
Contracts for C++: ​
User-defined diagnostic messages

Timur Doumler (papers@timur.audio)​

Peter Bindels (dascandy@gmail.com)​

Joshua Berne (jberne4@bloomberg.com)

Document #:​ P3099R0
Date:​ ​ 2025-10-03
Project: ​ Programming Language C++
Audience: ​ EWG

Abstract
We propose an extension to C++26 Contracts that allows the user to specify a diagnostic
message for a particular contract assertion. This functionality is frequently requested and
already available in Clang via a vendor attribute. The proposed syntax is straightforward and
consistent with existing language features such as static_assert.

1 Motivation
A user-defined diagnostic message can provide additional information that can help
developers more quickly understand why a particular assertion failed and how to resolve the
issue. The ability to optionally provide such a message is valuable for any assertion facility,
including contract assertions.

The C assert macro does not directly support an associated diagnostic message. However,
the idiom assert(expr && "Reason") has become a common workaround, and many
non-standard assertion facilities provide explicit support for diagnostic messages.

The same workaround as with C assert is possible with C++26 contract assertions today,
and the string would typically be printed by the default contract-violation handler. However,
C++ can do better. Beyond improving the syntax, we can expose the string to a user-defined
contract-violation handler via the std::contracts::contract_violation object passed
into it by the implementation. The handler can then display, log, or otherwise process the
message in whichever way best suits the program and its environment.

Anecdotally, when a C++ compiler implementer first encountered the specification for C++26
Contracts, their immediate reaction was:

​
“So how do I add a custom message to an assertion here? I need that. Hm, you did
not add this yet… where’s the syntactic position for a vendor attribute so I can add
this in my implementation?”

Luckily, we had foreseen the need for such vendor attributes and had added [P3088R1] to
the C++26 Contracts proposal, specifying the syntactic position for attributes appertaining to
contract assertions (even though no such attributes were added in C++26). This enabled
Clang to implement user-defined diagnostic messages on top of C++26 Contracts, and they
are available as a vendor attribute today:

T& operator[] (size_t i)

 pre [[clang::contract_message("Out-of-bounds access")]] (i < size());

Now that we have some implementation experience with this vendor extension, including
deployment experience in libc++ and the LLVM codebase ([P3460R0]), the time has come to
propose standardising this feature for C++29.

2 Discussion

2.1 Syntax
We see three possible approaches for specifying the syntax for this feature:

A.​ Label syntax (consistent with the proposal [P3400R1] also targeting C++29):​
​

 T& operator[] (size_t i)​
 pre <message("Out-of-bounds access")> (i < size());​

B.​ Standard attribute (consistent with the Clang implementation):​
​

 T& operator[] (size_t i)​
 pre [[message("Out-of-bounds access")]] (i < size());​

C.​ Second argument (analogous to static_assert):​

​

 T& operator[] (size_t i)​
 pre (i < size(), "Out-of-bounds access");

Option A requires no additional syntax apart from what [P3400R1] already provides, and is
the most extensible. For example, two different labels could provide different messages that
could be programmatically combined in different ways, another label could provide
formatting options, etc. However, this syntax is somewhat noisy, it places the message
before the predicate, even though the predicate is the primary information, and it makes for a
more complicated interface containing an arbitrary multitude of messages.

Option B follows the existing practice in Clang. However, it is the most noisy syntax, places
the message before the predicate, and represents functionality that does not meet our
current litmus test for attributes as ignorable constructs ([dcl.attr.grammar]/7).

Option C is the shortest and simplest, which is important as we anticipate this feature to be
used frequently. It is the only option that places the message after the predicate. It is also

- 2 -

https://wg21.link/p3088r1
https://wg21.link/p3460r0
https://wg21.link/p3400r1
https://wg21.link/p3400r1
https://eel.is/c++draft/dcl.attr#grammar-note-5

consistent with static_assert and thus should look and feel very familiar to C++
developers. Incidentally, it is also identical to the syntax used in D.1

We therefore propose Option C. It strikes the most favorable balance for immediate usability.
Future integration with labels (Option A) remains possible: if we ever pursue the direction of
specifying diagnostic messages with labels, Option C can retroactively become syntactic
sugar for such labels without breaking any existing code already using the Option C syntax.

We propose to apply this syntax extension to all three kinds of contract assertions: pre,
post, and contract_assert.

2.2 Compile-time vs. runtime strings
We can identify three options for what kind of strings to allow as the diagnostic message:

A.​ String literals only
B.​ Compile-time generated strings
C.​ Runtime-generated strings

Option A is the most conservative and matches what static_assert started out with in
C++11. Option B matches the current specification of static_assert, which has been
repeatedly extended ([N4433], [P2741R3]) with positive experience. We therefore propose
Option B, applying the same rules and constraints to the string as static_assert already
does, leveraging existing practice and avoiding duplication in wording.

Option C seems attractive as it would allow runtime information, such as the value of runtime
variables, to be included in the diagnostic message. However, this would require the
implementation to run user code after a contract violation has been identified but before the
contract-violation handler has been invoked. The security implications of this are currently
not fully understood. As with evaluation_exception(), which has the same implications
([P3819R0]), we recommend deferring Option C for now. It can be added on top of this
proposal at a later time if it can be shown that the security risk is fully avoidable.

2.3 Default contract-violation handler
The current specification states that the output of the default contract-violation handler
should be "the most relevant contents of the std​::​contracts​::​contract_violation
object". We propose extending this to say that, if a diagnostic message is supplied, it should
also be included in that output.

Since the behaviour of the default contract-violation handler is entirely implementation-
defined, and the specification is only a recommended practice, we do not see a need to be
more specific about how the message should be included in its output.

1 See https://dlang.org/spec/expression.html#AssertExpression

- 3 -

https://wg21.link/n4433
https://wg21.link/p2741r3
https://wg21.link/p3819r0
https://dlang.org/spec/expression.html#AssertExpression

2.4 User-defined contract-violation handler
The diagnostic message must also be accessible to the user-defined contract-violation
handler as this is a primary motivation to add the feature. This requires a modification of the
std​::​contracts​::​contract_violation API. We considered three options:

A.​ Replace the string returned by comment() with the diagnostic message, if one was
supplied.

B.​ Include the diagnostic message in the string returned by comment().
C.​ Do not modify the specification of comment(); instead, add a new property

message() that returns the diagnostic message if one was supplied, or an empty
string otherwise.​

Option A matches the current implementation in Clang and has the advantage that no
changes to header <contracts> are required. However, it removes2 the ability to retrieve
the original compiler-generated comment() string, which is useful on its own: it will typically
contain a human-readable representation of the violated predicate expression.

Option B likewise requires no changes to header <contracts> and has the additional
advantage that only one function call is necessary to get a string that contains all the
available information. This makes it easy to dump the entire information into a log file, and
impossible to forget to include the user-defined string in that output. However, arguments
about simplicity in the contract-violation handler are generally questionable as user-defined
contract-violation handlers will be written very rarely (typically once per company).

On the other hand, Option B gives the user no portable way to use the compiler-generated
and the user-defined messages separately. This may be desirable, for example if the author
of the contract-violation handler wishes to dump the entire information into a log file but only
include the user-defined diagnostic message for sending a JSON-formatted bug report.

We therefore propose option C. It requires adding a new member function but does not
modify any existing functionality, provides the cleanest API, and offers access to both the
compiler-generated and the user-defined diagnostic message. This gives the author of the
contract-violation handler the freedom to either use them separately or combine them into a
single string in whichever way serves their users best.

2.5 Constant evaluation
When a contract violation occurs during constant evaluation, no contract-violation handler is
called. Instead, the implementation issues a compile-time diagnostic. We follow the practice
of static_assert and propose that if a user-defined diagnostic message was supplied, the
implementation should include its text in that compile-time diagnostic.

2 Clang offers a workaround in the form of a macro that expands to the compiler-generated string.
However, if the user wishes to combine this string with their own diagnostic message string, they must
do so in every contract assertion (instead of once in the contract-violation handler). The macro also
cannot work in all cases as the information required to generate the string is not always available at
the stage of the preprocessor. Workarounds that do not involve macros are conceivable but the
resulting user experience is still questionable.

- 4 -

An interesting property of this proposal is that the functionality offered by contract assertions
is now a strict superset of static_assert, because static_assert(expr, string) is
equivalent to contract_assert(expr, string) evaluated with the enforce semantic
during constant evaluation.

Furthermore, this proposal (at least partially) subsumes the utility for emitting compile-time
diagnostics proposed in [P2758R5], since contract_assert(false, string) evaluated
with the observe semantic during constant evaluation has the same effect.

3 Proposed wording
The proposed wording is relative to the current C++ working draft [N5014]. Add a new
section "Diagnostic message strings" [basic.message] as follows:

diagnostic-message:
 unevaluated-string
 constant-expression

A diagnostic-message is a user-supplied string-like object for the purposes of specifying a
diagnostic message. If a diagnostic-message matches the syntactic requirements of
unevaluated-string, it is an unevaluated-string and the text of the diagnostic-message is the
text of the unevaluated-string. Otherwise, a diagnostic-message shall be a
constant-expression M, and the text of the diagnostic-message is determined as follows:

– M.size() shall be a converted constant expression of type std​::​size_t and
let N denote the value of that expression,

– M.data(), implicitly converted to the type “pointer to const char”, shall be a
core constant expression and let D denote the converted expression,

– for each i where 0 ≤ i < N, D[i] shall be an integral constant expression, and
– the text of the diagnostic-message is formed by the sequence of N code units,

starting at D, of the ordinary literal encoding ([lex.charset]).

Modify [dcl.pre] as follows:

static_assert-message:
 unevaluated-string
 constant-expression

static_assert-declaration:
 static_assert (constant-expression) ;
 static_assert (constant-expression , static_assert-messagediagnostic-message) ;

If a static_assert-message matches the syntactic requirements of unevaluated-string, it is
an unevaluated-string and the text of the static_assert-message is the text of the
unevaluated-string. Otherwise, a static_assert-message shall be an expression M such that

- 5 -

https://wg21.link/p2758r5
https://wg21.link/n5014

– the expression M.size() is implicitly convertible to the type std​::​size_t, and
– the expression M.data() is implicitly convertible to the type “pointer to const
char”.

In a static_assert-declaration, the constant-expression E is contextually converted to
bool and the converted expression shall be a constant expression ([expr.const]). If the
value of the expression E when so converted is true or the expression is evaluated in
the context of a template definition, the declaration has no effect and the
static_assert-messagediagnostic-message ([basic.message]) is an unevaluated operand
([expr.context]). Otherwise, the static_assert-declaration fails and

– the program is ill-formed, and
– if the static_assert-message is a constant-expression M,

– M.size() shall be a converted constant expression of type std​::​size_t and let N
denote the value of that expression,

– M.data(), implicitly converted to the type “pointer to const char”, shall be a
core constant expression and let D denote the converted expression,

– for each i where 0 ≤ i < N, D[i] shall be an integral constant expression, and
– the text of the static_assert-message is formed by the sequence of N code units,

starting at D, of the ordinary literal encoding ([lex.charset]).

Recommended practice: When a static_assert-declaration fails, the resulting diagnostic
message should include the text of the static_assert-messagediagnostic-message, if
one is supplied.

Modify [basic.contract.general] as follows:

Each contract assertion has a contract-assertion-predicate which is an expression of
type bool. [Note: The value of the predicate is used to identify program states that are
expected. — end note] Each contract assertion has an optionally supplied
diagnostic-message ([basic.message]).

[...]​

If a contract violation occurs in a context that is manifestly constant-evaluated
([expr.const]), and the evaluation semantic is a terminating semantic, the program is
ill-formed. [Note: A diagnostic is produced if the evaluation semantic is observe
([intro.compliance]). — end note]

Recommended practice: The resulting diagnostic message should include the text of the
diagnostic-message of the violated contract assertion, if one is supplied.

Modify [basic.contract.handler] as follows:

Recommended practice: The default contract-violation handler should produce
diagnostic output that suitably formats the most relevant contents of the

- 6 -

std::contracts:: contract_violation object, rate-limited for potentially-repeated
violations of observed contract assertions, and then return normally. The diagnostic
output should include the text of the diagnostic-message of the violated contract
assertion, if one is supplied.

Modify [stmt.contract.assert] as follows:

assertion-statement :
 contract_assert attribute-specifier-seqopt (conditional-expression);
 contract_assert attribute-specifier-seqopt (conditional-expression, diagnostic-message);

Modify [dcl.contract.func] as follows:

precondition-specifier :
 pre attribute-specifier-seqopt (conditional-expression) ;
 pre attribute-specifier-seqopt (conditional-expression, diagnostic-message);

postcondition-specifier :
 post attribute-specifier-seqopt (result-name-introduceropt conditional-expression);
 post attribute-specifier-seqopt (result-name-introduceropt conditional-expression, ​
 diagnostic-message);

Modify [contracts.syn] as follows:

 class contract_violation {

 // no user-accessible constructor

 public:

 contract_violation(const contract_violation&) = delete;

 contract_violation& operator=(const contract_violation&) = delete;

 see below ~contract_violation();

 const char* comment() const noexcept;

 contracts::detection_mode detection_mode() const noexcept;

 exception_ptr evaluation_exception() const noexcept;

 bool is_terminating() const noexcept;

 assertion_kind kind() const noexcept;

 source_location location() const noexcept;

 const char* message() const noexcept;

 evaluation_semantic semantic() const noexcept;

 };​

Modify [support.contract.violation] as follows:

const char* message() const noexcept;​
​
Returns: The diagnostic-message of the violated contract assertion, if one is supplied; a
null pointer otherwise.

- 7 -

References
[N4433] Michael Price: "Flexible static_assert messages". 2014-04-09

[N5014] Thomas Köppe: "Working Draft Programming Languages — C++". 2025-08-05

[P2741R3] Corentin Jabot: "User-generated static_assert messages". 2023-06-16

[P2758R5] Barry Revzin: "Emitting messages at compile time". 2025-02-11

[P3088R1] Timur Doumler and Joshua Berne: "Attributes for contract assertions".
2024-02-13

[P3400R1] Joshua Berne: "Controlling Contract-Assertion Properties". 2025-02-28

[P3460R0] Eric Fiselier, Nina Dinka Ranns, and Iain Sandoe: "C++ Contracts — ​
Implementers Report". 2024-10-16

[P3819R0] Peter Bindels, Timur Doumler, Joshua Berne, Eric Fiselier, and Iain Sandoe:
"Remove evaluation_exception() from contract-violation handling for C++26".
2025-09-02

- 8 -

https://wg21.link/n4433
https://wg21.link/n5014
https://wg21.link/p2741r3
https://wg21.link/p2758r5
https://wg21.link/p3088r1
https://wg21.link/p3400r1
https://wg21.link/p3460r0
https://wg21.link/p3819r0

	Contracts for C++: ​User-defined diagnostic messages
	Abstract
	1 Motivation
	2 Discussion
	2.1 Syntax
	2.2 Compile-time vs. runtime strings
	2.3 Default contract-violation handler
	2.4 User-defined contract-violation handler
	2.5 Constant evaluation

	3 Proposed wording
	References

