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Tuple protocol for fixed-size span

Abstract

This paper proposes amending fixed-size spans with the tuple protocol, enabling structured
binding, integration with views: :elements and pattern matching once it is approved.

Tony Table

Before Proposed
span<int, 3> s{..}; span<int, 3> s{..};
auto & x{sl[0l};
auto & y{s[11};
auto & z{s[21}; auto & [x, y, zl{s};
vector<span<int, 3>> ss{..}; vector<span<int, 3>> ss{..};
auto firsts{ss | views::transform(auto s) { auto firsts{ss | views::elements<@>
return s[@]; | ranges::to<vector>()};
1)
| ranges::to<vector>()};
//NOTE: views::transform returns a copy //NOTE: views::elements returns by reference @
X span is not compatible with pattern matching //interaction with pattern matching proposal P2688R5

span<double, 2> p{..};

p match {
[0, 0] => std::printin("at origin");
[let x, @] => std::println("on x-axis at {}", x);
[0, let y] => std::println("on y-axis at {}", v);
let [x, y] => std::println("at {}, {}", %, v);
I

Revisions

RO: Initial version

R1: Fixed design issue kindly pointed out by Tomasz Kaminski.

Motivation

The tuple-protocol has been introduced in C++11 and has been supported for array, tuple and
pair ever since. With structured bindings (C++17) this protocol was made an integral
customisation point for users to tap into a language feature - something that is bound to become
even more important with the introduction of pattern matching in a future standard.

Support for the tuple-protocol has been applied to ranges::subrange and complex in C++20
and C++26 respectively. At the time of writing the only fixed-size library types that do not support
structured binding are: bitset, integer_sequence and span.
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We can come up with rationales for why the first two in this list do not support it: the former would
have to provide proxy-references, something currently not supported by structured binding, the
latter is a meta-programming tool primarily used for deduction of its values. For span we lack
such a clear rationale.

In fact P1024 already proposed this feature - together with several other useful additions and got
accepted during the C++20 cycle. After its approval LWG3212 was filled, as the approved design
would have resulted in tuple_element_t<const span<T, 3>> yielding const T. Per P2116 the
feature was dropped from C++20.

Design Space

Given the established design of the tuple-protocol there is little to discuss, apart from revisiting
the issue that previously lead to the removal of this feature: Our design is based on the fact that
conceptually span<T, 1> is equivalent to tuple<T &>, therefore the tuple-protocol should be
equivalent for these types as well. Which leads us to the following semantics:

- tuple_size_v<top-level-cv span<cv T, N>>==N

- tuple_element_t<I, top-level-cv span<cv T, N>>==cv T &
- decltype(get(span<cv T, N>)) ==cv T &

All of which is only valid if N !'= dynamic_extent.

Note that top-level-cv is always ignored, staying consistent with the existing language rules for
applying cv-qualifiers to references. In addition to the above, we adjust the exposition-only
tuple-like concept to include fixed-size spans, enabling support for adaptors like
views::elements.

Extending the tuple-protocol has one unfortunate side effect: It renders the following previously
valid code ambiguous.

void f(span<int>) { .. }
void f(tuple<int, int>) { .. }

span<int, 2> s{..}:
f(s); //1 ambiguous as either user—defined conversion is valid

The same is already true for other tuple-like types (see: https://godbolt.org/z/r65rnPY81).

void f(pair<int, int>) { .. }
void f(tuple<int, int>) { .. }

pair<const int, int> s{..};
f(s); //¥ ambiguous as either user—-defined conversion is valid

array<int, 2> a;
f(s); //¥ ambiguous as either user-defined conversion is valid

void g(complex<double>) { .. }
void g(pair<float, float>) { .. }

complex<float> c;
g(c); //¥ ambiguous as either user-defined conversion is valid

This type of breakage was already explicitly pointed out in P2165 which introduced the tuple-
like concept. Therefore we don’t consider this issue novel or in any way blocking to this paper.

Impact on the Standard

This proposal is a library extension changing the meaning of tuple-like<span<T, E>>, that may
result in a breaking change for existing code.
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Implementation Experience

The proposed design has been implemented on Godbolt (https://godbolt.org/z/vrKffnMWr) and by
Tomasz Kaminski at https://gcc.gnu.org/pipermail/libstdc++/2025-October/063762.html.

Proposed Wording

Wording is relative to [N5014]. Additions are presented like , removals like this and drafting
notes like this.

[version.syn]
#define __cpp_lib_tuple_like 2023111 //also in <utility>, <tuple>, <map>, <unordered_map>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

[tuple.like]

?2.22.? Concept tuple-like [tuple.like]

template<class T>
concept tuple-like = see below; //exposition only

1 A type T models and satisfies the exposition-only concept tuple-1ike if remove_cvref_t<T> is a specialization of array,complex;
[views.contiguous]
?2.2.2.? Header <span> synopsis [span.syn]

// mostly freestanding
namespace std {

// [views.span], class template span

template<class ElementType, size_t Extent>
constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

// [span.objectrep], views of object representation

¥
??2.2.2.? Class template span [views.span]
2?2.2.2.2.? Iterator support [span.iterators]

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());
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2?2.2.2.? Views of object representation [span.objectrep]

[tuple.helper]

2?2.2.? Tuple helper classes [tuple.helper]

template<class T> struct tuple_size<const T>;

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, const T>;

8 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

[depr.tuple]

D.?? Tuple [depr.tuple]

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

4 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), or <utility> ([utility.syn]) are included.
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