
P3711R0
Safer StringViewLike Functions for
Replacing char* strings
Date: 2025-05-15
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG23, LEWG
Author: Marco Foco
Contributors: Alexey Shevlyakov, Joshua Kriegshauser
Reply to: marco.foco@gmail.com

Introduction
This document introduces a set of string utility functions that we used in NVIDIA Omniverse
Foundation Library, and were key components to remove char* (or more generally CharT*)
strings usage from our codebase replacing them with the implementation proposed in P3566. All
the usages that will still need to use the old-fashioned char*s will be marked accordingly to
P3566, using the proposed unsafe_length tag.

Concepts
We rely on the concepts of [Safe|Unsafe]StringViewLike, as defined in P3566R1.
SafeStringViewLike represents bounded string_view-like objects (i.e. implicitly
convertible to string_view as described in P3566), while UnsafeStringViewLike
represents unbounded string_view-like objects (implicitly convertible to string_view in
C++26, but not implicitly convertible in P3566, e.g. char*s).

Functions
We define a function as safe if it can perform an operation in a bounded fashion, where bounds
are defined by one or all of the operands. For example, testing for a prefix (starts_with) is a
bounded operation if any of the two operands is bounded (the shortest defines the length), while
testing for a suffix (ends_with) is a bounded operation if and only if the first operand is
bounded, while the second can be unbounded (i.e. it can also be a CharT* or an unbounded
CharT[]).
In accordance with P3566, the unsafe operations are tagged with the same unsafe_length
tag introduced in P3566.

Free function starts_with
The function is equivalent to string_view::starts_with, but can be applied to operands
that are StringViewLike, but aren't strictly string_views.

If the first operand is bounded, the second is either bounded or unbounded:

template<UnsafeStringViewLike TString, SafeStringViewLike TPrefix>
bool starts_with(TString&& s, TPrefix&& p) {
 return string_view{forward<TString>(s)}
 .starts_with(forward<TPrefix>(p));
}

If the first operand is unbounded, but the second is bounded, the operation is still considered
safe:

template<UnsafeStringViewLike TString, SafeStringViewLike TPrefix>
bool starts_with(TString&& s, TPrefix&& p) {
{
 string_view p1{p};
 // an empty strings can only start with an empty prefix
 if (is_null(s))
 return p1.empty();
 // no terminator between (0..p.size()-1)
 return !string_view::traits_type::find(str, p1.size(), char{}) &&
 string_view::traits_type::compare(str, p1.data(), p1.size()) ==
0;

}

Both operands are unbounded

template <UnsafeStringViewLike TString, UnsafeStringViewLike TPrefix>
bool starts_with(carb::cpp::unsafe_length_t, TString&& s, TPrefix&&
p)
{
 return string_view{unsafe_length, forward<TS>(s)}
 .starts_with(unsafe_length, forward<TP>(p));
}

Free function ends_with
The function is equivalent to string_view::ends_with, but can be applied to operands that
aren't strictly string_views. Whenever a CharT* value pointing to nullptr is passed, we
assume an empty string (according to the idea that
basic_string_view<CharT>{(CharT*)nullptr} == <an empty string of CharT> as
proposed in P3566).

If the first operand is bounded, the operation is safe:

template <SafeStringViewLike TString, StringViewLike TSuffix>
bool ends_with(TString&& str, TSuffix&& suffix)

If the first operand is unbounded, the operation is unsafe:

template <UnsafeStringViewLike TString, StringViewLike TSuffix>
bool ends_with(unsafe_length_t, TString str, TSuffix suffix)

Free function join
Concatenate a set of strings together.

The return type can be specified, or left unspecified (default is void). If the return type is
unspecified, it's assumed to be a specialization of basic_string<CharT, Traits>, where
the CharT is deduced from the arguments, and the Traits type is either deduced, or assumed
to be std::char_traits<CharT>, if it cannot be deduced.

The safeness of the operation is defined by the operands. If they're all bounded (e.g. all
SafeStringViewLike), the join operation is considered safe.

template<typename RetType = void, typename... Args>
// Args... are ALL SafeStringViewLike
auto join(const Args... args);

If one of the operands is not safe, an unsafe_length tag is required:

template<typename RetType = void, typename... Args>
// At least one among Args... is NOT SafeStringViewLike
// (but they're all StringViewLike)
auto join(unsafe_length_t, const Args... args);

In our implementation we also proposed other functions, such as a concatenation with a
separator, and a concatenation for iterators. These functions are not proposed in this document
(we suggest a poll for interest).

Free function is_null_or_empty
This function is really simple, it just checks if the parameter is null or is a valid pointer pointing to
an empty string. This function is useful for CharT*, and is safe by accessing just the first
element of the string, and only if the string is not nullptr.

template<Char T>
bool is_null_or_empty(const CharT* s) {
 return (!s) || (!*s);

Conclusion
In this paper we proposed the free function equivalent of a subset of member functions on
string_view, to operate on StringViewLike objects, separating them into their safe and
unsafe counterparts.

	P3711R0
	Safer StringViewLike Functions for Replacing char* strings
	Introduction
	Concepts
	Functions
	Free function starts_with
	Free function ends_with
	Free function join
	Free function is_null_or_empty

	Conclusion

