as possible, and that work, especially that which is 
applicable to legacy code should and will continue. However, there are two reasons why a mode 
of C++ which is free of UB by construction is important. First, research has shown that 
vulnerabilities decay exponentially with the age of code4, meaning that very old code which 
hasn’t changed is far less likely to contain latent UB and that avoiding UB in new code has an 
outsized effect on the rate of defects and vulnerabilities in a codebase. Second, in a systems 
context it is sometimes necessary to write unsafe code, but since the vast majority of code can 

4 See “How Long Do Vulnerabilities Live in the Code? A Large-Scale Empirical Measurement Study on 
FOSS Vulnerability Lifetimes”, “Memory Safe Languages in Android 13”, and “Eliminating Memory Safety 
Vulnerabilities at the Source” 

3 Rust and Swift are the most popular examples. Go is memory safe in the absence of concurrency. 

https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://www.ralfj.de/blog/2025/07/24/memory-safety.html


be written safely, explicitly opting-in to the unsafe mode of execution drastically reduces the 
possibility of UB and facilitates auditability since the origin of any UB must be a bug in unsafe 
code5. 

Safety By Construction 
The concept of programming languages which are free of undefined behavior by default but 
which enable explicit unsafe operations is not new. The value of this paradigm is both difficult to 
overstate and hard to appreciate until it’s been experienced. Owing to its long history and close 
connections to C, unsafe operations have always been pervasive in C++, but over time, better 
facilities within libraries and toolchains have reduced the need to use unsafe mechanisms to 
great benefit. Additionally, improved analyzers have helped discover latent UB both statically 
and at runtime. Still, there are numerous ways to trigger UB in C++ and by its very nature, the 
results are unpredictable and nonlocal; a crash or vulnerability in one part of a program could be 
the result of UB anywhere in the executable. And though analysis tools have improved greatly, 
there is no way to guarantee that any particular subset of a C++ program is free of undefined 
behavior. 
 
Encapsulation is a familiar concept in C++ and it’s an incredibly powerful tool for enforcing 
abstraction and enabling the construction and maintenance of large, complex systems. Similarly, 
approaches like RAII improve safety and maintainability by reducing the need for programmers 
to hold the full complexity of the system in their heads: local analysis and interfaces with clear 
guarantees make scaling systems feasible. As such, it’s very consistent with C++’s philosophy 
to encapsulate unsafe operations. Though there will be significant amounts of unsafe C++ code 
for many years, the best way to ensure progress towards greater overall safety is to provide 
facilities for writing new code whose safety is assured. Especially since new code is the most 
likely to contain defects, ensuring those defects cannot cause UB guarantees progress when 
applying techniques to discover legacy UB. 
 
Since the existence of a safe mode may not be familiar to C++ programmers, it’s worth 
explaining the remarkable power of encapsulating unsafe operations. Within code which is free 
of UB by construction, it is impossible to cause any behavior which violates the abstract 
machine model of the language. This makes dealing with many difficult tasks like handling 
untrusted input or concurrent data manipulation much less hazardous. And still it is possible to 
enjoy the level of performance which requires inherently unsafe operations because safe code 
can surround narrowly-scoped unsafe blocks. Importantly, accessing unsafe facilities is not viral: 
a safe function may execute unsafe operations within its implementation that is opaque to its 
interface6. What makes this possible is that the rules of the safe mode preclude any operations 
which can cause UB and unsafe code is explicit in its interface about the requirements for 
upholding safe usage. The need for unsafe mode arises from operations which cannot be 
automatically proven safe through local analysis or where runtime checking has unacceptable 

6 "Creating a Safe Abstraction over Unsafe Code" example from The Rust Programming Language 
5 Or the compiler/toolchain/operating system 

https://doc.rust-lang.org/book/ch20-01-unsafe-rust.html#creating-a-safe-abstraction-over-unsafe-code


costs. Within an unsafe block, it is the caller’s responsibility to ensure safety conditions for 
unsafe interfaces are upheld. And it is the responsibility of implementations of unsafe operations 
to document the requirements ensuring safe usage. Of course, bugs are inevitable, and since 
unsafe code can cause UB, it is a serious implementation error if UB can be caused when an 
unsafe function is used in accordance with its documented safety requirements. The technical 
term for such an implementation is “unsound”7, and since unsafety can be encapsulated, 
unsoundness can lead to UB downstream of purely safe code. There is nothing magical 
happening, but the amazing power of safety encapsulation means that any UB encountered 
must ultimately arise from a bug in unsafe code. Since unsafe blocks can be narrowly scoped, 
the vast majority of programming can occur in safe mode, making an otherwise global search 
very clearly targeted. 
 
The subset of superset approach8 has been applied to improving C++ and one way of looking at 
unsafe mode is as a superset of the safe default which enables a small set of superpowers9. 
These are sometimes necessary in systems programming, but since they are the exception, it’s 
possible to apply the greater responsibility that comes with them. To operate in a mode where 
UB can occur anywhere accepts unnecessary levels of risk, but it’s not because C++ doesn’t 
care about safety; it merely predates the existence of this approach. Cars did not always have 
seat belts, but it’s not too late to incorporate new approaches to safety that have been shown to 
be effective. The philosophy of C++ is pragmatic: useful concepts pioneered elsewhere are 
regularly incorporated and the default can trade efficiency to gain safety as long as the tools to 
open the hood and thoughtfully access maximum performance are provided. 

There’s Too Much Legacy C++ To Update 
In languages that are free of UB by default, the vast majority of code is written in the safe mode 
of operation. Since all existing C++ is unsafe, it would be a monumental task to convert it all to a 
future safe mode of operation. Fortunately, that’s neither required nor advisable. Research has 
shown that the longer code lives, the less likely it is to contain defects. Even written in an unsafe 
language, it makes more sense to leave code which is functioning acceptably alone. However, 
there is a perpetual need to write new code and providing a facility to do so free of UB can 
ensure that C++ continues to be a vital language. While converting existing code to a UB-free 
mode of operation may be trivial and therefore worthwhile in many cases, there is virtually no 
downside to writing new code in such a mode since access to all legacy code is merely an 
unsafe block away. 
 
Like any major technical transition, incorporating safe code will cause inconvenience, but it will 
largely be syntactic. Since any access to legacy code will require an unsafe block, there will 
initially be many blocks. There is both a risk here of making code less readable and of 
normalization of deviance blunting the sharp sense of caution that ideally accompanies the use 

9 In Rust, there are only five unsafe superpowers. 
8 See “C++ safety, in context” 
7 See “How Safe and Unsafe Interact” 

https://doc.rust-lang.org/book/ch20-01-unsafe-rust.html#unsafe-superpowers
https://herbsutter.com/2024/03/11/safety-in-context/
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html


of unsafe code in default safe languages. However, clever use of syntactic sugar and organizing 
code into regions of local safe logic separated from unsafe blocks accessing legacy code can 
mitigate these issues. Furthermore, while it may be distressing to see a pervasive reminder that 
many lines of code are unsafe, the status quo is that 100% of C++ is unsafe; that the syntax of 
the language is silent on this fact is true of all defaults does not make their semantic 
consequences any less real. In many ways it is a boon to make less desirable code unattractive 
as a gentle incentive to improvement. 

What about the standard library? 
Another natural concern in a transition to a safe mode is that all existing C++ libraries are 
unsafe, and updating even the standard library would be a major undertaking. Again, calling 
from safe code into unsafe library code is an improvement over the status quo. And though it 
would require some additional syntax to enable the unsafe operations, the calling code can 
remain safe rather than virally propagating this syntax to its callers. There is no additional 
syntax required for calling safe code from unsafe. With regards to the standard library in 
particular, there are two reasons safety is less of a problem. 
 
First, just because code is written in unsafe mode (as all existing C++ is) does not mean that it 
does cause UB; merely that it could. It is entirely possible to write C++ that is memory safe in 
practice, although it is difficult and depends on how much one is willing to trade off between 
performance, ergonomics and resilience. The challenge in calling and writing unsafe code safely 
is that the programmer is responsible for upholding the invariants required for safety. If existing 
code were written such that there were no such invariants because all pointers and bounds 
were checked and there were no dependencies on caller-controlled lifetimes, it could be 
declared safe to call and the underlying unsafe operations encapsulated in local unsafe blocks. 
It is already the case that programmers must abide by the standard library’s documented 
requirements for safe usage. Introduction of a safe mode merely formalizes it. 
 
Second, as some of the oldest and most thoroughly used and reviewed code, authored by some 
of the most experienced and knowledgeable C++ programmers, the standard library is among 
the least likely sources of unsoundness. It may be easy to cause UB through consumer misuse, 
but that is the status quo and highlights the incredible power of safe interfaces. Assuming sound 
implementations, the nature of a safe interface makes it impossible to cause undefined 
behavior. To be clear, a safe interface may have non-safety requirements10, and failing to uphold 
them may result in incorrect behavior, but never undefined behavior; the language is not broken; 
nasal demons are safely restrained. 
 
Finally, wrapping existing unsafe code in safe interfaces with additional checking facilitates the 
creation of a safe standard library with code reuse where possible. The emphasis on 
performance and correctness in these kinds of foundational facilities makes judicious use of 
unsafe code encapsulated in safe interfaces a ubiquitous paradigm in languages with default 

10 Such as that a comparison predicate implements a total order 

https://doc.rust-lang.org/stable/std/primitive.slice.html#method.sort_by


safe modes. This additionally allows the exposure of both “safe but checked” and “unsafe but 
unchecked” versions of the same operations11 to provide the appropriate tools to different 
consumers based on need. 
 
Perhaps the biggest concern with safe standard library interfaces is that implementing a useful 
safe mode of C++ may depend on new safe versions of existing types. If unsafe code required 
modification to use safe interface types, that could potentially be a viral effect which inhibits 
adoption of safe code. While this is an important concern, it is out of the scope of this paper, 
because it does not advocate for a particular implementation of safety; merely that a mode free 
of undefined behavior is an essential goal for C++. We have many different approaches to 
achieving this kind of safety in different languages, and active research12 may yield others. 
Furthermore, C++ has always been a multi-paradigm language, so it’s even possible to have 
different approaches to achieving the same safety requirements which allow users to select the 
best compromise for their use case13. C++ has a long history of sophisticated syntax and rich 
options for implicit type conversions, so challenges regarding new types for the sake of safety 
are almost certainly surmountable. 

Is this even feasible? 
The success of Rust and Swift have demonstrated that safety by construction is enormously 
practical and valuable for a systems language. And Sean Baxter’s Circle compiler14 is a 
compelling proof of concept that a similar approach can be used to extend C++ while retaining 
backward compatibility. While the amount of new features and syntax for that approach is 
significant, it is no more of a departure than modern C++ is from older versions which are still 
commonly used today. Furthermore, this paper does not advocate for any specific 
implementation, merely that safety by construction should be an explicit requirement of the C++ 
safety strategy. Concerns that this would require a new standard library are understandable, and 
given the language upon which to build it, such libraries will surely come, both as additions to 
the standard itself, which has often added new functionality to improve safety and as 3rd party 
libraries, which often pioneer such concepts and provide valuable implementation experience 
before standardization. In either case, a standard library making full use of new language safety 
features is not a prerequisite for enjoying the benefits of safety by construction. As previously 
mentioned, the greatest benefits are to new code. 

What about profiles and the UB white paper? 
When “Safe C++” (P3390) was presented as a plan to add memory safety to C++, it was 
considered as an alternative to Safety Profiles. In the poll, Safety Profiles received more 
support. Subsequently, Safety Profiles did not achieve consensus for inclusion in C++26 and the 

14 https://www.circle-lang.org 
13 Swift and Rust take different approaches to achieve similar memory safety goals. 
12 See “ ” Balancing the Books: Access Right Tracking for C++ - Lisa Lippincott - C++Now 2025

11 Such as get() vs get_unchecked() 

https://www.youtube.com/watch?v=wQQP_si_VR8
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3390r0.html
https://github.com/cplusplus/papers/issues/2045
https://www.circle-lang.org
https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.get
https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.get_unchecked


work to pursue language safety was delegated to a whitepaper. A proposal for a profiles 
framework achieved consensus, but will not by itself provide safety improvements. As originally 
envisioned, Safety Profiles aim to provide heuristic improvements to safety by highlighting 
unsafe constructs through static analysis. This is a potentially valuable approach for discovering 
latent UB in legacy code, but it does not appear feasible to achieve memory safety by 
construction using this method15. As such, future work on safety via the Profiles framework 
should be seen as a complement to a safety by construction strategy, but not an alternative. The 
former can help improve the massive amount of legacy C++, but the latter is required to bring 
the safety of writing new code up to the standard of alternative languages. The approach to UB 
is currently the responsibility of the whitepaper which has a goal of creating a comprehensive 
list. This is a clear and necessary first step, but currently there is no commitment to providing 
UB freedom. Related to this, “Implicit Contract Assertions” (P3100R2) aims to treat all UB 
through the contracts mechanism, which requires runtime enforcement support. If successful, 
using the quick-enforce semantic could deliver a C++ which is memory safe. What the tradeoffs 
are in terms of program termination on otherwise benign UB or reduced performance to provide 
checking which cannot be achieved statically is unknown, but it is a good first step. UB freedom 
by construction would be a huge boon for writing new code in C++. Especially if heuristic 
approaches such as Safety Profiles statically identify latent defects, writing new code to fix them 
would be far more risky if the changes transformed the UB into subtler forms which elude the 
heuristics rather than completely eliminating it. Since alternative languages have been designed 
to provide safety with minimal runtime cost, it will likely be necessary to pursue language 
changes to facilitate higher performance while maintaining UB freedom, but given the level of 
concern about safety itself, ensuring the future for C++ as a language for new development 
demands that the first priority be UB itself. 

Why commit now without a full design? 
WG21 is a careful and deliberative body befitting the enormous impact of a language as 
important and pervasive as C++. Though there have been changes which many would argue 
were regrettable in retrospect, the broad consensus model means the default choice is to leave 
things alone. As with old code that is more likely to be free of bugs, this is a wise default for a 
technology which is well established and has demonstrated enormous value. 
 
The cost of this judicious approach is that it can be difficult to take decisive action swiftly and in 
a body comprised of technologists, the tendency to debate the details of specific 
implementations can preclude committing to an important goal and communicating a clear 
direction to the huge community of C++ users. The current moment is a potential inflection point 
for C++. As safe-by-default systems languages are moving steadily through the technology 
adoption life cycle16 from “early adopter” to “early majority” and significant calls are being made 
to move towards memory safety, even if that means moving away from C++. Staking out a clear 

16 See https://en.wikipedia.org/wiki/Technology_adoption_life_cycle 

15 “Why Safety Profiles Failed” provides an analysis of why the current language lacks the information 
necessary to provide such guarantees. 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3100r2.pdf
https://en.wikipedia.org/wiki/Technology_adoption_life_cycle
https://www.circle-lang.org/draft-profiles.html


vision for the language has the potential to make the difference between a long future as a 
proven option among several capable systems languages or as a primarily legacy tool. 
 
As things stand currently, the most public statement the committee and its leadership have 
made regarding memory safety describe it as “a very small part of security”17 and though there 
is much valuable work underway to improve safety and reduce undefined behavior, there’s no 
reason to believe that memory safety by construction is likely to come to C++ in the near future. 
For users who find this kind of safety important, and there is clear evidence that many do, 
including some of the largest organizations in the world, they are currently obligated to make 
plans that do not include C++ to achieve it. Given the track record of C++ implementations 
delivering complex features in a timely and performant manner and the proofs of concept for 
achieving this kind of safety in a systems language, the fundamental obstacle seems to be the 
commitment to the vision. 
 
Finally, this is what C++ developers clearly want. Based on the most recent survey, 77.8% 
described memory safety as “important” or “essential”. Only 7.5% said it was “mostly” or “not at 
all” important. 

 
When asked “If you could wave a magic wand and change one thing about any part of C++” 2 of 
the 7 primary themes were “Memory Safety and Better Defaults” and “Remove Implicit 
Conversions and Undefined Behavior (UB)”. Additionally, a “Safe/Restrictive Subset or Mode” is 
one of the secondary themes. Per the summary: 
 

17 See “Request for Information: Open-Source Software Security: Areas of Long-Term Focus and 
Prioritization” and “DOE RFI Response” 

https://isocpp.org/files/papers/CppDevSurvey-2025-summary.pdf
https://www.regulations.gov/document/ONCD-2023-0002-0001
https://www.regulations.gov/document/ONCD-2023-0002-0001
https://downloads.regulations.gov/ONCD-2023-0002-0020/attachment_1.pdf


There is strong consensus around modernizing the toolchain, improving safety and 
usability, and embracing breaking changes where necessary. Standardized 
package/build systems, memory safety mechanisms, and reflection are the clearest 
high-impact opportunities. Implementing these would directly address user pain points 
and significantly enhance daily productivity, maintainability, and adoption of C++. 

 
And in “Takeaways for Committee and Product Stakeholders”: 
 

Top Priority: Deliver static reflection and safety features effectively; these are 
overwhelmingly the most anticipated changes. 

 
In many ways, the committee is already building towards these changes. It is in everyone’s 
interest to clearly communicate this to the wider world and commit to this ambitious and 
enormously valuable goal. 

Conclusion 
C++ stands at a crossroads. The committee has acknowledged the importance of memory 
safety and is working to identify and reduce UB, but hasn’t yet established whether C++ intends 
to provide memory safety. Meanwhile, memory-safe languages have demonstrated real-world 
benefits significant enough for organizations with some of the world’s largest investments in C++ 
to prefer them for new development. Public statements may have led observers to believe that 
the committee does not think memory safety is important or that it is too hard to add to the 
language. I do not believe either to be the case. Especially in light of the clear signal from users 
that such features are highly desired, plotting a clear course towards achieving memory safety 
will help ensure the best future for the language. 

Acknowledgements 
Thank you to all the members of WG21 who have been so welcoming to me as a new member 
and their curiosity about Rust and its approach to memory safety. In attendance at two meetings 
so far I have learned a great deal through discussion with too many individuals to name. Special 
thanks to David Sankel for reviewing this draft, and Jonathan Müller (“A principled approach to 
safety profiles”), Peter Bindels (“Making Safe C++ Happen”, “Subsetting”), Joshua Berne and 
Timur Doumler (“Implicit contract assertions”) for feedback and the initial inspiration. 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3649r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3649r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3700r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3716r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3100r2.pdf

	 
	Safety Strategy Requirements for C++ 
	Abstract 
	What Is Memory Safety? 
	Why not just reduce UB? 
	Safety By Construction 
	There’s Too Much Legacy C++ To Update 
	What about the standard library? 
	Is this even feasible? 
	What about profiles and the UB white paper? 
	Why commit now without a full design? 
	Conclusion 
	Acknowledgements 

