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Abstract
Attempts to creatememorymodels that forbid out-of-thin-air
(OOTA) behaviors of C++ memory_order_relaxed accesses
have been either non-executable, complex, or unloved by
implementers. At the same time, we know of no instances
of OOTA behavior in real C++ implementations.
We focus on shared-memory programs and C++ imple-

mentations based on traditional compilers and hardware,
including CPUs and GPGPUs, thus enabling analysis of se-
mantic dependencies and OOTA behaviors by means of ex-
isting hardware models. We show that these models’ con-
straints prevent OOTA cycles from occurring in undefined-
behavior-free C++ programs running on such implemen-
tations, provided the cycles involve only volatile atomics.
We accommodate nonvolatile atomics by defining “quasi-
volatile” behavior and show that existing implementations
doing per-thread analysis and optimization not only avoid
OOTA, but also avoid incorrectly evaluating arithmetic ex-
pressions involving atomic accesses.
It follows that enforcing OOTA avoidance requires no

special action from implementations and no changes to user
code or to the standard.

Audience: SG1.

History
This paper is a condensation of P3064R2 (“How to Avoid
OOTA Without Really Trying”) [25], which was criticized as
being overly long. It also adds citations and clarifications.

1 Introduction and Background
We begin with a brief overview of the OOTA problem fol-
lowed by an equally brief summary of prior OOTA work.

1.1 Brief OOTA Overview
In broad terms, OOTA occurs when a group of threads load
from each others’ stores and each thread’s store depends on
the value returned by that thread’s load. The collection of
loads and stores forms an OOTA cycle. In the most extreme
cases a nonsensical value can pop up “out of thin air” as
shown in Listing 1 (JMM TC4).1 Here, all of x, y, r1, and r2
might have final values of 42, despite there being no instances
of 42 in the default-zero initial values or in the executable

1Java Memory Model Test Case 4 from http://www.cs.umd.edu/~pugh/java/
memoryModel/unifiedProposal/testcases.html.

code [22].2 First, thread T0’s line 1 does a load from x into r1,
reading the value of T1’s line-2 store rather than x’s initial
value of zero and somehow obtaining 42. Second, T0’s line 2
stores r1, and thus 42, to y. Third, T1’s line 1 loads 42 from
y to r2. Finally, T1’s line 2 stores 42 to x, justifying the value
loaded by T0’s line 1.

Because nothing in the C++ memory model rules out such
OOTA cycles (as indicated by the “sometimes satisfied” in
the figure), the C++ standard explicitly recommends against
them in 33.5.4p8 ([atomics.order]) [16]:

Implementations should ensure that no “out-
of-thin-air” values are computed that circularly
depend on their own computation.

This prohibition prevents misapplication of the as-if rule
in oracular C++ implementations. (The as-if rule permits
those optimizations where the optimized code’s observable
behavior is the same as if it were unoptimized.)

We will use full C++ to denote the standard including this
prohibition of OOTA and loose C++ to denote a hypotheti-
cal standard that excludes the prohibition but is otherwise
identical to full C++. Unqualified C++ means full C++.
In Listing 1 there is a semantic dependency from line 1 to

line 2 in both T0 and T1. (Roughly speaking, there is a se-
mantic dependency from a given load to a given store when
all other things being equal, a change in the value loaded can
change the value stored, change the target address of the store,
or prevent the store from occurring at all. Here the depen-
dencies are trivial because the values stored simply are the
values that were loaded.) Since real-world CPUs cannot store
something until they have determined its value,3 the stores
on line 2 cannot take place until T0’s and T1’s CPUs know
what values are returned by the loads on line 1. Thus the

2Throughout this paper, we use names beginning with “r” for private per-
thread variables (“registers”); other names denote shared variables. All
shared-variable accesses are relaxed atomic.
3Another way of saying this is that real-world CPUs do not make their
stores visible to other CPUs until those stores are no longer speculative. A
similar restriction applies to compiler-based speculation.

T0 T1
1. int r1 = x int r2 = y
2. y = r1 x = r2

Condition (0:r1=42 ∧ 1:r2=42) sometimes satisfied.

Listing 1. Simple OOTA
1
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hardware orders these stores after their corresponding loads,
and this ordering prevents the OOTA result.
Simple reordering can cause non-OOTA, but OOTA-like,

behavior, as exemplified by Listing 2 [23]. Either the compiler
or the CPU might reorder T1’s lines 1 and 2, so that all of x,
y, r1, and r2 might end up with the value 42, as indicated
by the “sometimes satisfied” in the figure.

On the other hand, OOTA cycles need not involve nonsen-
sical or unmotivated values, as shown in Listing 3, adapted
from [23]. Line 3 of both threads stores the value 42 only
when line 2 determines that the value loaded was 42. As with
Listing 1, hardware ordering prevents the OOTA result, as
discussed further in Section 5.

1.2 Prior Work
All OOTA researchers owe a debt of gratitude to the foun-
dational work led by William Pugh, represented by the infa-
mous Java-language “Causality Test Cases”4 [20]. The OOTA
problem has been open for more than 20 years and has been
shown to be quite difficult [3, 25].

Some executable C++ memory models correctly flag some
OOTA cycles [1].5 However, because these models are atem-
poral, they cannot reject OOTA executions other than by
flagging the OOTA value as arbitrary, which some in fact do
in at least some cases.
P0442R0 (“Out-of-Thin-Air Execution is Vacuous”) [24]

provided a decision procedure for distinguishing between
reordering and OOTA, using a perturbation method based on
the insight that OOTA cycles are fixed-point computations
In other words, an OOTA cycle must produce the same value
that it consumes.

Some researchers recommend avoiding OOTA by forcing
prior relaxed loads to be ordered before subsequent relaxed
4http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/
testcases.html.
5Others avoid OOTA by forbidding atomic stores of nonconstant values [4].

T0 T1
1. int r1 = x int r2 = y
2. y = r1 x = 42

Condition (0:r1=42 ∧ 1:r2=42) sometimes satisfied.

Listing 2. Simple Reordering

T0 T1
1. int r0 = y int r1 = x
2. if (r0 == 42) if (r1 == 42)
3. x = 42 y = 42
4. else else
5. x = r0 y = r1

Condition (0:r0=42 ∧ 1:r1=42) sometimes satisfied.

Listing 3. OOTA Cycle

stores [5, 6, 17, 18, 29], but this can require executing real
instructions [21, Section 7.1], consuming real time and real
electrical power to solve a strictly theoretical problem. Fur-
thermore, as discussed in Section 4.2, cross-thread optimiza-
tions can defeat this ordering constraint.

Other researchers recommend various procedures to iden-
tify and avoid OOTA cycles [2, 8, 9, 15, 17, 19, 30, 32], but
none of these have been accepted by C++ implementers, in
part due to these models requiring consideration of multiple
executions. As of 2024, Mark Batty is working on modular
relaxed dependencies, which may have the added benefit of
checking compiler optimizations [14], which is a portion of
the OOTA problem that is out of scope for this paper.6

Moiseenko et al. avoid cycles in po ∪ rf [28], which might
permit more optimizations than forcing prior relaxed loads
to be ordered before subsequent relaxed stores, but which
the authors characterize as “(almost) a per-execution model”.
It remains to be seen whether this is close enough to a per-
execution model to be accepted by C++ implmenters. @@@
I am not fully confident of my characterization of this paper.

Jagadeesan et al. combine preconditions and pomsets [13],
putting forward a memory model with attractive properties,
but which does not support ARMv7 or PowerPC.

Goldblatt looked at interactions between OOTA and unde-
fined behavior (UB) [11]. We consider only UB-free examples.

All this work focused on either identifying OOTA or help-
ing C++ implementations to avoid it.

1.3 Our Approach
Our approach applies real-world hardware constraints (which
are further constrained by long-standing laws of physics) to
the problem of avoiding OOTA cycles. We do this by aug-
menting the C++ abstract machine with these constraints,
which of course limits the applicability of our results to C++
programs compiled and run on real-world computer systems.
Given that a quarter century of OOTA research based on
pure unaugmented C++ abstractions has resulted in (at best)
incremental progress on the one hand, and that real-world
computer systems comprise an exceedingly important part
of the overall OOTA problem on the other, our results are
valuable despite these limitations. In the wise words of Peter
J. Denning, “Maybe we need to occasionally descend from
the high clouds of our abstractions to the concrete earthy
concerns of everyday life” [10].
The key observations that enable us to apply these con-

straints are: (1) Communicating data within a computer sys-
tem takes time, (2) Executing instructions that compute an
output value that semantically depends on given input values
also takes time, and (3) Each link in an OOTA cycle consists
of either data communication or computation of an output
that semantically depends on an input. Because closing an
OOTA cycle comprising a sequence of commmunications

6But please see Section 7.4.
2
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and computations requires this sequence to end at the same
time as it starts, OOTA cycles cannot form in those C++
implementations that are within the scope of this paper. A
great advantage of our approach is that we are not required
to precisely define the boundaries of sdep. After all, although
compilers are forbidden from breaking semantic dependen-
cies, they are by no means required to break non-semantic
dependencies.

These simple-seeming observations conceal considerable
complexity, and so much of the remainder of this paper
deals with corner cases that arise when carefully consider-
ing semantic dependencies, executions, C++ compilers, and
hardware properties.
In short, this paper’s contribution is to show how these

constraints prevent real-world C++ implementations doing
per-thread analysis from exhibiting OOTA behavior, and not
with minimal cost [29], but rather with no cost at all [25].
@@@ Are these the right qualifiers?

2 OOTA and Semantic Dependencies (sdep)
This section analyzes the main components of OOTA cycles,
namely semantic dependencies and reads-from links.

2.1 OOTA: rf vs. rfe
Semantic dependencies form only one type of link in an
OOTA cycle. The other type extends from a given store to a
load that returns the value stored. It is tempting to argue that
the store must precede the load in global time and combine
this with the intuitive notion that any real C++ implementa-
tion must consume global time when computing a semantic
dependency. This combination suggests that OOTA cycles
cannot occur. The idea has been formalized by defining an
OOTA cycle as a cycle in sdep ∪ rf [23], where sdep is the set
of semantic dependencies within each thread and rf is the
set of store-to-load “reads-from” links, whether internally
within a thread (rfi) or externally between threads (rfe).7

This is a fine definition and is consistent with the words
in the C++ standard, but it has a problem with intrathread
rfi links as exemplified by the following code:

1. int r2 = y;
2. x = r2;
3. int r3 = x;
4. z = r3;

This is an elaboration of T1 from Listing 1 that adds z along
with lines 3 and 4. The problem is that a C++ implementation
may note that line 3 could well execute immediately after
line 2, giving other threads no chance to modify x in between.
Such an implementation might therefore behave as if line 3
had been removed from the source code and line 4’s r3 had
been replaced by r2, causing line 4 always to store the same
value to z as was stored to x by line 2. And since the load
7Additional background on temporal distinctions between coe, fre, and rfe
maybe found elsewhere [25, Appendix A].

from x has been removed, it cannot possibly act as a temporal
constraint.
To avoid this issue, we will substitute rfe for rf, defining

an OOTA cycle—for now—as a cycle in sdep ∪ rfe. Any rfi
links in a cycle can instead be interpreted as part of sdep.
Although this does shunt additional complexity onto the
term “semantic dependency”, it also enables us to cleanly
separate the interthread and intrathread portions of any
given OOTA cycle.
The inability of rfi links to act as temporal constraints

is not the only, or even the main, weakness in the intuitive
argument against OOTA cycles. The primary difficulty lies in
the fact that the code transformations performed by optimiz-
ing compilers can destroy dependencies, including semantic
ones (depending on one’s definition). That is, even when the
potential for a dependency exists in the source code for a
thread, there might be no dependency in the machine code
produced by a compiler. There would then be no constraint
forcing the implementation to execute the thread’s store later
in global time than the load it supposedly depends on, and
thus no impediment to the occurrence of an OOTA cycle.
We will see examples of this destruction later on.

2.2 Properties of Semantic Dependencies
Here we consider some of the complexities inherent to se-
mantic dependencies. It is important to distinguish semantic
dependencies from syntactic dependencies. Although every
semantic dependency is also a syntactic dependency, many
syntactic dependencies can be optimized (or “broken”), as
will be seen in the following sections. Such syntactic depen-
dencies are not semantic dependencies.

2.2.1 Semantic Dependencies and Source Code. Some
discussions of semantic dependencies assume that they are
strictly functions of the source code. This assumption is
not always valid, in fact, we will see that many instances
of semantic dependency must be considered functions of
particular executions. Consider for example:

z = x * y;

Expanding on earlier discussions [6], as long as y is zero,
changes in the value of xwill not cause a change in the value
stored to z. As a result, the semantic dependency from x to
z exists only in executions where y is nonzero, which shows
it is a property of the execution, not just of the source code.

2.2.2 Semantic Dependencies Can Be Many-To-One.
Suppose that in some execution of the previous example,
both x and y are zero. Then changes to either x or y will not
cause a change in the value stored to z. In other words, in
this execution there is no semantic dependency from either
x or y to z. But there is a semantic dependency from the pair
{x, y} to z, because changes to both x and y can cause the
value stored in z to change. This means that, prior work [24]
notwithstanding, accurate definitions of sdep cannot always

3



Alan Stern, Paul E. McKenney, Michael Wong, and Maged Michael

rely on single-variable perturbations; they must at times
consider changes to multiple variables.
Since we can no longer regard sdep as always relating a

single load to a store, the notion of a cycle involving sdep
appears problematic. We are forced to change our definition
of an OOTA cycle again; we will say that an execution is an
instance of OOTA if in that execution:

There are stores 𝑊0, . . . , 𝑊𝑚 , where each 𝑊𝑖

semantically depends on a set of loads {𝑅𝑖,0,
. . . , 𝑅𝑖,𝑛𝑖 }, such that each 𝑅𝑖, 𝑗 reads from one of
the𝑊𝑘 stores in a different thread.

This can make OOTA more complicated than a simple cycle
but we will continue to refer to “OOTA cycles” out of habit.
Note that this new definition includes and generalizes the
earlier “cycle in sdep ∪ rfe” definition.

2.2.3 SemanticDependenciesAffected byCross-Thread
Optimizations. Consider the following:

x = y - z;

There appear to be semantic dependencies from y to x and
from z to x. However, if the implementation somehow knows
that y is always equal to z at this point then there is no
semantic dependency; the implementation can act as if the
statement were simply “x = 0”. We leave aside the question
of how the implementation would know this, given that y
and z cannot be updated simultaneously8 and are subject to
change at any time by other threads (a point we will return
to in Section 4.2).

2.2.4 Semantic Dependencies Affected by if State-
ments. Consider the following if statement:

r1 = x;
if (r1 > 0)

y = r1;
else

z = r1;

Here there is a semantic dependency from x, but in some
executions it extends to y and in others to z. This is an
example of a load affecting not only the value of a given
store, but also whether or not that store is executed at all.

2.2.5 Semantic Dependencies Not Affected by if State-
ments. Compare this example [12] to the previous one:

if (x > 0)
y = 42;

else
y = 42;

Because the stores executed on each arm of the if state-
ment write identical values to identical addresses, one could
equally well regard the two statements as performing two
different stores or as performing for all intents and purposes

8At least not by any means within the confines of the standard.

a single store, independent of x. Reasonable C++ implementa-
tions might disagree on this matter and therefore on whether
or not the example has a semantic dependency. It is the im-
plementation’s choice.

2.2.6 Semantic Dependencies andMatching Up Stores.
Suppose we take the view that the previous example involves
only one store. This opens up the door to greater complexity:

1. if (x > 0) {
2. y = 42;
3. } else {
4. y = 53;
5. y = 42;
6. }

Consider an execution in which x is greater than zero, so
line 2 runs. Is it semantically dependent on x? The answer
isn’t immediately clear. If the other arm of the if is taken
then a store of the same value 42 to y occurs, but 53 is written
before it. Which of these two stores should be compared with
the store on line 2?

One way to cut the Gordian knot is to match up the stores
by the order they occur: Since line 2 is the first store to y in
its arm of the if statement, it should be matched up with
the first store to y in the other arm. Those two stores write
different values so there is a semantic dependency.
On the other hand, a compiler may decide to drop the

y = 53 store entirely, leaving it out of the machine code, on
the grounds that it’s always possible for the two adjacent
stores to y to execute in such quick succession that no other
threadmanages to read the value 53 before it gets overwritten
with 42. If the compiler does this then the first store to y in
that arm of the if statement would agree with the store in
line 2, and so there would not be a semantic dependency.
Once again, the decision is up to the implementation.

2.2.7 SemanticDependencies and FunctionCalls. Boehm
and Dempsky [6, Section 5] point out that arbitrary function
calls can pose challenges for any attempt to determine se-
mantic dependencies based solely on analysis of the source
code, using the following example:

y = f(x);

And it is indeed impossible to determine whether or not there
is a semantic dependency from x to y without reference to
the definition of f(). In addition, f might well be a pointer
to a function, in which case the existence of a semantic
dependency from x to y might well vary at runtime as the
value of function pointer f changes.

2.2.8 Semantic Dependencies and Free Choices. Con-
sider the following example, with variable i initially zero:

int foo(int a, int b)
{

return a / b;
}

4
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r1 = foo(++i, ++i);
x = r1 * z;

Because early C implementers could not come to agreement,
the standard does not specify the order of evaluation of
function arguments, so the value calculated for r1 might be
zero (1/2 truncated) or two (2/1). In the former case there is
no semantic dependency from z to x, but in the latter case
there is.9

(According to the current version of the standard, conflict-
ing side effects in unsequenced subexpressions constitute
undefined behavior, although there are proposals to make
them defined in both C++ [31] and C [7]. Nevertheless, the
example above is allowed because the order of evaluation of
arguments to a function call is “indeterminately sequenced”
(7.6.1.3p7 [expr.call]) rather than unsequenced, a subtle
distinction.)

2.2.9 Semantic Dependencies and Architectural Vari-
ations. In some cases, the standard permits architectures to
differ as to whether an execution contains a semantic depen-
dency. For example, consider the following, where the type
of c is char:

y = (c >= 0);

Here y is semantically dependent on c in executions running
on implementations in which char is architecturally a signed
type, but not those for which it is unsigned.

We have seen several examples showing that semantic de-
pendencies can be more complicated than might first appear,
varying according to the execution and even the implemen-
tation. This raises several questions, of which the first is:
What exactly is an execution?

3 What is an Execution?
This section looks more carefully at executions from the
viewpoints of an abstract machine and the computer hard-
ware, and then reconciles these two viewpoints.

3.1 Abstract Executions
The C++ standard describes the execution of a program in
terms of “a parameterized nondeterministic abstract ma-
chine” in 4.1.2p1 ([intro.abstract]). This description spec-
ifies how the abstract machine carries out the operations of
a source program in great, but not complete, detail:

• Some of the abstract machine’s characteristics are im-
plementation defined, including things like the num-
ber of bits in the various integer types or whether the
char type is signed (see Section 2.2.9).

• Some aspects of an execution are unspecified or non-
deterministic, including things like the order of eval-
uation of the operands of most binary operators or
of the arguments in a function call. Implementations

9Thanks to Peter Sewell for pointing out this possibility.

may choose from a set of allowed behaviors (see Sec-
tion 2.2.8).

• Some actions are deemed to have undefined results;
the standard says essentially nothing about programs
that can give rise to undefined behavior.

• Asynchronous actions (i.e., signal handlers) are largely
ignored.

• Input and output are not described in any detail.
In addition to these points, the standard does not specify
which store an atomic load must read from, beyond requiring
that the overall pattern of loads and stores be consistent
with the C++ memory model. In short, the standard grants
C++ implementations considerable freedom, as detailed in
Section 4.

The abstract executions we use will be fully specified. This
means that all the missing information must be supplied: the
implementation-defined characteristics, the selections for
the nondeterministic pathways, and most notably, for each
load, the store from which it reads and the value of the load.
We ignore issues of signal handlers and I/O; in any case
our litmus-test programs don’t use them (but see the dis-
cussion of volatile loads in Section 3.3 below). The totality
of this information—along with the program’s source code,
of course—determines within each thread a unique, linearly
ordered series of steps to be carried out by the abstract ma-
chine. However, with a few exceptions10 there is no ordering
relation between steps carried out in different threads. Even
if a relaxed atomic load in one thread reads from a relaxed
atomic store in another thread, the standard does not require
the store to come before the load in any meaningful way.

With the compiler-based implementations we are consid-
ering, the choices for the nondeterministic pathways are
“frozen” into the machine-code executable file and thus are
completely determined at runtime. A consequence of this
is that if two abstract executions of the same thread under
the same implementation agree on the values obtained by
the load operations during their first 𝑁 steps then they will
agree in every respect during those steps, although they may
diverge later. (We assume that programs will not indulge in
any computations that could vary spontaneously from one
execution to another, such as basing a dependency on the
time of day or a process ID.)

3.2 Hardware Executions
The outcome when a given computer executes the machine
code in a file has historically been much better defined than
the executions of the C++ abstract machine. The hardware’s
behavior is typically specified with great precision by the
designer or manufacturer, and there are formal, executable
memory models describing exactly what patterns of loads
and stores can occur. Thus, leaving aside asynchronous in-
terrupts and system calls, the behavior of a CPU executing

10Such as a load-acquire synchronizing with a store-release.
5
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a particular thread within a program is entirely determined
by the values obtained by its memory-load instructions.11

For this reason, the hardware executions we use will com-
prise (along with the machine code being run) the computer
architecture and for each load instruction, the store instruc-
tion from which it reads and the value obtained. At this level,
the fact that the original program was in C++ is irrelevant;
the same concepts apply to the execution of a program in
any compiled language.
A CPU may execute a thread’s instructions out of order.

The architecture specifies the extent to which this may hap-
pen, and it also specifies circumstances under which instruc-
tions must be executed in order. Nevertheless, we will con-
sider an execution to be determined by the values obtained
by its loads. As with abstract executions, if two hardware
executions of the same thread on the same type of computer
agree on the values obtained by the load instructions dur-
ing their first 𝑁 steps then they will agree in every respect
during those steps, although they may diverge later.

3.3 Relation Between Abstract and Hardware
Executions

The C++ standard requires that for any valid implementation,
when a program runs its observable behavior must be the
same as that of some abstract execution of the source code
given the same input (in the absence of any abstract execu-
tions containing undefined behavior) This requirement is the
standard’s “as-if” rule. This means: (1) The program’s output
must be the same as that of the abstract execution; (2) Volatile
accesses “are evaluated strictly according to the rules of the
abstract machine” (4.1.2p6.1 [intro.abstract]); and (3) [A
condition on the timing and interleaving of input and output,
which does not matter for our purposes]. We will say that
the hardware execution realizes the abstract execution, or,
equivalently, that the abstract execution is realized by the
hardware execution.
Under any particular implementation, a single program

can have many different abstract executions, varying in their
decisions about which store each load reads from and thus
the value obtained. It’s worth noting, however, that not all
the possible abstract executions of a program need be re-
alizable by the machine-code executable file produced by
that implementation. In fact, we will see that none of the
possible OOTA executions allowed by the loose C++ abstract
machine will ever be realized by the executables produced
by many compilers.

Exactly what the standard’s restriction on volatile accesses
means isn’t entirely clear. The handling of volatiles, as un-
derstood by compiler developers, has been described as more
folklore or a gentlemen’s agreement than anything else. To

11We regard read-modify-write instructions as consisting of both a memory
load and a memory store.

help guide C++ users and implementers, the standard adds
these suggestive comments (9.2.9.2p5 and 6 [dcl.type.cv]):

The semantics of an access through a volatile
glvalue are implementation-defined.
volatile is a hint to the implementation to
avoid aggressive optimization involving the ob-
ject because the value of the object might be
changed by means undetectable by an imple-
mentation.

Taking our cue from the folklore, we propose to recognize
formally that programs with volatile objects can execute in
two different kinds of environment: a benign one in which ac-
cesses to these objects work the same as nonvolatile memory
accesses, and a nonbenign one in which accesses to volatile
objects are subject to outside interference and act more like
I/O. In particular, when it runs in a nonbenign environment,
a program’s volatile loads can return unpredictable values.
They don’t necessarily read from stores (in contrast to non-
volatile loads, which always must return the value of the
store they read from). This implies that volatile load-acquires
do not synchronize with volatile store-releases in the sense
of the C++ memory model,12 so they do not contribute to
the happens-before relation. Also, in these environments the
rfe relation does not apply to volatile loads and stores, and
hence the accesses in an OOTA cycle must be nonvolatile.
Of course, the machine-code file produced by a compiler

must work properly in either kind of environment. Therefore
the compiler must generally treat accesses to volatile objects
as a form of I/O, and it may not invent, omit, merge, or
reorder these accesses, as we will discuss in Sections 4.3
and 4.4 below.

Given this relation between abstract and hardware execu-
tions, it is time to turn our attention to the tools that manage
hardware executions so as to enforce that relation, namely,
compilers.

4 C++ Compilers
In addition to a compiler, a complete C++ implementation
might include .h header files, a linker, runtime libraries, and
a dynamic loader. Nevertheless, for our purposes the com-
piler is the most important component because it is what
primarily determines the translation from a C++ source pro-
gram to directly executable machine code. We will therefore
use “compiler” and “implementation” interchangeably.
This section discusses influences and constraints on C++

compilers and then uses this information to define necessary
properties of volatile and quasi-volatile atomic accesses.

4.1 Users Influence the Behavior of Compilers
The exact definition of a computer language is a subject of
some debate, with standards, implementations, and users all
12However, they might instead synchronize with store-releases in device
firmware (or vice versa), roughly speaking.
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having their own influence [26, 27], and each being prone to
change over time. In areas that are not well settled or where
users might reasonably want to resist the dictates of the
standard, compilers often provide switches to override their
default behaviors. An example is GCC’s -funsigned-char
command-line argument, which causes it to treat variables
of type char as unsigned (see Section 2.2.9). Many more
examples of user control over language semantics may be
found through use of the command make V=1 in a Linux-
kernel source tree and by the discussion in [26, 27].

We will consider these user-specified compiler switch set-
tings to fall within the implementation-defined parameters
of the C++ abstract machine. They should be provided, im-
plicitly or explicitly, as part of any abstract execution.

4.2 Global Optimization Can Destroy Dependencies
Recall the Simple OOTA example in Listing 1 on page 1, in
which T0 loads the value of x and stores it in y while T1
does the reverse. A sufficiently perverse globally optimizing
loose C++ compiler might transform that program to the
following before translating it into machine code:

1. int r1 = 42 int r2 = 42
2. y = r1 x = r2

The loads previously on line 1 have been replaced by con-
stants. Such a transformation complies with the loose C++
standard, even though the resulting executable file would
produce an unintuitive OOTA outcome every time it runs,
even if relaxed loads are ordered before relaxed stores!

The only justification a compiler could have for generating
output like this is that it knows exactly what accesses will
be performed by both threads, and therefore it knows that it
will not violate the loose C++ memory model by assuming
each thread’s load reads from the other’s store.13 A similar
justification can underlie the reasoning in Section 2.2.3; in
principle an analysis of the complete program could lead a
compiler to conclude that y will always be equal to z when-
ever a particular y - z expression is evaluated, allowing the
compiler to replace the expression with a constant 0.
By contrast, a compiler that analyzes only one thread at

a time when performing its optimizations and other code
transformations will not have this kind of global knowledge,
and consequently it would not perform the OOTA-ful trans-
formation shown here.
Because we seek to find characteristics of compilers that

will guarantee the absence of OOTA behavior in the machine
code they generate, we will for now confine our attention to
compilers that analyze only one thread of source code at a
time. In more precise terms, we want the compilers under
consideration always to generate the same machine-code
output for threads having the same source code, regardless of

13A less perverse compiler could choose to avoid the OOTA cycle simply
by not making this transformation.

the rest of the code in the programs containing those threads.
Later on we will return to globally optimizing compilers.

4.3 Inventing Atomic Loads Can Cause Errors and
Destroy Semantic Dependencies

Invented atomic loads are problematic. Consider this code [25]:
int r0 = x;
int r1 = r0 * r0 + 2 * r0 + 1;

For values of x small enough to avoid overflow, the abstract
machine is guaranteed to produce a perfect square in r1.
But if the compiler is permitted to invent atomic loads

then the compiler might transform this code as follows:
int r0 = x;
int rinvented = x;
int r1 = r0 * r0 + 2 * rinvented + 1;

If the load into r0 happened when the value of x was zero
and the load into rinvented happened when the value of
x was 10, then the value of r1 would be 21, which is not a
perfect square. This fails to satisfy the abstract machine’s
guarantee and therefore is an invalid transformation.

Inventing atomic loads can also destroy dependencies. For
example, consider this code [25]:

int r1 = (x != 0);
int r2 = (y != 0);
z = (r1 == r2);

It seems clear that the store to z semantically depends on the
load from y, because the value of z will change whenever y
changes between zero and nonzero (all else being equal).

However, an especially devious compiler might transform
the source into the following form before translating it to
machine code:

1. int r1;
2. int r1a = (x != 0);
3. int r1b = (x != 0);
4. int r2 = (y != 0);
5. if (r1a != r1b) {
6. r1 = r2;
7. z = 1;
8. } else {
9. r1 = r1a;

10. z = (r1 == r2);
11. }

Here r1a represents the original load from x while the r1b
load is invented by the compiler.

The idea is that r1a, r1b, and r2 can each be only zero or
one, so if r1a and r1b differ then one of them must be equal
to r2. In executions where this happens—because another
thread writes to x between the two loads—the implementa-
tion can choose at runtime to use for r1 whichever value
agrees with r2, as shown on line 6. Then the value stored to
z on line 7 will simply be one, with no dependence on the
value loaded from y.
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Because invented loads can cause errors and break de-
pendencies, as we have just seen, we should insist that the
compiler not invent (or duplicate) atomic loads. In fact, we
will require that atomic accesses be treated as “quasi volatile”,
in that the compiler is allowed to omit, merge, or reorder
them but not invent them.

Just what does this mean?

4.4 Volatile and Quasi Volatile Accesses
Declaring objects to be volatile is a way for the programmer
to indicate that the hardware should perform all accesses to
these objects exactly as written in the source code, perhaps
because they represent memory-mapped device registers or
DMA buffers rather than normal memory locations. In any
event, we expect compilers’ translations of volatile-object
accesses into machine code to be as close to verbatim as
possible.

To express this idea in more formal terms, and to explain
what we mean by “quasi-volatile” object accesses, we aug-
ment the requirements for a hardware execution𝐻 to realize
an abstract execution𝐴. Each realization must include a map
from the set of accesses of volatile objects in 𝐴 to the set
of instructions in 𝐻 that access these objects, having the
following properties:

• The map connects accesses of the same type (loads to
loads and stores to stores) and to the same object.

• The map connects accesses in a thread of𝐴 to accesses
in the corresponding thread of 𝐻 .

• The map is value-preserving: The value of an access
in 𝐴 must be the same as the value of the access it
maps to in 𝐻 .

• In benign environments the map must preserve the
rf relation. That is, if volatile load 𝑅 in 𝐴 reads from
store𝑊 then the instruction it maps to in𝐻 must read
from the instruction that𝑊 maps to.

• Themap is order-preserving: Two accesses in the same
thread of 𝐴 must map to accesses occurring in the
same order in 𝐻 . (In other words, the compiler may
not reorder accesses to volatile objects.)

• The map is onto: For every access in 𝐻 to a volatile
object there must be an access in𝐴 that maps to it. (In
other words, the compiler may not invent accesses to
volatile objects.)

• The map is one-to-one: Different accesses in𝐴 map to
different accesses in 𝐻 . (In other words, the compiler
may not merge accesses to volatile objects.)

• The map is total: Every access in 𝐴 to a volatile ob-
ject maps to some access in 𝐻 . (In other words, the
compiler may not omit accesses to volatile objects.)

Most of these are direct consequences of the fact that volatile-
object accesses are considered to be a form of I/O when the
program runs in a nonbenign environment. But to be clear,
these requirements apply in all environments.

By contrast, accesses to quasi-volatile objects are normal
memory accesses, not subject to unpredictable interference
in nonbenign environments (otherwise the program’s be-
havior would be undefined). However, we do impose most
of the requirements above on quasi-volatile object accesses.
The last two bullet points are left out: Compilers are allowed
to merge or omit accesses to these objects. Because of this,
the bullet point about preserving the rf relation applies only
when 𝑅 is not omitted, in which case𝑊 must not be omitted
either, but now it applies in all environments. Lastly, the
requirement for order preservation is weakened; it applies
only to pairs of accesses to the same quasi-volatile object.
Accesses to different objects may be reordered relative to
each other.
These requirements prohibit invention or duplication of

atomic loads and stores. However, they do permit omitting re-
dundant non-volatile atomic stores and fusing of non-volatile
atomic accesses to adjacent objects.

5 Hardware Dependencies, Instruction
Ordering, and the Fundamental Property

This section examines dependencies at the level of machine
instructions and then uses the mapping from the previous
section to define the Fundamental Property of semantic de-
pendencies.

5.1 Dependencies at the Hardware Level
Dependencies between machine instructions are determined
by the flow of information within a CPU. Each instruction
takes a set of inputs and provides a set of outputs, some
of which flow to inputs of later instructions. The inputs
determine what an instruction will do.
For example, an add instruction might have two inputs

(the values to be summed) and two outputs (the sum and
some condition-code bits—e.g., Zero, Carry, and Overflow).
For another example, a memory-load instruction’s input is
the address to load from, and its output is the value obtained
by the load. For a final example, a memory-store instruction’s
inputs are the value to store and the address at which to store
it; there are no outputs.
Using this scheme, we say that an instruction 𝐽 is de-

pendent on another instruction 𝐼 when any of 𝐼 ’s outputs
flow into 𝐽 ’s inputs, perhaps via intermediate instructions.
Tracing back, you can see that any hardware dependency
ultimately emanates from initial register values, load instruc-
tions, immediate values, or I/O accesses. We are setting I/O
aside, which leaves load instructions as the only sources of
truly new information in a thread.

5.2 Instruction Ordering
A CPU may start executing an instruction speculatively, but
at some point it must either abandon that instruction or com-
mit it with a set of specific outputs based on well-defined
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inputs. A CPU is clearly not permitted to commit an in-
struction until its inputs have been committed, unless the
remaining uncommitted inputs cannot affect that instruc-
tion’s outputs. For instance, a conditional-move instruction
needn’t wait for the source input to commit once it knows
that the condition is definitely false.

The overall effect of these hardware dependencies is that if
a change to an output of instruction 𝐼 would lead to a change
in the action or outputs of a later instruction 𝐽 , then the CPU
must commit 𝐼 ’s output before committing 𝐽 ’s action and
outputs. Thus dependencies force the affected instructions
to commit in order, even on weakly ordered architectures.
We will say that one instruction is ordered after another to
mean that it must commit after the other one commits.14
Dependencies aren’t the only ordering mechanism. As

mentioned in Section 1.1, a CPU does not make the value
of a store instruction available to other CPUs until after the
store commits. It then takes additional time for the stored
value to travel to other CPUs, owing to the finite speed of
light and the non-zero size of processor hardware. Since a
load instruction cannot commit until its output (the value
read) is fully determined, it must commit after the store it
reads from.

Conditional or computed branches also provide ordering.
An instruction executing after such a branch cannot com-
mit until the CPU has committed to whether the branch
will be taken and if taken, where it will branch to; until
then the CPU cannot know whether the later instruction
should be executed at all. Therefore instructions following a
conditional- or computed-branch instruction must commit
after the branch, and hence after the source for the branch’s
condition and/or destination input.15

5.3 The Fundamental Property of Semantic
Dependencies

We can now formulate the Fundamental Property that we
want all semantic dependencies to satisfy in implementations
that treat all atomic objects as volatile or quasi volatile.

Let𝑊 be a store which semantically depends
on loads {𝑅0, . . . , 𝑅𝑛} in some abstract execu-
tion 𝐴, and suppose that𝑊 is not omitted in
some hardware execution 𝐻 realizing 𝐴. Then
for some 𝑖 , load 𝑅𝑖 is not omitted in 𝐻 and the
instruction it maps to is ordered before the in-
struction𝑊 maps to.

No implementation in which semantic dependencies sat-
isfy the Fundamental Property can realize a nontrivial OOTA
cycle. To see this, suppose that abstract execution 𝐴 having
an OOTA cycle is realized by hardware execution 𝐻 . This

14Note that this implies nothing about when a load instruction retrieves its
value from memory; it may do so long before it commits.
15A branch that conditionally jumps to the next instruction would be an
exception. We ignore this possibility by treating such branches as no-ops.

means there are atomic stores𝑊𝑖 in 𝐴, semantically depend-
ing on atomic loads {𝑅𝑖, 𝑗 } where each of the loads reads from
one of the𝑊𝑘 stores in a different thread. Let𝑊 ′

𝑖 and 𝑅′
𝑖, 𝑗 be

the hardware instructions these accesses map to in𝐻 , if they
aren’t omitted. Assuming that the stores are not all omitted,
one of the𝑊 ′

𝑖 instructions, let’s say𝑊 ′
0 , must commit first.

By the Fundamental Property, one of the loads that𝑊0 de-
pends on, let’s say 𝑅0,0, is not omitted and 𝑅′

0,0 is ordered
before𝑊 ′

0 . But now we have a contradiction: (1)𝑊 ′
0 commits

after 𝑅′
0,0; (2) 𝑅

′
0,0 commits after the store instruction𝑊 ′

𝑘
it

reads from; and finally (3)𝑊 ′
𝑘
commits no earlier than𝑊 ′

0 .
If all the stores in the OOTA cycle are omitted then all the

reads must also be omitted, meaning that the entire cycle has
been optimized away. We conjecture that in this situation
there must be another abstract execution which has the same
observable effects as𝐴 and is also realized by𝐻 , but in which
the OOTA cycle does not occur. Thus there would be no way
to tell, merely by observing the effects of 𝐻 , whether or not
there was an OOTA cycle. We therefore declare OOTA cycles
in which all accesses are omitted to be trivial.

6 A Definition of Semantic Dependency
Semantic dependency is a notoriously difficult concept to
define rigorously and precisely. A large part of the reason
is because it was never a completely clear concept to begin
with, especially when there are multiple accesses to the vari-
ables involved. In this section we will stick our necks out by
offering just such a definition. No doubt many people will
object to it for various reasons, but we nevertheless hope it
will help move the discussion forward.

The definition given below is applicable only to C++ im-
plementations that treat all atomic objects as though they
are volatile or quasi volatile. (For compilers that perform
only per-thread analysis, not global analysis, quasi volatile
is sufficient.) In this setting we can relate abstract and hard-
ware executions by means of the map of accesses described
in Section 4.4. The key insight is that this allows us to con-
sider semantic dependencies at the level of the machine code,
where they are much more tractable. Using this approach,
we demonstrate that OOTA cycles cannot form in the C++
implementations addressed by this paper.

6.1 For Compilers Using Per-Thread Analysis
In this section we consider implementations whose compil-
ers perform only per-thread analysis and treat atomic objects
as quasi volatile. This implies that if two different programs
contain the same thread (i.e., the same source code for the
functions and objects in the thread), the machine code gen-
erated by the compiler for the thread will be the same in the
two programs.

We begin by recognizing that semantic dependencies are
relative to a particular execution and a particular implemen-
tation, as described in Section 2.2. The same source code may
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or may not contain a semantic dependency, according to the
details of the execution in question and the machine code
produced by the compiler. For this reason we will charac-
terize semantic dependencies in a given abstract execution
realized by a given hardware execution. (While it is possible
to argue about semantic dependencies in abstract executions
that have no hardware realizations, doing so seems point-
less.)

Let𝐴 be an abstract execution of some program 𝑃 contain-
ing a thread 𝑇 , and let 𝐻 be a hardware execution realizing
𝐴. Let𝑊 in 𝑇 be a store to an atomic object, and let {𝑅0,
. . . , 𝑅𝑛} in 𝑇 be a set of loads from atomic objects on which
𝑊 might or might not depend. We can dispose of one case
immediately: If𝑊 is omitted in 𝐻 then the issue of semantic
dependency is moot. You can give either answer since it will
have no effect. Therefore we’ll assume that𝑊 is not omitted.
Then:

There is a semantic dependency from {𝑅𝑖 } to
𝑊 in 𝐴 and 𝐻 , relative to the compiler used
to produce 𝐻 , if there is another abstract ex-
ecution 𝐵 realized by hardware execution 𝐺

under the same compiler that together witness
the semantic dependency.

We informally define a witness to be another execution in
which at least one of the loads obtains a different value but
all else is the same as far as possible, and yet the store acts
differently.
To be a proper witness, 𝐵 must be an execution of some

program𝑄 , not necessarily the same as 𝑃 but which contains
the same thread𝑇 . The thread should start out with the same
initial state in 𝐴 and 𝐵, and all loads in 𝐴 coming before any
of the 𝑅𝑖 should obtain the same value as they do in 𝐵 (this is
part of our interpretation of “all else being equal”). It follows
that the two abstract executions of 𝑇 will be identical up to
the first of the 𝑅𝑖 loads.
Let𝑊 ′ and 𝑅′

𝑖 be the accesses in 𝐻 that𝑊 and the non-
omitted 𝑅𝑖 loads map to. We then require that the hardware
executions of 𝑇 in 𝐻 and 𝐺 be identical for an initial period
lasting up to the first of the 𝑅′

𝑖 . Following this initial period
there will be a common period, during which 𝐻 and 𝐺 exe-
cute the same machine instructions but do not necessarily
compute the same values. This common period ends when
one of the hardware executions takes a conditional branch
that the other doesn’t, or when a computed branch leads to
different addresses in the two executions, or when 𝑇 ends,
whichever comes first. Past this point 𝐻 and 𝐺 diverge and
are no longer directly comparable, as they execute different
instructions. Our third requirement for being a witness is
that each load in the common period must either obtain the
same value in 𝐻 and𝐺 , or itself be one of the 𝑅′

𝑖 loads, or be
ordered in 𝐻 after one of the 𝑅′

𝑖 loads (this is the remaining
part of our interpretation of “all else being equal”.)

Finally, we need to determine an instruction 𝑋 ′ in 𝐺 that
corresponds to𝑊 ′. If𝑊 ′ is in the initial or common period
of 𝐻 this is no problem; we can take 𝑋 ′ to be𝑊 ′ itself. But if
𝑊 ′ is in the divergent part of 𝐻 then things aren’t so simple.
The choice is somewhat arbitrary, and so we will fall back
on the earlier proposal of matching up stores by the order
they occur. Let 𝑦 be the atomic object that𝑊 ′ stores to, and
suppose𝑊 ′ is the 𝑁 th store to 𝑦 within the divergent part
of𝐻 . Then𝑋 ′ will be the 𝑁 th store to 𝑦 in the divergent part
of 𝐺 , if such a store exists. Our last requirement for being a
witness to a semantic dependency is that 𝑋 ′ act differently
from𝑊 ′: it doesn’t exist, it stores a different value, or it
stores to an object other than 𝑦.

6.2 For Compilers Using Global Analysis
As promised earlier, we now consider implementationswhose
compilers may use global analysis. In order to obtain the de-
sired results we have to require that these compilers treat
all atomic objects as volatile. Equivalently, the machine code
generated by such a compiler must be the same for a given
program as for a “volatilized” form of the program in which
all the atomic objects are defined to be volatile.
In this context our definition of semantic dependency is

essentially the same as before. Since we can no longer expect
the machine code for a thread to be the same regardless of the
program it belongs to, the program𝑄 in the earlier definition
(of which 𝐵 and𝐺 are executions) must be 𝑃 or its volatilized
form. However, we do now allow the possibility that the
executions 𝐵 and𝐺 take place in a nonbenign environment.
Aside from these minor adjustments, the definition remains
unchanged.

6.3 Verifying the Fundamental Property
Of course we want to check that our definition of seman-
tic dependency satisfies the Fundamental Property of Sec-
tion 5.3. Given the information we have already presented,
the demonstration is easy.
Suppose we have𝑊 , {𝑅𝑖 }, 𝐴, and 𝐻 as in the definition.

The Fundamental Property assumes that𝑊 is not omitted
in 𝐻 , so there is an abstract execution 𝐵 with hardware
realization 𝐺 witnessing the semantic dependency of the
store𝑊 on the loads {𝑅𝑖 } in 𝐴 and 𝐻 . We must show that
some 𝑅𝑖 is not omitted and 𝑅′

𝑖 is ordered before𝑊
′ in𝐻 . The

proof splits into three cases.
First case:𝑊 ′ lies in the initial period of𝑇 in𝐻 . During the

initial period of the hardware executions, 𝐻 and𝐺 behave
identically and therefore𝑊 ′ performs the same write in both.
This contradicts the fact that 𝐵 and 𝐺 witness the semantic
dependency.
Second case: 𝑊 ′ lies in the common period of 𝑇 in 𝐻 .

Since the action of𝑊 ′ in 𝐻 is different from its action in
𝐺 , at least one of its inputs must differ between the two
hardware executions. Therefore the source instruction for
that input must behave differently, and so must one of its
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sources, going back until we reach a load instruction that
obtains differing values in 𝐻 and 𝐺 . Then𝑊 ′ depends on
this load and so is ordered after it. And since the load must
lie in the common period of 𝐻 , by the definition of semantic
dependency it must either be one of the 𝑅′

𝑖 or be ordered
after one of them. Therefore𝑊 ′ is ordered after one of the
𝑅′
𝑖 in 𝐻 , which certainly means that 𝑅𝑖 is not omitted.
Third case:𝑊 ′ lies in the divergent part of 𝑇 in 𝐻 . This

happens when𝑊 ′ comes after the conditional or computed
branch which marks the end of the common period by go-
ing different ways in 𝐻 and 𝐺 . Just as in the previous case,
since the branch behaves differently in the two executions
it must be ordered after one of the 𝑅′

𝑖 loads. And then so
must𝑊 ′, because any instruction following a conditional- or
computed-branch instruction must commit after the branch
commits. QED.
A corollary of this result is that if an implementation’s

compiler either (1) uses per-thread analysis and treats atomic
objects as quasi volatile, or (2) uses global analysis and treats
atomic objects as volatile, then programs produced by that
implementation will never exhibit OOTA. Thus the imple-
mentation will automatically comply with full C++, even if
it was designed only to comply with loose C++.

6.4 Exercising the Definition
This section exercises the definition of “semantic depen-
dency” on selected examples. These exercises use the follow-
ing steps:

1. Identify the potential semantic dependencies of inter-
est.

2. Compile the code to assembly language, either using
a real compiler or conceptually.

3. Check for an assembly level syntactic dependency
between the loads and stores making of the potential
semantic dependency.
a. If there is no assembly level syntactic dependency,

then there can be no semantic dependency.
b. Otherwise, if there is no execution having a wit-

ness, then there can be no semantic dependency.
c. Otherwise, there is a semantic dependency.

In cases 3a and 3b there is no semantic dependency. In
case 3c, there might or might not be a semantic dependency,
but time will definitely be consumed executing the resulting
code. Either way, the candidate dependency cannot be part
of an OOTA cycle.
The following sections apply these steps to two of the

examples in this paper.

6.4.1 Exercising Function Calls. Section 2.2.7 provides
the following example:

y = f(x);

If the compiler knows nothing about the function f() and
the variable x, it must emit code that loads from x, passes

this value to f(), and finally stores the return value to y. Is
there a semantic dependency from the load of x to the store
of y? To determine this, it is necessary to apply this same
analysis to the definition of f(), treating its argument as a
load and each of its return statements as a store. If and only
if this analysis shows that, for a given execution, there is an
assembly level syntactic dependency within f(), then there
must also be a semantic dependency from the load of x to
the store of y. As always, if the compiler cannot prove that
there is no such semantic dependency, it must assume than
there is one.

If f is a pointer to a function, then the compiler must also
emit a load from f, so that there might also be a semantic
dependency from the load from f to the store to y. In the
context of C++, this is straightforward: A given execution
will load a pointer to a particular function from f, so if there is
another execution that loads a pointer to a different function,
and the two functions return different values for the value
loaded from x, then there is a semantic dependency from
f to y. Languages that permit functions to be generated at
runtime must use more complicated analysis.

Situations where the compiler knows about f often result
in inlining, in which case there is no function call, allowing
the semantic dependencies (or lack thereof) to be determined
with respect to the inlined code.

6.4.2 Exercising Multiplication. Sections 2.2.1 and 2.2.2
provide the following example:

z = x * z;

This has potential semantic dependencies between the loads
from x and y to the store to z. The corresponding assembly
code can vary depending on what the compiler knows about
the values of x and y.

If it knows nothing, then it must load from both, multiply
the values loaded, and then store the resulting product to
z. There is an assembly-level syntactic dependency, and if
we start with the execution in which the value 1 is loaded
from both variables (resulting in the value 1 being stored to
z), then the execution in which the value 2 is loaded from x
witnesses a semantic dependency from x to z. Similarly, the
execution in which the value 2 is loaded from y witnesses a
semantic dependency from y to z.
But suppose we instead start with the execution where

the value 0 is loaded from x and the value 1 is loaded from y.
In this case, there is no witness execution that varies only
the value of y, as all such executions will result in the value
0 being stored to z. However, the execution where the value
-1 is loaded from x witnesses a semantic dependency from x
to z, resulting in the value -1 being stored to z.
But suppose we instead start with the execution where

the value 0 is loaded from both x and y. There is again no
witness execution that varies only the value of y, but there
is also no witness execution that varies only the value of x,
all such executions still resulting in the value 0 being stored
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to z. However, the execution where the value 2 is loaded
from x and the value 3 is loaded from y witnesses a semantic
dependency from the set {x, y} to z, resulting in the value 6
being stored to z.

Alternatively, if the compiler knows that the value loaded
from x is guaranteed to be zero, then it can omit the loads
from both x and y (assuming that these values are not other-
wise used), and then simply store the constant 0 to z. There
clearly can be no semantic dependencies from these now-
nonexistent loads to the store to z.

6.4.3 Discussion. Allowing the compiler to transform the
source code to assembly code prior to analysis provides great
simplifications. This enables us to show the main result,
namely that current compiler-based C++ implementations
do not produce OOTA cycles. Note well that these compilers’
current analysis suffices.

7 Issues and Refinements
Here we consider some general questions related to our
definition of semantic dependency. Additional information
is available in a companion technical report, which is not
cited in order to maintain anonymity.

7.1 Relative vs. Absolute Dependency
One drawback of our definition of semantic dependency is
that it is only relative to a specific compiler or implemen-
tation. This may strike some readers (especially those im-
plementing tooling) as wishy-washy and avoiding the real
problem, in that a given piece of code should either contain
or not contain a semantic dependency, independent of the
implementation used to run it.
We can address this drawback by defining an absolute

semantic dependency as one that is present relative to any
valid loose C++ implementation, past, present, or future,
real or imagined. Of course this notion has its own problems,
including that it is extremely nonconstructive and impossible
to apply in practice. However it may be the best we can do
with our current understanding of computing systems.

There is one thing we can definitely state: Programs pro-
duced by an implementation of the right sort will never ex-
hibit absolute OOTA (that is, an OOTA cycle in which all the
semantic dependencies are absolute). This is simply because
an absolute semantic dependency is a fortiori a semantic
dependency relative to the compiler in use.

But in fact we have shown more than this: Programs will
never exhibit an OOTA cycle relative to the compiler used
to build them, even when that cycle is not absolute. In this
sense we have gone beyond the requirement of full C++.

7.2 Global Analysis and Volatile vs. Quasi Volatile
In principle we don’t need to require global-analysis compil-
ers to treat atomic objects as volatile; our results would still
hold if they merely treated them as quasi volatile. We chose

not to do this because it would violate our intuitions about
semantic dependencies.

For example, consider the Simple OOTA program shown
in Listing 1. A loose C++ compiler using global analysis
and treating x and y as quasi-volatile objects could omit
the two loads, replacing them in the machine code with
simple assignments “r1 = 42” and “r2 = 42”, as shown in
Section 4.2. This would be a valid transformation, and the
resulting behavior would not count as OOTA according to
our definition because the dependencies in T0 and T1 would
not be semantic.
To see why not, recall that a semantic dependency must

have a witness, another execution in which the store acts
differently. But this transformed program has no other hard-
ware executions; every time it runs it will store 42 to both
x and y. (Keep in mind also that since the atomic objects
are not treated as volatile, they are not subject to unspec-
ified interference when the program runs in a nonbenign
environment.)

This unintuitive behavior could not occur if the two loads
were not omitted. In fact, the definition of semantic depen-
dency might remain perfectly acceptable if the requirement
for global-analysis compilers were weakened, if the compiler
treated atomic objects as quasi volatile and in addition was
not allowed to omit accesses to them. This is a possible topic
for future research.

7.3 Effect of Memory Layout
Part of our demonstration of the Fundamental Property of se-
mantic dependencies relies on the fact, stated in Section 3.1,
that an abstract execution of a thread is entirely determined
by the values obtained for its loads. But when we compare
abstract executions of the same thread in two different pro-
grams, this may no longer be entirely true owing to the effect
of differing memory layouts.

Consider this simple example:

x = (int) &x;

Even though the example contains no loads at all, it may
store different values when running in different programs
because the object x may be allocated at differing addresses
in those programs. According to our definition, this could
count as a degenerate OOTA cycle of length one, in which
the store is semantically dependent on an empty set of loads!

To rule out such pathological counterexamples we should
require that in a witness to a semantic dependency, the ad-
dresses of all the objects and functions referred to in the
thread 𝑇 are the same as in the original execution. This is a
very technical restriction but there are occasions when the
issue might realistically arise, such as when computing a
hash value based on an object’s address.
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7.4 Merging Quasi-Volatile Loads
The compiler is permitted to merge quasi-volatile loads. This
can lead to surprising results because a particular load may
be merged with an earlier load in one execution and with a
later load in another. This is demonstrated in the following,
which is a variant of the example in Section 4.3:

int r1 = (x != 0);
int r2 = (x != 0);
int r3 = (x != 0);
int r4 = (y != 0);
z = (r2 == r4);

Consider an abstract execution in which r1, r2, and r4 are
zero and r3 is one (because another thread changed the value
of x between two of the loads). We would expect that the
store to z would be semantically dependent on the load of y
in this execution.
Although many optimizing compilers would omit the

loads into r1 and r3, or merge them with r2 if they are used
later, one could imagine a perverse compiler instead using
per-thread analysis to translate this into the machine-code
equivalent of:

int r1 = (x != 0);
int r2;
int r3 = (x != 0);
int r4 = (y != 0);
if (r1 != r3) {

r2 = r4;
z = 1;

} else {
r2 = r1;
z = (r2 == r4);

}

In effect, the r2 load is merged with the r1 load in executions
where r1 is equal to r3 or to r4, and it is merged with the
r3 load in other executions.
To demonstrate the semantic dependency in the original

code, a suitable witness would have to include a hardware
realization of the abstract execution in which r1 and r2 are
zero and r3 and r4 are one. But there are no hardware real-
izations of this execution with the machine code indicated
above! Since r1 is different from both r3 and r4, the r2 load
will be merged with the r3 load and so r2 will necessarily
be one, not zero. Thus, relative to this compiler the example
does not contain a semantic dependency.
Although this is unexpected, and while we don’t recom-

mend this sort of code transformation, we cannot say that
this conclusion is definitely wrong, because one’s intuitive
notions of semantic dependency are not always clear in cases
involving multiple loads from the same variable. In the un-
likely event that this transformation proves useful, there will
be a community process that determines whether the value
of this transformation is worth the added conceptual load on
developers. Until that time, pure mathematics cannot help us

because it is simply impossible to say whether or not there
is a semantic dependency from y to z without reference to a
specific implementation.

7.5 Other Potential Refinements
Additional future work could: (1) Extend these results to
some classes of interpreters and just-in-time compilers (JITs)
on one hand, and to link-time optimization (LTO) on the
other; (2) Relax quasi-volatile semantics to permit limited
load speculation, for example, use of conditional-move in-
structions in cases where the source code conditionally con-
sumes the results of the atomic load; (3) Consider various
classes of global analysis, such as demonstrating that a given
expression will always evaluate to a constant; (4) Examine
the possibility of “flattening” optimizations that combine
multiple threads into one; (5) Explore cases in which se-
mantic dependencies must be absolute, not relative to any
particular compiler; (6) Include the effects of input and out-
put or other operations which can vary from one execution
to another; and (7) Delineate more precisely the limits of
permissible behavior for quasi-volatile object accesses. This
last item may well shed additional light on the dangers of op-
timizations involving non-volatile atomic operations beyond
the cautions outlined in Section 4.3.

7.6 Possible Change to the Standard
As noted in Section 1.1, the C++ standard explicitly recom-
mends against them in 33.5.4p8 ([atomics.order]) [16]:

Implementations should ensure that no “out-
of-thin-air” values are computed that circularly
depend on their own computation.

Sensible though this recommendation might be, it can
unnecessarily raise anxiety levels of C++ implementers. After
all, what exactly do they need to do in order to follow that
recommendation? One way to reduce their anxiety levels
would be to add something like the following sentence to
this recommendation:

Compiler-based implementations whose bina-
ries run on conventional hardware are guaran-
teed not to compute out-of-thin-air values as
long as they restrict themselves to thread-at-
a-time analysis, valid optimizations, and user
programs that are free of undefined behavior.

8 Summary and Conclusion
This paper focused solely on compilers, primarily those that
do only per-thread analysis and optimization. It introduced
the notion of quasi-volatile object accesses and gave a def-
inition for semantic dependency that is relative to a par-
ticular C++ implementation. It formulated a Fundamental
Property of semantic dependency and proved that implemen-
tations subject to some very mild restrictions on how they
treat atomic object accesses do have this property. Finally,
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it demonstrated that satisfying the Fundamental Property
guarantees an implementation cannot give rise to OOTA
executions.

The conclusion to be drawn from this work is that in this
context, avoiding OOTA cycles requires no changes to the
standard, to current implementions, or to user practices for
portable code.
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