P3866R0

ISO/IEC JTC1/SC22/WG21

Audience: LEWG

V2: An Evolution Path for the Standard Library

David Sankel *

' Adobe dsankel@adobe.com

October 6, 2025

Abstract

The C++ standard library’s commitment to strong backward compatibility is a core strength, providing users with
low-cost upgrades. However, this guarantee complicates library evolution. When existing types or functions require
revision, compatibility constraints often result in awkward compromises, such as placing superior replacements in
different namespaces or assigning them less intuitive names. This naming challenge, in turn, often discourages the
introduction of otherwise beneficial enhancements. The resulting haphazard approach confuses developers about best
practices and unnecessarily increases the library’s perceived complexity. We propose a structured methodology for
evolving the standard library that accommodates interface-breaking changes while preserving backward compatibility,
thereby eliminating the need for inconsistent naming and namespacing conventions.

Historical evolution If V2 were adopted

New

Old New Old

std::lock_guard x(m);

std: :scoped_lock x(m);

std: :lock_guard x(m);
std::cppll::lock_guard y(m);

std::lock_guard2 x(m);
std::cppl7::lock_guard y(m);

std::cppll::function g =
VAT VS

std: :sort(std: :ranges: :sort(std: :sort(std: :sort2(
v.begin(), v.begin(), v.begin(), v.begin(Q),
v.end()); v.end()); v.end()); v.end());
std: :cppl?::sort(std: :cpp20: :sort(
v.beginQ), v.begin(),
v.end()); v.end());
std: :function f = std: :copyable_function | std::function f = std::function2 f =
VAV f=/%..%/; VARV VARV

std: :cpp26::function g =
/R */

std::thread t =
IELLR

std::jthread t =
J*. K/

std::thread t =

VARV
std::cppll::thread u =
VARV

std::thread2 t =

/*.00%/
std::cpp20: :thread u =
VARV

mailto:dsankel@adobe.com

1. Introduction

The C++ standard library’s strength—its commitment
to backward compatibility—is also a primary obstacle
to its evolution. When components require interface-
breaking changes, the committee resorts to ad-hoc solu-
tions: placing new versions in different namespaces
(std::ranges::sort) or giving them entirely new names
(std: :copyable_function).

The result is an incoherent library that confuses develop-
ers and harms teachability. Worse, this naming challenge
actively discourages necessary improvements, as finding
an acceptable name is often considered too difficult.

This paper proposes V2, a structured framework to re-
solve this problem.

2. V2

V2 is a proposed versioning strategy for the C++
standard library designed to manage breaking changes.
This convention dictates that when a library component,
such as std::foo, undergoes an interface-breaking revi-
sion, a new version is introduced with an incrementing
numerical suffix. For instance, the first breaking change
to std::foo would result in a new component named
std::foo2, with a subsequent revision being named
std: :foo3.

To complement the versioned entities in the std name-
space, we propose introducing standard-specific name-
spaces (e.g., std::cpp29, std: :cpp32). These namespaces
would contain aliases that always point to the most recent
version of every component available in that C++ stan-
dard.

The recommended practice would be for developers to
use these versioned namespaces by default (e.g., via
namespace cpp = std::cpp29;). The global std:: name-
space would then be reserved for cases where direct
access to an older, superseded API is explicitly required.

namespace cpp = std::cpp29;

void fQ {
cpp::string s; // std::cpp29::string is an alias
// to std::string
cpp: :unordered_map<int,int> s;
// std::cpp29::unordered_map is an alias to
// std::unordered_map2, a hypothetical modern
// hash map API.

3. Associated policy

A version increment applies for changes that:
e Break source compatibility (i.e., cause compilation
errors for users).
e Break ABI compatibility on major platforms.
regressions or
changes that alter existing functionality.

e Introduce behavioral semantic

Version increments for a component should be rare
and require strong justification. Before proceeding with
a breaking change, the following factors must be consid-
ered:

e Migration Path: Is there a feasible path for users
to automatically or semi-automatically upgrade their
codebase? A clear and automatable migration strat-
egy is highly desirable.

e Conceptual Consistency: Does the revised compo-
nent maintain its original conceptual identity? A
change should not be so drastic that it becomes dif-
ficult for users to adapt their mental model of its
purpose and usage.

o Cost-Benefit Analysis: Do the benefits of the change
clearly outweigh the associated costs? This includes
the engineering effort for users to upgrade, the edu-
cational burden of learning a new interface, and the
added complexity of introducing another version to
the standard library.

Non-breaking changes—such as bug fixes, performance
enhancements, or backward-compatible feature addi-
tions—should be applied directly to the latest version
of a component. The decision to backport these changes
to prior versions can be made on a case-by-case basis.
However, it is strongly recommended to apply such im-
provements to all relevant prior versions to benefit the
widest possible audience.

4. Alternatives considered

4.1. Inline namespaces

Inline namespaces are a C++ feature designed to manage
library evolution, allowing code compiled against an
older header to link with a library that provides a newer
implementation. A standard library vendor could use this
mechanism, toggling the active version with a compiler
flag for the C++ standard.

For example, a library could define two versions of
unordered_map:

// In <unordered_map> header
namespace std {
#1f __cplusplus <= 202600L // Pre-C++29

inline
#endif

namespace vl {

class unordered_map {
/* old implementation */

1
}

#1f __cplusplus > 202600L // C++29 and later
inline
namespace v2 {
class unordered_map {
/* new, improved implementation */
3
1
#endif
}

The primary limitation of this approach is its monolithic
nature. The choice of which API version is used is a global,
compile-time decision controlled by a single flag (e.g., -
std=c++29). This forces a “flag-day” upgrade, where an
entire codebase must be migrated and validated against
the new versions all at once. This all-or-nothing require-
ment creates a significant barrier to adoption for large
projects.

In contrast, the V2 framework allows for granular and
incremental adoption. Developers can migrate specific
components at their own pace, drastically lowering the
cost and risk of modernization.

4.2, std2, std3, etc. namespaces

A 2016 proposal[1] suggested reserving namespaces like
std2, std3, and so on for future, non-backward-compati-
ble revisions of the standard library.

This approach shares a key benefit with the V2 frame-
work: it allows for granular adoption, where developers
can migrate individual components to the new API at
their own pace.

However, this strategy has two significant drawbacks.
First, the syntax is awkward and verbose, requiring users
to manage different std-like namespaces throughout their
code. Second, it fails to provide a mechanism for devel-
opers to express their intent to use the “latest and best”
version of a component available in a given C++ stan-
dard.

5. Wording

If there is sufficient interest in this approach, wording can
be produced for SD-9[2].

6. Conclusion

The current ad-hoc approach to evolving the C++ stan-
dard library is unsustainable. It creates a confusing and
inconsistent experience for developers and even discour-
ages necessary improvements due to the difficulty of
naming them. The V2 framework presented in this paper
offers a clear path forward. By combining a predictable
versioning scheme (std::foo2) with standard-specific
namespaces (std::cpp29), it provides a consistent and
scalable solution for managing breaking changes.

Bibliography

[1] Alisdair Meredith, “Reserve a New Library Name-
space Future Standardization,” Feb. 2016. Accessed:
Feb. 10, 2016. [Online]. Available: https://wg21.
link/P0180R0

[2] Inbal Levi, Ben Craig, and Fabio Fracassi, “Library
Evolution Policies,” Nov. 2023. Accessed: May 13,
2025. [Online]. Available: https://wg21.link/p2267
rl

https://wg21.link/P0180R0
https://wg21.link/P0180R0
https://wg21.link/p2267r1
https://wg21.link/p2267r1

	Introduction
	V2
	Associated policy
	Alternatives considered
	Inline namespaces
	std2, std3, etc. namespaces

	Wording
	Conclusion
	Bibliography

