Document number: P3786R1

Date: 2025-10-05

Project: Programming Language C++

Audience: LEWG

Reply-to: Michael Florian Hava' <mfh.cpp@gmail.com>

Tuple protocol for fixed-size span

Abstract

This paper proposes amending fixed-size spans with the tuple protocol, enabling structured
binding, integration with views: :elements and pattern matching once it is approved.

Tony Table

Before Proposed
span<int, 3> s{..}; span<int, 3> s{..};
auto & x{sl[0l};
auto & y{s[11};
auto & z{s[21}; auto & [x, y, zl{s};
vector<span<int, 3>> ss{..}; vector<span<int, 3>> ss{..};
auto firsts{ss | views::transform(auto s) { auto firsts{ss | views::elements<@>
return s[@]; | ranges::to<vector>()};
1)
| ranges::to<vector>()};
//NOTE: views::transform returns a copy //NOTE: views::elements returns by reference @
X span is not compatible with pattern matching //interaction with pattern matching proposal P2688R5

span<double, 2> p{..};

p match {
[0, 0] => std::printin("at origin");
[let x, @] => std::println("on x-axis at {}", x);
[0, let y] => std::println("on y-axis at {}", v);
let [x, y] => std::println("at {}, {}", %, v);
I

Revisions

RO: Initial version

R1: Fixed design issue kindly pointed out by Tomasz Kaminski.

Motivation

The tuple-protocol has been introduced in C++11 and has been supported for array, tuple and
pair ever since. With structured bindings (C++17) this protocol was made an integral
customisation point for users to tap into a language feature - something that is bound to become
even more important with the introduction of pattern matching in a future standard.

Support for the tuple-protocol has been applied to ranges::subrange and complex in C++20
and C++26 respectively. At the time of writing the only fixed-size library types that do not support
structured binding are: bitset, integer_sequence and span.

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at
1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

We can come up with rationales for why the first two in this list do not support it: the former would
have to provide proxy-references, something currently not supported by structured binding, the
latter is a meta-programming tool primarily used for deduction of its values. For span we lack
such a clear rationale.

In fact P1024 already proposed this feature - together with several other useful additions and got
accepted during the C++20 cycle. After its approval LWG3212 was filled, as the approved design
would have resulted in tuple_element_t<const span<T, 3>> yielding const T. Per P2116 the
feature was dropped from C++20.

Design Space

Given the established design of the tuple-protocol there is little to discuss, apart from revisiting
the issue that previously lead to the removal of this feature: Our design is based on the fact that
conceptually span<T, 1> is equivalent to tuple<T &>, therefore the tuple-protocol should be
equivalent for these types as well. Which leads us to the following semantics:

- tuple_size_v<top-level-cv span<cv T, N>>==N

- tuple_element_t<I, top-level-cv span<cv T, N>>==cv T &
- decltype(get(span<cv T, N>)) ==cv T &

All of which is only valid if N !'= dynamic_extent.

Note that top-level-cv is always ignored, staying consistent with the existing language rules for
applying cv-qualifiers to references. In addition to the above, we adjust the exposition-only
tuple-like concept to include fixed-size spans, enabling support for adaptors like
views::elements.

Extending the tuple-protocol has one unfortunate side effect: It renders the following previously
valid code ambiguous.

void f(span<int>) { .. }
void f(tuple<int, int>) { .. }

span<int, 2> s{..}:
f(s); //1 ambiguous as either user—defined conversion is valid

The same is already true for other tuple-like types (see: https://godbolt.org/z/r65rnPY81).

void f(pair<int, int>) { .. }
void f(tuple<int, int>) { .. }

pair<const int, int> s{..};
f(s); //¥ ambiguous as either user—-defined conversion is valid

array<int, 2> a;
f(s); //¥ ambiguous as either user-defined conversion is valid

void g(complex<double>) { .. }
void g(pair<float, float>) { .. }

complex<float> c;
g(c); //¥ ambiguous as either user-defined conversion is valid

This type of breakage was already explicitly pointed out in P2165 which introduced the tuple-
like concept. Therefore we don’t consider this issue novel or in any way blocking to this paper.

Impact on the Standard

This proposal is a library extension changing the meaning of tuple-like<span<T, E>>, that may
result in a breaking change for existing code.

http://wg21.link/P1024
http://wg21.link/lwg3212
http://wg21.link/P2116
https://godbolt.org/z/r65rnPY81
http://wg21.link/P2165

Implementation Experience

The proposed design has been implemented on Godbolt (https://godbolt.org/z/vrKffnMWr) and by
Tomasz Kaminski at https://gcc.gnu.org/pipermail/libstdc++/2025-October/063762.html.

Proposed Wording

Wording is relative to [N5014]. Additions are presented like , removals like this and drafting
notes like this.

[version.syn]
#define __cpp_lib_tuple_like 2023111 //also in <utility>, <tuple>, <map>, <unordered_map>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

[tuple.like]

?2.22.? Concept tuple-like [tuple.like]

template<class T>
concept tuple-like = see below; //exposition only

1 A type T models and satisfies the exposition-only concept tuple-1ike if remove_cvref_t<T> is a specialization of array,complex;
[views.contiguous]
?2.2.2.? Header synopsis [span.syn]

// mostly freestanding
namespace std {

// [views.span], class template span

template<class ElementType, size_t Extent>
constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

// [span.objectrep], views of object representation

¥
??2.2.2.? Class template span [views.span]
2?2.2.2.2.? Iterator support [span.iterators]

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());

https://godbolt.org/z/vrKffnMWr
https://gcc.gnu.org/pipermail/libstdc++/2025-October/063762.html
http://wg21.link/N5014

2?2.2.2.? Views of object representation [span.objectrep]

[tuple.helper]

2?2.2.? Tuple helper classes [tuple.helper]

template<class T> struct tuple_size<const T>;

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, const T>;

8 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

[depr.tuple]

D.?? Tuple [depr.tuple]

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

4 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

Acknowledgements

Thanks to RISC Software GmbH for supporting this work. Thanks to Tomasz Kaminski for initially
pointing us to P1024 and providing ample support regarding wording and design.

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

