Minimal fix for CWG3003 (CTAD from template template

parameters)
Document #: P3683R0
Date: 2025-10-06
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

The standard library depends on CTAD from template template parameters. However, this
feature does not exist despite being universally implemented.

History

C++23 added a facility to build a container out of a range, including conversions:
std::views::iota(@, 42) | std::ranges::to<std::vector<int>>();

std::views::iota(@, 42) | std::ranges::to<std::vector<double>>()

In addition, we allow deducing the element type from the element type of the view.

std::views::iota(@, 42) | std::ranges::to<std::vector>();

It's not magic, it's CTAD!

Ignoring a lot of details, it boils down to

template <template <typename...> typename TT, typename R>
auto to(R&& r) {

return std::ranges::to<decltype(TT(std::from_range, std::declval<R&&>()))>(r);
}

This is a neat trick that I think was first implemented in ranges-v3. It is widely used by users
of the C++ standard library and other ranges libraries, and supported by all implementations.

There is just one problem: Nowhere does the standard allow performing CTAD for template
template parameters. We standardized a library feature that is simply not C++. And by we, I
mean me (P1206R7 [1]).

LWG4381 proposes to remove the offending ranges: : to overload to fix the fact that the library
relies on imaginary features. However, this is not really possible. Regardless of whether the
feature is conforming or useful, it is widely used and universally implemented.

The solution is for the standard to reflect existing practice.

mailto:corentin.jabot@gmail.com
https://wg21.link/P1206R7
https://cplusplus.github.io/LWG/issue4381

Aliases

When aliases template are involved, not all scenarios are supported

support the pmr use case, which all implementations do

template <template <typename...> typename TT, typename... Args>
auto f(Args8&... args) {
return TT(args...);
3
template <typename T>
struct alloc;

template <typename T>
struct pmr_alloc;

template <typename T, typename Alloc = alloc<T>>
struct vector {
vector(T);

3

template <typename T>
using pmr_vector = vector<T, pmr_alloc<T>>;

auto b = f<vector>(0);
auto a = f<pmr_vector>(0);

. It seems important to

However, no implementations support multiple layers of aliases, as described in CWG3003:

template <typename T> struct A { A(T); J;

template <typename T, template <typename> class TT = A>
using Alias = TT<T>;

template <typename T>
using Alias2 = Alias<T>;

void h() { Alias2 a(42); } // all reject
void h2() { Alias a(42); } // all reject

No implementation supports this example ([Compiler explorer]). In fact, Clang and GCC used
to crash on that scenario, which is how this imbroglio came to light in the first place.

Supporting that seems less useful, however, it requires additional wording mechanism (CTAD
for alias template is not exactly simple), and ideally, some prototyping. We therefore propose
that this remains unsupported and be left as a future evolutionary exercise for an eager

reader.

https://godbolt.org/z/s9jsPTnhG

Feature test macro

Because this specifies existing practice, there is no need to update any feature test macros.
The change should be a DR to C++23.

Wording

o Simple type specifiers [dcl.type.simple]

A placeholder-type-specifier is a placeholder for a type to be deduced [dcl.spec.auto]. A type-
specifier is a placeholder for a deduced class type [dcl.type.class.deduct] if either

+ itis of the form typename,,; nested-name-specifier ,,: template-name or

* it is of the form typename,,; splice-specifier and the splice-specifier designates a class
template or alias template.

The nested-name-specifier or splice-specifier, if any, shall be non-dependent and the template-
name or splice-specifier shall designate a deducible template. A deducible template is either a
class template, a type template template parameter, or is an alias template whose defining-
type-id is of the form

typename,,, nested-name-specifier,,, template,,, simple-template-id

where the nested-name-specifier (if any) is non-dependent and the template-name of the simple-
template-id names a deducible template that is not a type template template parameter.
[Note: An injected-class-name is never interpreted as a template-name in contexts where class
template argument deduction would be performed [temp.local]l. —end note]

o Class template argument deduction [over.match.class.deduct]

When resolving a placeholder for a deduced class type [dcl.type.class.deduct] where the
template-name or splice-type-specifier designates a primary class template C, a set of functions
and function templates, called the guides of C, is formed comprising:

« If cis defined, for each constructor of C, a function template with the following properties:

- The template parameters are the template parameters of C followed by the template
parameters (including default template arguments) of the constructor, if any.

- The associated constraints[temp.constr.decl] are the conjunction of the associated
constraints of C and the associated constraints of the constructor, if any. [Note:
A constraint-expression in the template-head of C is checked for satisfaction before
any constraints from the template-head or trailing requires-clause of the constructor.
—end note]

- The parameter-declaration-clause is that of the constructor.

- The return type is the class template specialization designated by ¢ and template
arguments corresponding to the template parameters of C.

3

When resolving a placeholder for a deduced class type [dcl.type.class.deduct] where
* the template-name designates a type template template parameter TT,
* the argument corresponding to TT designates a primary class template C, and
« TT and C are compatible [temp.arg.template],

then C is first substituted into TT.

o Dependent types [temp.dep.type]
A placeholder for a deduced class type [dcl.type.class.deduct] is dependent if

* it has a dependent initializer, or

« it refers to a template template parameter, or

+ it refers to an alias template that is a member of the current instantiation and whose
defining-type-id is dependent after class template argument deduction[over.match.class.deduct]
and substitution[temp.alias].

Acknowledgnments

Thanks to Jan Schultke, Lénard Szolnoki, Tomasz Kaminski, and Matheus Izvekov for their
feedback on this paper.

References
[1] Corentin Jabot, Eric Niebler, and Casey Carter. P1206R7: Conversions from ranges to
containers. https://wg21.1link/p1206r7, 1 2022.

[N5008] Thomas Képpe Working Draft, Standard for Programming Language C++
https://wg21.1ink/N5008

https://wg21.link/p1206r7
https://wg21.link/N5008

	1 Abstract
	2 History
	3 Aliases
	4 Feature test macro
	5 Wording
	5.0.1 Simple type specifiers
	5.0.2 Class template argument deduction
	5.0.3 Dependent types

	6 Acknowledgnments

