
Document:​ P2034R5
Author:​​ Ryan McDougall <mcdougall.ryan@gmail.com>

Lakshay Garg <lakshayg.xyz@gmail.com>
Audience:​ EWG
Project:​ ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Partially Mutable Lambda Captures
Or

A More Uniform Const for Lambdas

Revision History

Changes from R4:
●​ Implementation experience.

Changes from R3:
●​ Meta-motivation: safety and security – const should be easier to get right and harder

to get wrong.
●​ Cleaned up some examples.

Changes from R2:
●​ Update author email addresses.
●​ Rename any_invocable to move_only_function.

Changes from R1:
●​ Add discussion of const captures on move construction and assignment.
●​ Add vocabulary type `as_mutable`.
●​ Add alternative implementation strategy for const members.
●​ Selective move feature in top section.

Changes from R0: Concerns from EWG-I
●​ Interactions with this pointer.
●​ Interactions with init-capture packs.
●​ Clarify const as it applies to pointers.
●​ Add const-reference use case.
●​ Expanded prose.

mailto:mcdougall.ryan@gmail.com
mailto:lakshayg.xyz@gmail.com
http://wiki.edg.com/bin/view/Wg21prague/P2034R0SG17

Polls
EWG encourages more work in the direction of Partially Mutable Lambda Captures.

SF F N A SA

1 10 4 2 1

Consensus

EWG encourages more work in the direction of Partially Mutable Lambda Captures,
including extensions.

SF F N A SA

2 15 3 1 0

Stronger consensus

Implementation Report
Ville Voutilainen has implemented extensions in GCC on Godbolt:
https://godbolt.org/z/9fcoYeMMf with regression tests, and gave the following report.

In general, the implementation was very straightforward, after
discussing the approach with the maintainer, and coming to
the conclusion that it's simply a matter of adjusting the types of the
capture members of lambda for const, and the storage-class-specifier
for mutable. The implementation effort was a matter of a single afternoon.

Background
Lambdas were introduced in N2550, and while previous drafts considered mutable capture
by value, the original wording left captures entirely const. N2658 salvaged mutable for all
captures by allowing the mutable keyword to modify the call.

P0288 (move_only_function) was approved by LEWG, and a central improvement is that it
respects the const modifier on function types (ie. move_only_function<void(int)
const>). This means an move_only_function with a const modifier on its call type will
only bind to lambdas that are not marked mutable.

A type that is “logically const” is a type that has some mutable members that do not
fundamentally change the invariants of the object, even when it is const. This means
move_only_function, and any other const-correct library, cannot work with logically
const lambdas.

https://godbolt.org/z/9fcoYeMMf
https://github.com/villevoutilainen/gcc/blob/lambda-p2034/gcc/testsuite/g%2B%2B.dg/cpp0x/lambda/lambda-p2034.C
https://github.com/villevoutilainen/gcc/blob/lambda-p2034/gcc/testsuite/g%2B%2B.dg/cpp0x/lambda/lambda-p2034-err.C
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2658.pdf
https://wg21.link/P0288
https://isocpp.org/wiki/faq/const-correctness#mutable-data-members

Meta-Motivation
The proposal and most extensions would allow programmers to apply const with
simplicity and precision to lambda captures – improving applicability of const in cases
where programmers would otherwise:

1.​ Declare the lambda blanket mutable.
2.​ Declare captures by const {non-}propagating wrapper.

Applying const with more purpose and simpler syntax would improve the safety and
security of such code – especially for programmers that have learned about the const
declarations, but are not yet comfortable with const-{non-}propagating wrappers. Avoiding
use of wrappers also makes lambda captures smaller and thus easier to read and reason
about.

Motivation
Type erased callables like std::move_only_function are the backbone of most
asynchronous systems. Users of such systems close their operations in lambdas and place
them in a concurrent queue to be processed elsewhere. Performance is often key in such
systems, and such operations may want its own local reusable scratch memory. Or perhaps
an accumulator for hysteresis over multiple calls.

struct MyRealtimeHandler {
 Callback callback_;
 State state_;
 mutable Buffer accumulator_;

 void operator()(Timestamp t) const {
 callback_(state_, accumulator_, t);
 }
};

concurrent::queue<move_only_function<void(Timestamp) const> queue;
queue.push(MyRealtimeHandler{f, s});

Lambdas in such cases require work-arounds, such as abandoning logical const
correctness, abandoning ownership, or introducing intermediary {non-}const-propagating
intermediary types. Strict ownership rules are important due the asynchronous nature of the
handler, and const correctness is important for memory- and thread-safety.

Proposal

Mutable Capture By Value
Allow lambda capture initialization to be mutable qualified, as below. This would have the
effect of declaring the captured variable to be mutable.

auto a = [mutable x, y]() {};

// equivalent to:

struct A {
 mutable X x;
 Y y;
 void operator()() const {}
};

Before After

struct A {
 const State state;
 mutable Buffer buf;
 void operator()() const {
 // ...
 }
};

// manual bespoke type
move_only_function<void() const> f = A{s,
b};

move_only_function<void() const> f =
 [s, mutable b] {
 // ...
 };

template <typename T>
class as_owned_mutable {
 mutable T value;
 public:
 T& ref() const {
 return value;
 }
};

// new vocabulary type
move_only_function<void() const> f =
 [s, b = as_owned_mutable<Buffer>{}]() {
 auto& buffer = b.ref();
 // ...
 };

move_only_function<void() const> f =
 [s, mutable b] {
 // ...
 };

// loss of const correctness
move_only_function<void()> f =
 [s, b]() mutable {
 // ...

move_only_function<void() const> f =
 [s, mutable b] {
 // ...

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3610.html

 }; };

// loss of ownership
move_only_function<void() const> f =
 [s, buf_ptr = &b]() {
 // ...
 };

move_only_function<void() const> f =
 [s, mutable b] {
 // ...
 };

Selective Moves with init-capture Packs

Following the direction set out in P2095, using the example in P0780, we are able to move
arguments from caller, to lambda, to callee -- without having to stop at the lambda:

template <class... Args>
auto delay_invoke_foo(Args... args, State s) {
 return [s, mutable ...args=std::move(args)] { // <-- new
 return foo(s, std::move(args)...); // <-- improved
 };
}

Possible Extensions
Extensions are motivated by use cases, and listed in order of perceived usefulness --
however it should be noted that they also introduce increasing precision, consistency, and
symmetry – which the authors believe is a justification in its own right.

1.​ Const Capture on Mutable Call Operator
If lambda capture initialization can be modified by mutable and lambda closure call can be
modified by mutable, then lambda closure calls modified by mutable should be able to
declare some of their captures const – an inversion of this paper’s core proposal.

Value
If most of the values captured are mutable, but one should be const, then this variation
would be shorter and more readable. The alternative is to simply leave otherwise const
captures mutable, or to use std::cref. The former is less safe, and the latter may be
undesirable because the lambda does not own the object referred to, which may create
lifetime issues. Moreover it requires a more verbose assignment syntax.

Allowing const captures is ergonomic and simple.

Before After

template <typename T>
class as_owned_const {
 T value;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2095r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0780r2.html

 public:
 const T& ref() const {
 return value;
 }
};

// new vocabulary type
move_only_function<void()> f =
 [s, b = as_owned_const<Buffer>{}] mutable
 {
 auto& buffer = b.ref();
 // ...
 };

move_only_function<void() const> f =
 [s, const b] mutable {
 // ...
 };

// loss of const correctness
move_only_function<void()> f =
 [s, b]() mutable {
 // ...
 };

move_only_function<void() const> f =
 [s, const b] mutable {
 // ...
 };

// loss of ownership
move_only_function<void()> f =
 [s, buf = std::cref(b)]() mutable {
 // ...
 };

move_only_function<void() const> f =
 [s, const b] mutable {
 // ...
 };

Implementation

auto b = [x, const y]() mutable {};

// equivalent to:

struct B {
 X x;
 const Y y;
 void operator()() {}
};

A const member would make the lambda closure assignment operators deleted, but
lambda closures with captures already delete the copy assignment operator.

A const member would also cause the move constructor to be implemented via copy,
potentially causing it non-noexcept, depending on the copy constructor of the const member.

We can avoid these problems with another implementation strategy by invoking “as-if”:

// equivalent to:

struct B {
 X x;

https://eel.is/c++draft/expr#prim.lambda.closure-15

 Y y;
 void operator()() {
 // as-if y was declared const
 }
};

2.​ Const Capture by Reference
Capture by reference is not implicitly const, as capture by value is. However there are
situations where it would be useful to capture by const reference, such as when a
read-only object is too large to copy – or as a novel means to create a read-only code block.

Value
The same effect can be achieved using std::cref and std::as_const – but must be
manually applied to each captured variable – unlike the capture-all in the second example
below. This represents a chance to miss a variable and lose the protection of const.

Before After

move_only_function<void() const> f =
 [s, huge = std::cref(huge)] mutable {
 // ...
 };

move_only_function<void() const> f =
 [s, const& huge] mutable {
 // ...
 };

X a, b, c;
...
{
 // manual wrapping
 auto& c_a = std::as_const(a);
 auto& c_b = std::as_const(b);
 auto& c_c = std::as_const(c);
 // ... enter const context
}

X a, b, c;
...

[const &] {
 // ... const context
}();

Implementation
auto b = [&x, const &y]() {};

// equivalent to:

struct B {
 X &x;
 const Y &y;
 void operator()() const {}
};

We could also invoke compiler magic using “as-if”

// equivalent to:

struct B {
 X &x;
 Y &y;
 void operator()() {
 // as-if y was declared const Y&
 }
};

3.​ Const Call Operator
For symmetry with the call operator of bespoke types, declaring the lambda const should not
be an error.

auto c = [x]() const {};

// equivalent to:

struct C {
 X x;
 void operator()() const {}
};

4.​ Const Capture on Const Call Operator
For symmetry and principle of least surprise, declaring a const capture of a const lambda
should not be an error.

auto c = [const x]() {};

See Const Capture on Mutable Call Operator.

5.​ Mutable Capture on Mutable Call Operator
For symmetry and principle of least surprise, declaring a mutable capture of a mutable
lambda should not be an error.

auto c = [mutable x]() mutable {};

// equivalent to:

struct C {
 mutable X x;
 void operator()() {}
};

Benefits of Consistency and Symmetry
The core benefits of extensions 3, 4 and 5 is lower cognitive load for programmers learning
C++, and principle of least surprise. We can teach why lambdas default the way they do, but
lambdas should have consistent and symmetric vocabulary for teaching how lambdas
transform into callable types under the hood.

Experienced users will also benefit from additional self-documentation, especially in critical
reliability contexts where verbosity and redundancy are preferred. Users would declare the
lambda mutable or const according to ideal or majority semantics, and some minority of
capture initialization would be the opposite, as an exception.

Concerns

1.​ East v. West Const
In both East or West-const, the const always appears before the identifier. This proposal
does not change that.

2.​ Pointer to Const v. Const Pointer
Current lambda behavior mandates bitwise const, which is const-pointer (not pointer to
const). This proposal seeks to continue and not to modify that rule.

auto c = [const x = ptr]() {
 *x = {}; // ok
 x = nullptr; // error
};

3.​ Interactions with this

The keyword this is a prvalue expression, and is special cased with regard to lambda
captures. As such, the meaning of mutable this and const this doesn’t have obvious
semantics -- or if we defined them may be hard to teach. We recommend these two
combinations be disallowed until further experience is accrued.

Students will likely expect the following to compile (it would not):
struct A {
 void mutate() {}
 void test() const {
 [mutable this] {
 this->mutate();
 }();
 }

};

Whereas the following would compile and work:
struct B {
 void mutate() {}
};

void test(B* that) {
 [mutable that] {
 that->mutate();
 that = nullptr;
 }();
}

Recall const pointer lambda capture is bitwise const, which affects if the pointer itself can be
modified. The this pointer can never be modified and so mutable this or const this
would either be meaningless if bitwise const, or inconsistent if logically const.

The meaning of mutable *this and const *this is much clearer, but for the sake of
consistency when teaching “this is special”, we recommend dis-allowing this form as well.

Thanks
Thanks Patrick McMichael for suggesting the idea. Thanks to Nevin Liber, Matt Calabrese
for offering important corrections. Thanks to Nevin Liber, Davis Herring, Barry Revzin, and
Victoria Tsai, for examples and suggestions. Thanks to Ville for the exploratory
implementation! Thanks to Lakshay Garg for becoming the second author.

	Partially Mutable Lambda Captures
	A More Uniform Const for Lambdas
	Revision History
	Changes from R4:
	Changes from R3:
	Changes from R2:
	Changes from R1:
	Changes from R0: Concerns from EWG-I

	Polls
	Implementation Report
	Background
	Meta-Motivation
	Motivation
	Proposal
	Mutable Capture By Value
	Selective Moves with init-capture Packs

	Possible Extensions
	1.​Const Capture on Mutable Call Operator
	Value
	Implementation

	2.​Const Capture by Reference
	Value
	Implementation

	3.​Const Call Operator
	4.​Const Capture on Const Call Operator
	5.​Mutable Capture on Mutable Call Operator
	Benefits of Consistency and Symmetry

	Concerns
	1.​East v. West Const
	2.​Pointer to Const v. Const Pointer
	3.​Interactions with this

	Thanks

