
Document number: 	 P3786R1

Date: 	 2025-10-05

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

Tuple protocol for fixed-size span

Abstract
This paper proposes amending fixed-size spans with the tuple protocol, enabling structured
binding, integration with views::elements and pattern matching once it is approved.

Tony Table

Revisions
R0: Initial version

R1: Fixed design issue kindly pointed out by Tomasz Kamiński.

Motivation
The tuple-protocol has been introduced in C++11 and has been supported for array, tuple and
pair ever since. With structured bindings (C++17) this protocol was made an integral
customisation point for users to tap into a language feature - something that is bound to become
even more important with the introduction of pattern matching in a future standard.

Support for the tuple-protocol has been applied to ranges::subrange and complex in C++20
and C++26 respectively. At the time of writing the only fixed-size library types that do not support
structured binding are: bitset, integer_sequence and span.

Before Proposed
span<int, 3> s{…};

auto & x{s[0]};
auto & y{s[1]};
auto & z{s[2]};

span<int, 3> s{…};

auto & [x, y, z]{s};

vector<span<int, 3>> ss{…};

auto firsts{ss | views::transform(auto s) {
 return s[0];
 })
 | ranges::to<vector>()};

//NOTE: views::transform returns a copy 😬

vector<span<int, 3>> ss{…};

auto firsts{ss | views::elements<0>
 | ranges::to<vector>()};

//NOTE: views::elements returns by reference 😊

❌ span is not compatible with pattern matching //interaction with pattern matching proposal P2688R5

span<double, 2> p{…};

p match {
 [0, 0] => std::println("at origin");
 [let x, 0] => std::println("on x-axis at {}", x);
 [0, let y] => std::println("on y-axis at {}", y);
 let [x, y] => std::println("at {}, {}", x, y);
};

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

We can come up with rationales for why the first two in this list do not support it: the former would
have to provide proxy-references, something currently not supported by structured binding, the
latter is a meta-programming tool primarily used for deduction of its values. For span we lack
such a clear rationale.

In fact P1024 already proposed this feature - together with several other useful additions and got
accepted during the C++20 cycle. After its approval LWG3212 was filled, as the approved design
would have resulted in tuple_element_t<const span<T, 3>> yielding const T. Per P2116 the
feature was dropped from C++20.

Design Space
Given the established design of the tuple-protocol there is little to discuss, apart from revisiting
the issue that previously lead to the removal of this feature: Our design is based on the fact that
conceptually span<T, 1> is equivalent to tuple<T &>, therefore the tuple-protocol should be
equivalent for these types as well. Which leads us to the following semantics:

• tuple_size_v<top-level-cv span<cv T, N>> == N

• tuple_element_t<I, top-level-cv span<cv T, N>> == cv T &

• decltype(get(span<cv T, N>)) == cv T &

All of which is only valid if N != dynamic_extent.

Note that top-level-cv is always ignored, staying consistent with the existing language rules for
applying cv-qualifiers to references. In addition to the above, we adjust the exposition-only
tuple-like concept to include fixed-size spans, enabling support for adaptors like
views::elements.

Extending the tuple-protocol has one unfortunate side effect: It renders the following previously
valid code ambiguous.

The same is already true for other tuple-like types (see: https://godbolt.org/z/r65rnPY81).

This type of breakage was already explicitly pointed out in P2165 which introduced the tuple-
like concept. Therefore we don’t consider this issue novel or in any way blocking to this paper.

Impact on the Standard
This proposal is a library extension changing the meaning of tuple-like<span<T, E>>, that may
result in a breaking change for existing code.

void f(span<int>) { … }
void f(tuple<int, int>) { … }

span<int, 2> s{…}:
f(s); //❗ ambiguous as either user-defined conversion is valid

void f(pair<int, int>) { … }
void f(tuple<int, int>) { … }

pair<const int, int> s{…};
f(s); //❌ ambiguous as either user-defined conversion is valid

array<int, 2> a;
f(s); //❌ ambiguous as either user-defined conversion is valid

void g(complex<double>) { … }
void g(pair<float, float>) { … }

complex<float> c;
g(c); //❌ ambiguous as either user-defined conversion is valid

2

http://wg21.link/P1024
http://wg21.link/lwg3212
http://wg21.link/P2116
https://godbolt.org/z/r65rnPY81
http://wg21.link/P2165

Implementation Experience
The proposed design has been implemented on Godbolt (https://godbolt.org/z/vrKffnMWr) and by
Tomasz Kamiński at https://gcc.gnu.org/pipermail/libstdc++/2025-October/063762.html.

Proposed Wording
Wording is relative to [N5014]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[tuple.like]

[views.contiguous]

#define __cpp_lib_tuple_like 202311LYYYYMML //also in <utility>, <tuple>, <map>, <unordered_map>,

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.??.? Concept tuple-like [tuple.like]

template<class T>
 concept tuple-like = see below; //exposition only

1 A type T models and satisfies the exposition-only concept tuple-like if remove_cvref_t<T> is a specialization of array, complex,
pair, tuple, or ranges::subrange.:

(1.1) — array, complex, pair, tuple, ranges::subrange, or

(1.2) — span and remove_cvref_t<T>::extent is not equal to dynamic_extent.

??.?.?.? Header synopsis [span.syn]

// mostly freestanding

namespace std {
…
 // [views.span], class template span
…
 template<class ElementType, size_t Extent>
 constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

 // [span.tuple], tuple interface

 template<class T> struct tuple_size;
 template<size_t I, class T> struct tuple_element;
 template<class ElementType, size_t Extents>
 struct tuple_size<span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<I, span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 constexpr ElementType& get(span<ElementType, Extents>) noexcept;

 // [span.objectrep], views of object representation
…
}

??.?.?.? Class template span [views.span]

…

??.?.?.?.? Iterator support [span.iterators]

…

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());

??.?.?.? Tuple interface [span.tuple]

template<class ElementType, size_t Extents>
 struct tuple_size<span<ElementType, Extents>> : integral_constant<size_t, Extents> {};

1 Constraints: Extents != dynamic_extents is true.

template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<I, span<ElementType, Extents>> {
 using type = ElementType&;
 };

3

https://godbolt.org/z/vrKffnMWr
https://gcc.gnu.org/pipermail/libstdc++/2025-October/063762.html
http://wg21.link/N5014

[tuple.helper]

[depr.tuple]

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Tomasz Kamiński for initially
pointing us to P1024 and providing ample support regarding wording and design.

2 Mandates:

(2.1) — Extents != dynamic_extents is true, and

(2.2) — I < Extents is true.

template<size_t I, class ElementType, size_t Extents>
 constexpr ElementType& get(span<ElementType, Extents> s) noexcept;

3 Mandates:

(3.1) — Extents != dynamic_extents is true, and

(3.2) — I < Extents is true.

4 Effects: Equivalent to: return s[I];

??.?.?.? Views of object representation [span.objectrep]

??.?.? Tuple helper classes [tuple.helper]

…

template<class T> struct tuple_size<const T>;

…

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), ([span.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, const T>;

…

8 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), ([span.syn]), or <utility> ([utility.syn]) are included.

D.?? Tuple [depr.tuple]

…

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

…

4 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), ([span.syn]), or <utility> ([utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

…

6 In addition to being available via inclusion of the <tuple> header, the two templates are available when any of the headers <array>
([array.syn]), <ranges> ([ranges.syn]), ([span.syn]), or <utility> ([utility.syn]) are included.

4

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

