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Abstract

“Trivial Relocatability For C++ 26”[1] introduced mechanisms for the identification and tagging of types whose objects
can be “trivially” relocated from one memory address to another, as well as standard library functions that perform this
relocation. A call to std: :trivial_relocate performs a logically atomic operation whereby an object’s representation is
copied, its lifetime is ended at the original location, and its lifetime is restarted at the target location, without invoking
any constructors or destructors. Useful as they are, these standard library functions are insufficient for important use
cases where the three component operations must be separated by intervening code, such as realloc support, value
representation serialization, and cross language interoperability. We propose to complete the trivial relocation function
set with the addition of a single function template, std: :restart_lifetime, that addresses these unsupported use cases.

Context

// A trivially relocatable, but not trivially copyable, type.
class Foo { /*...*/ };

// Create a foo sequence with a single element using Microsoft's specialized mimalloc allocator.
void* foo_sequence_buffer = mi_malloc_aligned(sizeof(Foo), alignof(Foo0));
Foo* foo_sequence = new (foo_sequence_buffer) Foo();

// Extend the sequence reusing the same memory if possible

foo_sequence_buffer = mi_realloc_aligned(foo_sequence, sizeof(Foo)*2, alignof(Foo));
new (foo_sequence_buffer+sizeof(Foo)) Foo(Q);

foo_sequence = (Foo*)foo_sequence_buffer;

Before After

foo_sequence[0].bar(); // (Saiate Mol leValels // Restart lifetime of relocated elements
std: :restart_lifetime(foo_sequence[0]);

foo_sequence[@].bar(); //
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1. Introduction

It is a common yet unspecified property that for many
types, an object can be relocated with a memcpy of its
underlying bytes. Although the standard guarantees this
only for the small number of trivially copyable types,
virtually all C++ compilers support memcpy-relocation of
non-self-referential types. Many applications have taken
advantage of this property for performance optimizations
and a number of libraries have emerged that attempt to
surface this functionality in a generic way.!

After much debate, the committee added a form of this
functionality to the working draft[3] with “Trivial Relo-
catability For C++ 26”[1]2. An important trade-off in this
design is that qualifying types may be “trivially” relo-
cated using only the trivially_relocate function; memcpy
will not suffice.

// Foo is a trivially relocatable, but not

// trivially copyable, type.

class Foo { /*...*/ };

static_assert(
std::is_trivially_relocatable_v<Foo>()

&& !std::is_trivially_copyable_v<Foo>());

void fO) {
alignas(Foo) char x1_buffer[sizeof(Foo)],
x2_buffer[sizeof(Foo)],
yl_buffer[sizeof(Foo)],
y2_buffer[sizeof(Foo)];

// Relocating using std::memcpy results in
// undefined behavior.

Foo* x1 = new (x1_buffer) FooQ);

std: :memcpy(&yl_buffer, x1, sizeof(Foo0));
Foo* yl = reinterpret_cast<Foo*>(yl_buffer);

yl->bar(Q); // (lSaiale el glelVakels

// Relocating using std::trivially_relocate
// works as expected.
Foo* x2 = new (x2_buffer) Foo(Q);
Foo* y2 = std::trivially_relocate(
x2,
x2+1,
reinterpret_cast<Foo*>(&y2_buffer));
y2->bar(); //
}

Among other benefits, this type-aware design enables the
ARMS64e ABI which encodes an object’s address in its
virtual table (vtable) pointer making memcpy-relocation

1See [1] and [2] for a survey of such libraries.
2See [2] for a notable design alternative that was considered, but
ultimately rejected.

impossible for polymorphic types on this platform?. The
requirement to call std: :trivially_relocate provides an
opportunity for the standard library to perform “fixups”
on these vtable pointers.

While std::trivially_relocate suffices for many use
cases and neatly handles the ARM64e platform, other
important use cases remain unaddressed. We propose to
complement std: :trivially_relocate with another func-
tion, std::restart_lifetime, that addresses these use
cases.

2. Key std: :trivially_relocate limitations

2.1. realloc use case

Allocation libraries often feature a reallocation function
(such as C’s realloc) that attempts to resize a given
memory block?. It either extends the block in-place or
moves its contents to a new, larger allocation, freeing the
original block in the process.

Reallocation serves as an important performance op-
timization for high-performance, low-level code that
dynamically resizes arrays. By taking advantage of the
allocation library’s knowledge of available space after the
originally allocated block, expensive copy operations and
fragmentation can be avoided.

However, because these reallocation functions potentially
memcpy-relocate objects, they may only portably be used
with trivially copyable types and std: :trivially_relocate
will not help.

2.2. Serialization use case

In-memory databases[9] and tiered caching systems fre-
quently relocate data structures from memory to disk
and back again. Unfortunately, this operation is possible
only for trivially copyable types due to the lack of sufficient
library primitives for trivially relocatable types.

2.3. Specialized memcpy use case

A tuned memory
a 10%
genious

copy operation

speedup over std::memcpy,
memory systems require an alternative®.
std: :trivially_relocate’s coupling of the physical mov-

can produce
and hetero-

ing of an object with restarting its lifetime makes it

3This is a memory safety vulnerability mitigation. See [4] and [5]
for details.

4See mimalloc[6], umm_malloc[7], and tcmalloc[8] for some ex-
amples.

5See  “Going faster than memcpy”[10]
cudaMemcpy[11] for some notable examples.

and CUDA’s



is impossible to portably take advantage of these mecha-
nisms with trivially relocatable types.

2.4. Rust-interop use case

One of the major challenges for high-performance interop
is language differences in how memory for object storage
is handled. For Rust and C++ to use the same memory for
an object that either language can access, we must account
for the differing models of ownership and relocation.
While current practice tends to use indirection so that the
underlying storage is opaque across the language bound-
ary, this has a cost both in performance and ergonomics.

Moves in C++ are non-destructive, whereas Rust’s own-
ership model is based on destructive moves and it is
a compile-time error to refer to a moved-from location.
This facilitates Rust’s value-oriented semantics where all
assignments (including parameters and return values)
transfer ownership®. This is a fundamental piece of the
memory-safe model of default Rust. To facilitate efficient
moves, Rust defines their semantics as a bitwise copy’.
In other words, all Rust objects are trivially copyable in
the C++ sense. The fact that Rust objects cannot be self-
referential® facilitates this. Rust has no analog to a C++
move constructor, meaning there is no opportunity for
additional code that may be added to trivially_relocate
in C++ to run following a Rust move. Without the
addition of std::restart_lifetime, only trivially copyable
C++ types could be passed to Rust by value. Other types
must be allocated on the heap, which is a significant per-
formance penalty, or be pinned’, which has a significant
ergonomics penalty.

3. restart_lifetime

We propose a restart_lifetime function that fits within
the start_lifetime_as series of functions. It allows us
to separate the “memory copying” aspect of relocation
from restarting the object’s lifetime at the new memory
address.

Here is an implementation of std::trivially_relocate
using restart_lifetime as a lower-level primitive.

¢Rust can also use references for “borrows”, which provide either
shared immutable access or exclusive mutable access to a value with
a compiler-checked lifetime

7See https://doc.rust-lang.org/stable/std /marker/trait.Copy.
html#whats-the-difference-between-copy-and-clone and https://
doc.rust-lang.org/stable/std/ptr/fn.read. html#ownership-of-the-
returned-value

8Raw, unsafe pointers and Pinned data are two ways Rust can
express self-referential types

°See https://doc.rust-lang.org/stable/std /pin/index.html

template<class T>
requires /* ... */
T* trivially_relocate(T* first, T* last, T* result)
{
std: :memcpy( result,
first,
(last-first)*sizeof(T));
for(size_t i = 0; i < (last-first); ++1i)
std::restart_lifetime(Cresult[i]);
}

This separation of concerns allows developers to copy an
object’s value representation to a new location by any
means and then use it from the new location after a call
to std::restart_lifetime. This enables all the usecases
highlighted in Section 2.

Here is an example of using std::restart_lifetime to
roundtrip a Foo object from main memory to GPU mem-
ory.

void * host_buffer = /*...*/

void * device_buffer = /*...*/

// Create a "Foo™ object in host memory
Foo* x = new (Chost_buffer)[sizeof(Foo)];

// Move it to CUDA memory
cudaMemcpy( device_buffer,
host_buffer,
sizeof(Foo),
cudaMemcpyHostToDevice );

// ... reuse host_buffer for other purposes

// Move it back to host memory

cudaMemcpy( host_buffer,
device_buffer,
sizeof(Foo),
cudaMemcpyDevicetoHost );

// Restart the object's lifetime on the host
X = std::restart_lifetime<Foo>(Chost_buffer);

// ... continue using *x

3.1. Addressing Rust-interop

Since std: :trivially_relocate can be decomposed into a
bitwise copy followed by std: :restart_lifetime, and it’s
only necessary to make sure that the latter occurs before
accessing the potentially authenticated C++ vtable point-
ers, there is an opportunity to lazily perform fixups on the
C++ side. For example, say we have a polymorphic class
hierarchy implemented in C++:

class Shape {

public:
virtual float area() const = 0;
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virtual ~Shape() = default;
3

class Circle final :
public:

Circle(float radius);

float area() const override;
private:

float m_area;

public Shape {

g
We'd like to interact with this API idiomatically within
Rust:

let a = Circle::new(1.0);
let b = Circle::new(2.0);
a = b;

println("a's area: {}", a.area());

To do so, we first observe that Shape and Circle are
trivially relocatable and replaceable types. We denote
the alignment of Circle as CIRCLE_ALIGNMENT and its size
as CIRCLE_SIZE. Now we can define the Rust-side Circle

type:

#[repr(C)]
#[repr(align(CIRCLE_ALIGNMENT))]
struct Circle {
data: Cell<[MaybeUninit<u8>; CIRCLE_SIZE]>,

}

where data holds the bit representation of the object!?.
Let’s now turn to Circle’s methods. Their implemen-
tations are essentially boilerplate that delegates to corre-
sponding C functions prefixed with c_:

impl Circle {
fn new(radius: f32) -> Circle {
let mut ¢ = MaybeUninit::uninit();
unsafe { c_create(
c.as_mut_ptr() as *mut c_void,
&radius as *const f32
as *mut c_void)};
unsafe { c.assume_init(Q) }
}
fn area(&self) -> 32 {
let mut result = MaybeUninit::uninit(Q);
unsafe { c_area(
result.as_mut_ptr() as *mut c_void,
self as *const Circle
as *mut c_void)};
unsafe { result.assume_init() }

}

These C functions are implemented as follows:

0See https://doc.rust-lang.org/stable/std/cell/struct.Cell.html,
https://doc.rust-lang.org/stable/std /mem/union.MaybeUninit.
html

void c_create(void* result, void* radius) {
new (result) Circle(
*static_cast<float*>(radius));

}

void c_area(void* result, void* circle) {
Circle* data =
std::restart_lifetime<Circle>(circle);
*static_cast<float*>(result) = data->area();

}

With the addition of such easily generated wrapper code,
efficient and ergonomic access from Rust can be achieved.
Furthermore, on platforms where std: :restart_lifetime
is a no-op, there is no performance penalty.

4. Implementation

On most platforms, the implementation of
std::restart_lifetime is a no-op. The exception is
ARM64e where polymorphic types and types with
polymorphic data members require special handling as

follows:

1. If the object is polymorphic, set its vtable pointers and
cryptographically sign them according to the object’s
new address.

2. Recursively do the same for the object’s fields.

Implementation experience is in progress but we do not
foresee difficulties with either the no-op implementation
on most platforms or the more sophisticated ARMo64e
implementation!!.

5. Other considerations

5.1. Will this undermine ARMS64e security guaran-
tees?

Prior drafts of this proposal suggested implementations

that indiscriminately sign existing vtable pointers with-

out a priori verifying their validity. This resulted in a Re-

turn-Oriented Programming (ROP) Gadget exploitable

by hackers using buffer overruns.

The current proposal avoids this attack by overwriting the
vtable pointers to their correct values, thus eliminating
the possibility that an attacker could set them to arbitrary
memory locations.

"Note that at the time of this writing, there are no implementa-
tions of std::trivially_relocate for ARM64e. See https://github.
com/llvm/llvm-project/pull/144420 for a work in progress
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5.2. Why is this being brought up now (and not
earlier)?

Although trivial relocatability has been discussed for

many years, issues related to ARM64e were brought

forward only recently. It took us the time since then to

understand the issues and formulate a suitable solution.

5.3. Is this a bug fix or a feature?

An important aspect of the trivial relocatability’s feature
design is its basis operations. The basis operations pro-
vided in the C++426 working draft did not satisfy impor-
tant use cases and that was discovered only recently.
Consequently, it can be argued that this contribution is
a bug fix as the intention is to ship a complete trivial relo-
catability solution in C++26.

5.4. Is this critical for C++26?

Whether or not this feature is considered a bug fix, it can
be argued that it is critical this functionality be shipped in
C++426 due to the urgency of memory safety initiatives.
The ability to call existing C++ code ergonomically from
Rust is a critical to the memory safety roadmaps of many
major corporations. Delaying this functionality by three
years may force undesirable choices like depending on
non-portable undefined behavior for interop or a strong
push to rewrite existing C++ code that works just fine.

5.5. Should this replace trivially_relocate instead
of complement it?

Some have argued that std::trivially_relocate is un-

necessary in the standard library because it can be

implemented in terms of std::restart_lifetime, while

std: :relocate covers the most common use cases.

We disagree with this assertion. std: : trivially_relocate
has legitimate use cases, one being a replacement for
similar operations provided by existing library relocation
solutions.

6. Alternatives considered

6.1. Pass in origin pointer

We also considered an alternative formulation of
restart_lifetime that accepted the object’s original loca-
tion in addition to the new location. Its definition is
provided below.

// Not proposed
template<class T>

2Their first mention was in May of 2025 with [2]

T* restart_lifetime(uintptr_t origin,
void* p) noexcept;

Mandates:
is_const_v<T> is true.

is_trivially_relocatable_v<T> && !

Preconditions:

— [p, (char®*)p + sizeof(T)) denotes a region of
allocated storage that is a subset of the region
of storage reachable through [basic.compound ]
p and suitably aligned for the type T.

— The contents of [p, (char*)p + sizeof(T)) is
the value representation of an object a that was
stored at origin.

Effects: Implicitly creates an object b within the de-
noted region of type T whose address is p, whose
lifetime has begun, and whose object representation
is the same as that of a.

Returns: A pointer to the b defined in the Effects para-
graph.

The rationale was that on ARM64e, the origin pointer
could be used to validate the vtable pointers in the new
location before re-signing them. This design, however, is
significantly more complicated than our proposal and is
considered overly tailored to ARM64e.

6.2. Extension for inter-process communication
Another alternative we considered was to generalize
restart_lifetime to support reconstituting an object from
its value representation across different processes. This
would involve completely restoring the invisible parts of
an object (such as vtable pointers) in a new context based
solely on its byte representation. However, we concluded
that this approach is fraught with difficulty for several
reasons.

First, such a function would be very difficult, if not impos-
sible, for a compiler to optimize into a no-op, as it cannot
assume that the source and destination contexts are
identical. Second, C++ currently lacks a mechanism to
formally describe or mandate a “same layout” guarantee
for non-standard-layout types across different compiler
versions, platforms, or even separate compilations of
the same program; future reflection capabilities might
provide a path toward establishing such guarantees, but
this is beyond the scope of this paper. Finally, describing
a mandate for a “valid member state” is problematic. The
language does not provide a standardized way to describe
or check class invariants, making it difficult to specify



preconditions for a function that must reconstitute an
object from a potentially untrusted byte stream without
invoking a constructor.

While a more powerful cross-process variation of
restart_lifetime could be considered in the future, we
wanted this to be a minimalist proposal. Our goal is to
address the immediate and well-understood use cases
of in-process relocation without venturing into the more
complex domain of general-purpose serialization.

6.3. Names

Another name we considered was start_lifetime_at due
to its similarty to the start_lifetime_as function group.
The authors do not have strong preferences between
start_lifetime_at and restart_lifetime.

7. Wording
Add to end of [obj lifetime].

template<class T>

T* restart_lifetime(void* p) noexcept;

template<class T>

volatile T* restart_lifetime(volatile void* p)
noexcept;

Mandates: is_trivially_relocatable_v<T> && !
is_const_v<T> is true.

Preconditions:

— [p, Cchar®)p + sizeof(T)) denotes a region of
allocated storage that is a subset of the region
of storage reachable through [basic.compound]
p and suitably aligned for the type T.

— The contents of [p, (char®)p + sizeof(T)) is
the value representation of an object a that was
stored at another address.

Effects: Implicitly creates an object b within the de-
noted region of type T whose address is p, whose
lifetime has begun, and whose object representation
is the same as that of a. If a was still within its lifetime,
its lifetime is ended.

Returns: A pointer to the b defined in the Effects para-
graph.

8. Conclusion

The std::trivially_relocate primitive, while valuable,
is insufficient for a number of important, real-world
use cases involving realloc-driven optimizations, serial-
ization, and cross-language interoperability. We propose

a minimal, orthogonal primitive, std: :restart_lifetime,
which decomposes relocation into its constituent parts:
a byte-wise copy and a subsequent lifetime restart. This
separation of concerns directly enables the aforemen-
tioned use cases. Crucially, it provides a portable and
ergonomic pathway for interoperability with other lan-
guages, such as Rust, supporting critical industry-wide
memory safety initiatives. Given its importance as a com-
pletion of the trivial relocatability feature set and its low
implementation cost, we believe this proposal should be
considered for C+4-26.
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