
Document Number: P3844R0

Date: 2025-10-01

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++26

Restore simd::vec broadcast from int

ABSTRACT

The broadcast constructor in the Parallelism 2 TS allowed construction from (unsigned) int, allow-
ing e.g. vec<float>() + 1, which is ill-formed in the CD. This breaks existing code that gets ported

from the TS to std::simd. The design intent behind std::simd was for this to work. However, the

understanding in LEWG appeared to be that we can’t get this right without constexpr function

arguments getting added to the language. This paper shows that a consteval constructor overload
together with constexpr exceptions can resolve the issue for C++26 and is a better solution than

constexpr function arguments would be.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Motivation 2
4 Design space 4

4.1 Status quo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 More constrained constexpr overload . . . . . . . . . . . . . . . . . . . . . 5
4.3 More constrained consteval overload . . . . . . . . . . . . . . . . . . . . . 6
4.4 How to handle bad value-preserving casts . . . . . . . . . . . . . . . . . . 7

5 Differences 8
6 Recommendation 8
7 Implementation experience 8
8 Proposed polls 9



P3844R0 Contents

9 Wording for Section 4.2 10
9.1 Feature test macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9.2 Modify [simd.expos] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9.3 Modify [simd.overview] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9.4 Modify [simd.ctor] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 Wording for Section 4.3 12
10.1 Feature test macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.2 Modify [simd.expos] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.3 Modify [simd.expos.defn] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.4 Modify [simd.overview] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.5 Modify [simd.ctor] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A really_convertible_to definition 14
B Bibliography 14

ii



P3844R0 1 Changelog

1 CHANGELOG

(placeholder)

2 STRAW POLLS

(placeholder)

1



P3844R0 3 Motivation

3 MOTIVATION

It is very common in floating-point code to simplywrite e.g. * 2 rather than * 2.f when multiplying

a float with a constant:

float f(float x) { return x * 2; } // converts 2 to float (at compile time)

float g(float x) { return x * 2.; } // converts x to double (at run time)

float h(float x) { return x * 2.f; } // no conversions

More importantly, using * 2 works reliably in generic code, where the type of x could be any

arithmetic type.

Since this is so common, std::experimental::simd<T> made an exception for int in the broad-

cast constructor to not require value-preserving conversions. Consequently, the TS allows:

using floatv = std:: experimental ::native_simd <float >;

floatv f(floatv x) { return x * 2; } // converts 2 to float and broadcasts (at compile time)

floatv g(floatv x) { return x * 2.; } // ill -formed

floatv h(floatv x) { return x * 2.f; } // broadcasts 2.f to floatv

When porting existing code written against the TS to C++26, the first step is to adjust the types:

using floatv = std::experimental::native_simdsimd::vec<float >;

Except for uses of std::experimental::where, which need to be refactored to use simd::select,
the remaining code should work. The one place where it doesn’t work is code such as in function

f, where 2 needs to be replaced:

floatv f(floatv x) { return x * 2std::cw<2>; }

Since we don’t have constexpr function arguments in the language, std::simd works around

it by recognizing integral-constant-like / constant-wrapper-like types, that encode a value

into a type. This, however, comes at a compile-time cost. Every different value leads to a template

specialization of both constant_wrapper and a basic_vec broadcast constructor (with it’s helper

types/concepts to determine whether the specialization is allowed). Consequently, for vec<float>,
I would recommend to always use an f suffix rather than std::cw.
But that solution is fairly limited, since we don’t have literals for 8-bit and 16-bit integers in the

language. A function template like

template <simd_integral V>
V f(V x) {

return x + 1; // ill -formed for V:: value_type = (u)int8_t , (un)int16_t , and uint32_t
}

2



P3844R0 3 Motivation

needs to use x + V(1)1. A clever user might write x + '\1' instead. But that fails for the char type
with different signedness.

Consequently, userswould need to get used towriting explicit conversions for the constants they

use in std::simd code. That’s not only verbose and ugly, it is also error-prone.Wheneverwe coerce

our users into writing explicit conversions, then value-changing conversions cannot be diagnosed

as erroneous anymore. An explicit static_cast<uint64_t>(-1) means 0xffff'ffff'ffff'ffff,
whereas uint64_t x = -1 could have been intended to mean 0x0000'0000'ffff'ffff or is a result
of a logic flaw in the code. E.g., GCC’s -Wsign-conversion diagnoses the latter, but not the former2.

If, with C++26, our users are starting to explicitly convert their int constants to basic_vec, then
the interface of basic_vec is at least in part guilty for introducing harder to find bugs.

Tony Table 1 presents an example of the solution3. Note that the code on the left will never

warn about the value-changing conversion, even with all conversion related warnings enabled. This

is due to the explicit conversion, which is telling the compiler “I know what I’m doing; no need to

warn me about it”.

before with P3844R0

template <simd_floating_point V>
V f(V x) {

return x + V(0 x5EAF00D );
}

f(vec <double >()); // OK

// compiles but
// adds 99282960 instead of 99282957
f(vec <float >());

// compiles but
// adds infinity instead of 99282957
f(vec <std::float16_t >());

template <simd_floating_point V>
V f(V x) {

return x + 0 x5EAF00D ;
}

f(vec <double >()); // OK

// ill -formed: uncaught exception on
// value - changing conversion
f(vec <float >());

// ill -formed: uncaught exception on
// value - changing conversion
f(vec <std::float16_t >());

TonyBefore/After Table 1: Add an offset

A safer implementation of the code on the left side ofTonyTable 1 (without this paper)would have

been to write x + std::cw<0x5EAF00D> instead. Then the value-changing conversion would have

resulted in a constraint failure on the broadcast constructor. However, V(0x5EAF00D) is shorter and
needs fewer template instantations. I expect most users (including myself) will/do not use std::cw
all over the place.

1 explicit conversion to basic_vec allows conversions that are not value-preserving
2 And that’s useful, because the former says “I’m intentionally doing this conversion, no need to warn.”

3 I got bitten by this in my std::simd unit tests

3



P3844R0 4 Design space

4 DESIGN SPACE

In the design review of this issue of the broadcast constructor it was overlooked (and never dis-

cussed) that a consteval overload of the broadcast constructor could solve this problem. Before

constexpr exceptions, we would have worded it to be ill-formed (by unspecified means) if the value

changes on conversion to the basic_vec’s value-type. Now that we have constexpr exceptions, we
can specify a consteval broadcast overload that throws on value-changing conversion. If the caller
cares, the exception can even be handled at compile time. (I believe it should not throw in C++26,

for a minimal change to the WD.)

Ordering the overloads for overload resolution is tricky, which is another reason why we should

consider this issue before C++26 ships and potentially take action even if we don’t add a consteval
overload. Overload resolution does not take consteval into account. The process of finding candi-

date functions ([over.match.funcs.general]), however, does remove explicit constructors from the

candidate set if the context does not allow the explicit constructor to be called.

4.1 status quo

The following code shows the properties of the current broadcast constructor.

See Appendix A for the definition of the really_convertible_to concept.

using V = simd ::vec <float >;

template <typename T> struct X { explicit operator T() const; };

static_assert (not std:: convertible_to <X<float >, V >);
static_assert ( std:: convertible_to <float , V >);
static_assert ( std:: convertible_to <short , V >);
static_assert ( really_convertible_to <short , V >);
static_assert (not std:: convertible_to <int , V >);
static_assert (not really_convertible_to <int , V >);

static_assert ( std:: constructible_from <V, X<float >>);
static_assert (not std:: constructible_from <V, X<short >>);
static_assert ( std:: constructible_from <V, float >);
static_assert ( std:: constructible_from <V, short >);
static_assert ( std:: constructible_from <V, int >);

V f(int n, short m, std:: reference_wrapper <int > l, std:: reference_wrapper <float > f)
{

V x = '\1'; // OK
x = 1; // ill -formed
x = 0 x5EAF00D ; // ill -formed
x = V(n); // OK
x = m; // OK

4

https://eel.is/c++draft/over.match#funcs.general-8


P3844R0 4 Design space

x = l; // OK ( because convertible_to < decltype (l), float > is true)
x = f; // OK
x = X<float >(); // ill -formed: no match for operator = (no known conversion …[])
x = float(X<float >()); // OK ( obvious )
x = V(X<float >()); // OK

}

4.2 more constrained constexpr overload

A possible solution selects the existing (constexpr) broadcast constructor for everything but the

caseswhere the value of the argument needs to be checked. Thus, we need the existing constructor

to always bemore constrained ([temp.constr.order]) than the consteval constructor. The consteval
constructor can then only be selected if the other constructor is not part of the candidate set at all

(via explicit).
Sketch:

template <class From , class To >
concept simd-consteval-broadcast-arg = constructible_from <To , From >;

template <class From , class To >
concept simd-broadcast-arg = simd-consteval-broadcast-arg <From , To > and true;

template <class T>
class basic_vec
{
public:

template <simd-broadcast-arg <T> U>
constexpr explicit (see below ) basic_vec (U&&); // #1

template <simd-consteval-broadcast-arg <T> U>
consteval basic_vec (U&&); // #2
// Mandates : convertible_to <U, value_type > && is_arithmetic_v < remove_cvref_t <U>>

};

Now every explicit call to the broadcast constructor will always select #1. Implicit calls to the

broadcast constructor will select #1 if the condition in the explicit specifier is false. Otherwise,
#1 is not part of the candidate set and #2 is called. Thus, the condition on the explicit specifier

determines whether the consteval overload is chosen or not.

static_assert ( std:: convertible_to <X<float >, V >); // different to status quo
static_assert ( std:: convertible_to <float , V >);
static_assert ( std:: convertible_to <short , V >);
static_assert ( really_convertible_to <short , V >);
static_assert ( std:: convertible_to <int , V >); // different to status quo
static_assert (not really_convertible_to <int , V >);

5



P3844R0 4 Design space

static_assert ( std:: constructible_from <V, X<float >>);
static_assert (not std:: constructible_from <V, X<short >>);
static_assert ( std:: constructible_from <V, float >);
static_assert ( std:: constructible_from <V, short >);
static_assert ( std:: constructible_from <V, int >);

V f(int n, short m, std:: reference_wrapper <int > l, std:: reference_wrapper <float > f)
{

V x = '\1'; // OK
x = 1; // OK ( different to status quo)
x = 0 x5EAF00D ; // ill -formed
x = V(n); // OK
x = m; // OK
x = V(l); // OK
x = f; // OK
x = X<float >(); // ill -formed: static_assert failed ( different reason to status quo)
x = float(X<float >()); // OK ( obvious )
x = V(X<float >()); // OK

}

4.3 more constrained consteval overload

A viable alternative involves the removal of explicit conversions from arithmetic types to basic_-
vec. The consteval constructor is declaredwith additional constraints over the existing constructor
(satisfies convertible_to, is_arithmetic_v, and not value-preserving conversion). This way the

consteval constructor is always chosen if the conversion of the given (arithmetic) type to value_-
type is not value-preserving. Otherwise, the constexpr overload is used.

Sketch:

template <class From , class To >
concept simd-broadcast-arg = constructible_from <To , From >;

template <class From , class To >
concept simd-consteval-broadcast-arg

= simd-broadcast-arg <From , To > && convertible_to <From , To >
&& !value-preserving-convertible-to<From , To >;

template <class T>
class basic_vec
{
public:

template <simd-broadcast-arg <T> U>
constexpr explicit (see below ) basic_vec (U&&); // #1

template <simd-consteval-broadcast-arg <T> U>
consteval basic_vec (U&&); // #2

6



P3844R0 4 Design space

};

Here, every explicit call to the broadcast constructor with an arithmetic type is equivalent to

an implicit conversion, since the consteval overload is viable and more constrained. Every type

with a value-preserving conversion to T will select #1 (because of the constraint on #2). Every non-
arithmetic type (notably, user-defined types with conversion operator to some arithmetic type) will

continue to work as today, since #2 is not viable.

static_assert (not std:: convertible_to <X<float >, V >); // equal to status quo / different to above
static_assert ( std:: convertible_to <float , V >);
static_assert ( std:: convertible_to <short , V >);
static_assert ( really_convertible_to <short , V >);
static_assert ( std:: convertible_to <int , V >); // different to status quo / equal to above
static_assert (not really_convertible_to <int , V >);

static_assert ( std:: constructible_from <V, X<float >>);
static_assert (not std:: constructible_from <V, X<short >>);
static_assert ( std:: constructible_from <V, float >);
static_assert ( std:: constructible_from <V, short >);
static_assert ( std:: constructible_from <V, int >);

V f(int n, short m, std:: reference_wrapper <int > l, std:: reference_wrapper <float > f)
{

V x = '\1'; // OK
x = 1; // OK ( different to status quo / equal to above)
x = 0 x5EAF00D ; // ill -formed
x = V(n); // ill -formed ( different to both)
x = m; // OK
x = V(l); // OK
x = f; // OK
x = X<float >(); // ill -formed: no match for operator = (no known conversion …[])
x = float(X<float >()); // OK ( obvious )
x = V(X<float >()); // OK

}

4.4 how to handle bad value-preserving casts

The consteval broadcast overload needs to be ill-formed if the argument value cannot be con-

verted to the value type without changing the value. This can be achieved via the mechanism used

in ([simd.bit]) for bit_ceil. The constructor would spell out a precondition followed by Remarks: An

expression that violates the precondition in the Preconditions: element is not a core constant ex-

pression ([expr.const]).

The alternative that was mentioned before is to throw an exception (at compile time). Since in

basically all cases such an exception would not be caught at compile time, the program becomes

7



P3844R0 5 Differences

ill-formed. The ability to catch the exception allowed me to hack up a really_convertible_to con-
cept. But otherwise, the utility of using an exception here seems fairly limited. The main reason for

using an exception is better diagnostics on ill-formed programs. If we decide to add the consteval
constructor for C++26, then we might want to delay the new exception type for C++29, though.

5 DIFFERENCES

Differences between the status quo and the two alternatives above:

status quo Section 4.2 Section 4.3

convertible_to<X<float>, V> false true false

convertible_to<int, V> false true true

x = 1; 8 4 4

x = V(n); 4 4 8

Note that X<float> is never implicitly convertible to vec<float>, so the solution in Section 4.2

lies about that. Also while some values of constant expressions of type int are convertible to

vec<float>, it is not true in general that int is convertible to vec<float>.

6 RECOMMENDATION

My recommendation is to go with the solution presented in Section 4.3 without a new exception

type (Section 4.4) for C++26. This would roll back a small part of a recent change done by [P3430R3].

Rationale for my preference:

1. The explicit conversion from arithmetic types via broadcast constructor is significantly less

important after implicit conversion from constant expressions becomes possible.

2. The new consteval overload cannot be fully constrained in the solution presented in Sec-

tion 4.2, leading to incorrect answers on traits or in requires expressions.

3. This should be part of C++26 because it helps avoiding bugs in user code.

4. A new exception type is not important enough to add it to C++26 and it can easily be added

later.

7 IMPLEMENTATION EXPERIENCE

Both solutions (and a lot more variants that were discarded) have been implemented and tested in

my implementation.

8



P3844R0 8 Proposed polls

8 PROPOSED POLLS

Poll: Something needs to be done for C++26. (If we do nothing, the design space is constrained and

Section 4.3 would be a breaking change.)

SF F N A SA

Poll: Add a consteval broadcast overload for value-preserving conversions to C++26.

SF F N A SA

If the vote for C++26 failed:

Poll: Add a consteval broadcast overload for value-preserving conversions to C++29.

SF F N A SA

Otherwise maybe poll:

Poll: It is better to add a consteval broadcast overload for C++29 rather than C++26.

SF F N A SA

Note: The next poll makes sense for C++26, even if we only intend to add the new overload for

C++29.

Poll: The new constructor overload should be fully constrained, which requires the removal of

explicit (not value-preserving conversions) from the existing broadcast constructor.

SF F N A SA

Poll: Add a new exception type to C++26 that is thrown from the new consteval broadcast con-

structor.

SF F N A SA

Poll: Encourage a paper targeting C++29 on a new exception type that is thrown from the new

consteval broadcast constructor.
SF F N A SA

9



P3844R0 9 Wording for Section 4.2

9 WORDING FOR SECTION 4.2

9.1 feature test macro

In [version.syn] bump the __cpp_lib_simd version.

9.2 modify [simd.expos]

In [simd.expos], insert:

[simd.expos]

template<class V, class T> using make-compatible-simd-t = see below; // exposition only

template<class From, class To>
concept simd-consteval-broadcast-arg = constructible_from<To, From>; // exposition only

template<class From, class To>
concept simd-broadcast-arg = // exposition only

simd-consteval-broadcast-arg<From, To> && true;

template<class V>
concept simd-vec-type = // exposition only

9.3 modify [simd.overview]

In [simd.overview], insert:

[simd.overview]

// ([simd.ctor]), basic_vec constructors
template<classsimd-broadcast-arg U>

constexpr explicit(see below) basic_vec(U&& value) noexcept;
template<simd-consteval-broadcast-arg U>

consteval basic_vec(U&& x)
template<class U, class UAbi>

constexpr explicit(see below) basic_vec(const basic_vec<U, UAbi>&) noexcept;

10



P3844R0 9 Wording for Section 4.2

9.4 modify [simd.ctor]

[simd.ctor]

template<classsimd-broadcast-arg U> constexpr explicit(see below) basic_vec(U&& value) noexcept;

1 Let From denote the type remove_cvref_t<U>.

2 Constraints: value_type satisfies constructible_from<U>.

2 Effects: Initializes each element to the value of the argument after conversion to value_type.

3 Remarks: The expression inside explicit evaluates to false if and only if U satisfies convertible_-
to<value_type>, and either

• From is not an arithmetic type and does not satisfy constexpr-wrapper-like,

• From is an arithmetic type and the conversion from From to value_type is value-preserving ([simd.gen-
eral]), or

• From satisfies constexpr-wrapper-like, remove_const_t<decltype(From::value)> is an arithmetic
type, and From::value is representable by value_type.

template<simd-consteval-broadcast-arg U> consteval basic_vec(U&& x)

4 Mandates:

• U satisfies convertible_to<value_type>, and

• is_arithmetic_v<U> is true,

5 Preconditions: The value of x is equal to the value of x after conversion to value_type.

6 Effects: Initializes each element to the value of the argument after conversion to value_type.

7 Remarks: An expression that violates the precondition in the Preconditions: element is not a core con-
stant expression ([expr.const]).

11



P3844R0 10 Wording for Section 4.3

10 WORDING FOR SECTION 4.3

10.1 feature test macro

In [version.syn] bump the __cpp_lib_simd version.

10.2 modify [simd.expos]

In [simd.expos], insert:

[simd.expos]

template<class V, class T> using make-compatible-simd-t = see below; // exposition only

template<class From, class To>
concept simd-broadcast-arg = constructible_from<To, From>; // exposition only

template<class From, class To>
concept simd-consteval-broadcast-arg = see below; // exposition only

template<class V>
concept simd-vec-type = // exposition only

10.3 modify [simd.expos.defn]

In [simd.expos.defn], insert:

[simd.expos.defn]

template<class V, class T> using make-compatible-simd-t = see below;

8 Let x denote an lvalue of type const T.

9 make-compatible-simd-t<V, T> is an alias for

• deduced-vec-t<T>, if that type is not void, otherwise

• vec<decltype(x + x), V::size()>.

template<class From, class To> concept simd-consteval-broadcast-arg = see below;

10 simd-consteval-broadcast-arg subsumes simd-broadcast-arg.

11 Types From and To satisfy simd-consteval-broadcast-arg only if convertible_to<From, To> is satisfied,
remove_cvref_t<From> is an arithmetic type, and the conversion from remove_cvref_t<From> to To is not
value-preserving.

12



P3844R0 10 Wording for Section 4.3

10.4 modify [simd.overview]

In [simd.overview], insert:

[simd.overview]

// ([simd.ctor]), basic_vec constructors
template<classsimd-broadcast-arg U>

constexpr explicit(see below) basic_vec(U&& value) noexcept;
template<simd-consteval-broadcast-arg U>

consteval basic_vec(U&& x)
template<class U, class UAbi>

constexpr explicit(see below) basic_vec(const basic_vec<U, UAbi>&) noexcept;

10.5 modify [simd.ctor]

[simd.ctor]

template<classsimd-broadcast-arg U> constexpr explicit(see below) basic_vec(U&& value) noexcept;

12 Let From denote the type remove_cvref_t<U>.

13 Constraints: value_type satisfies constructible_from<U>.

13 Effects: Initializes each element to the value of the argument after conversion to value_type.

14 Remarks: The expression inside explicit evaluates to false if and only if U satisfies convertible_-
to<value_type>, and either

• From is not an arithmetic type and does not satisfy constexpr-wrapper-like,

• From is an arithmetic type and the conversion from From to value_type is value-preserving ([simd.gen-
eral]), or

• From satisfies constexpr-wrapper-like, remove_const_t<decltype(From::value)> is an arithmetic
type, and From::value is representable by value_type.

template<simd-consteval-broadcast-arg U> consteval basic_vec(U&& x)

15 Preconditions: The value of x is equal to the value of x after conversion to value_type.

16 Effects: Initializes each element to the value of the argument after conversion to value_type.

17 Remarks: An expression that violates the precondition in the Preconditions: element is not a core con-
stant expression ([expr.const]).

13



P3844R0 A really_convertible_to definition

A REALLY_CONVERTIBLE_TO DEFINITION

template <typename To , typename From >
consteval bool converting_limits_throws ()
{

try {
using L = std:: numeric_limits <From >;
[[ maybe_unused ]] To x = L:: max ();
x = L:: min ();
x = L:: lowest ();

} catch (...) {
return true;

}
return false;

}

template <typename From , typename To >
concept really_convertible_to = std:: convertible_to <From , To >

and not converting_limits_throws <To , From >();

B BIBLIOGRAPHY

[P3430R3] Matthias Kretz. simd issues: explicit, unsequenced, identity-element position, and mem-

bers of disabled simd. ISO/IEC C++ Standards Committee Paper. 2025. url: https :
//wg21.link/p3430r3.

14

https://wg21.link/p3430r3
https://wg21.link/p3430r3

	1 Changelog
	2 Straw Polls
	3 Motivation
	4 Design space
	4.1 Status quo
	4.2 More constrained constexpr overload
	4.3 More constrained consteval overload
	4.4 How to handle bad value-preserving casts

	5 Differences
	6 Recommendation
	7 Implementation experience
	8 Proposed polls
	9 Wording for Section 4.2
	9.1 Feature test macro
	9.2 Modify [simd.expos]
	9.3 Modify [simd.overview]
	9.4 Modify [simd.ctor]

	10 Wording for Section 4.3
	10.1 Feature test macro
	10.2 Modify [simd.expos]
	10.3 Modify [simd.expos.defn]
	10.4 Modify [simd.overview]
	10.5 Modify [simd.ctor]

	A really_convertible_to definition
	B Bibliography

