
Basic Statistics

Document Number: P1708R10
Author: Richard Dosselmann: dosselmr@uregina.ca
Contributors: Michael Chiu: chiu@cs.toronto.edu,

Guy Davidson: guy.davidson@hatcat.com
Pete Isensee: pjisensee@gmail.com
Oleksandr Koval: oleksandr.koval.dev@gmail.com
Larry Lewis: Larry.Lewis@sas.com
Johan Lundburg: lundberj@gmail.com
Jens Maurer: Jens.Maurer@gmx.net
Eric Niebler: eniebler@fb.com
Phillip Ratzloff: phil.ratzloff@sas.com
Vincent Reverdy: vreverdy@illinois.edu
John True
Michael Wong: michael@codeplay.com

Date: September 2025 (mailing)
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: LEWG, SG6

Contents
0 Revision History 2

1 Introduction 4

2 Motivation and Scope 4
2.1 Mean . 4
2.2 Variance . 5
2.3 Standard Deviation . 5
2.4 Skewness . 5
2.5 Kurtosis . 5
2.6 Covariance . 6

3 Impact on the Standard 6

4 Design Decisions 6
4.1 Special Values . 6
4.2 Insufficient Values . 7
4.3 Accuracy . 7
4.4 Overflow and Underflow . 7
4.5 Casting . 7
4.6 Trimmed Mean . 8
4.7 Projections . 8
4.8 Zipped Ranges . 8
4.9 Concepts . 8
4.10 Header and Namespace . 8
4.11 Weighted Variance . 9

5 Technical Specifications 9
5.1 Header <statistics> synopsis [statistics.syn] . 9
5.2 Functions . 12

5.2.1 Mean Functions . 12
5.2.2 Geometric Mean Functions . 12
5.2.3 Harmonic Mean Functions . 13
5.2.4 Variance Functions . 13
5.2.5 Standard Deviation Functions . 14
5.2.6 Mean and Variance and Standard Deviation Convenience Functions . 14
5.2.7 Skewness Functions . 15
5.2.8 Kurtosis Functions . 15
5.2.9 Covariance Functions . 15

6 Acknowledgements 16

A Examples 18

1

0 Revision History
P1708R0

• https://github.com/cplusplus/papers/issues/475

P1708R1

• An accumulator object is proposed to allow for the computation of statistics in a single pass over a sequence of values.

P1708R2

• Reformatted using LATEX.

• A (possible) return to functions is proposed following discussions of the accumulator object of the previous version.

P1708R3

• Geometric mean is proposed, since it exists in Calc, Excel, Julia, MATLAB, Python, R and Rust.

• Harmonic mean is proposed, since it exists in Calc, Excel, Julia, MATLAB, PHP, Python, R and Rust.

• Weighted means, median, mode, variances and standard deviations are proposed, since they exist (with the exception of mode)
in MATLAB and R.

• Quantile is proposed, since it is more generic than median and exists in Calc (percentile), Excel (percentile), Julia, MATLAB,
PHP (percentile), R and SQL (percentile).

• Skewness is proposed, since it exists in Calc, Excel, Julia, MATLAB, PHP, R, Rust, SAS and SQL and was recommended as part
of a presentation to SAS corporation.

• Kurtosis is proposed, since it exists in Calc, Excel, Julia, MATLAB, PHP, R, Rust, SAS and SQL and was recommended as part
of a presentation to SAS corporation.

• Both functions and accumulator objects are proposed, since they (largely) have distinct purposes.

• Iterator pairs are replaced by ranges, since ranges simplify predicates (as comparisons and projections).

P1708R4

• Parameter data_t (corresponding to values population_t and sample_t) of variance and standard deviation are re-
placed by delta degrees of freedom, since this is done in Python (NumPy).

• In the case of a quantile (or median), specific methods of interpolation between adjacent values is proposed, since this is done in
Python (NumPy).

• stats_error, previously a constant, is replaced by a class.

P1708R5

• Quantile (and median) and mode are deferred to a future proposal, given ongoing unresolved issues relating to these statistics.

• stats_error, an exception, is removed, since (C++) math funtions do not throw exceptions.

• The ability to create custom accumulator objects is proposed, since this is done in Boost Accumulators.

• stats_result_t is introduced so as to simplify (function) signatures.

• Various errors in statistical formulas are corrected.

• Various functions, objects and parameters are renamed so as to be more meaningful.

• Various technical errors relating to ranges and execution policy are corrected.

2

P1708R6

• SG6 voted unanimously to forward to LEWG on April 14, 2022.

• stats_result_t is removed, since return type is deduced from projection.

• Accumulator objects are revised so as to be simpler and allow for parallel implementations.

• stat_accum and weighted_stat_accum are removed, since they are no longer needed.

• Concepts are removed so as to allow for custom data types.

• Projections are removed, since views already offer such functionality.

• Numerous functions and objects are renamed so as to be more meaningful.

• Reformatted so as to fulfill the specification style guidelines and standardese.

P1708R7

• Unweighted and weighted functions are combined so as to take advantage of overloading.

• The presentation of formulas is simplified.

• Derivations of skewness and kurtosis formulas are given.

• The wording of the technical specifications is updated.

• Further reformatted so as to fulfill the specification style guidelines and standardese.

P1708R8

• Statistics are reordered as first, second, third and fourth moments.

• Constructors are no longer explicit.

• value member function of accumulator objects is simplified.

• The name stats is replaced by the more meaningful name statistics.

P1708R9

• LEWG voted 14 / 4 / 5 / 0 / 1 to back statistics in C++ on March 20, 2024 in Tokyo.

• Unweighted and weighted variance (and standard deviation) are updated.

• Unweighted skewness and kurtosis are updated.

• Weighted skewness and kurtosis are removed, since they are highly specialized.

• Overloaded functions are introduced so as to easily allow the data type of a statistic to be changed.

• Convenience functions to simultaneously compute mean and variance (or standard deviation) are introduced.

• Accumulator objects are aggregated so as to reduce the run-time complexity of the (simultaneous) computation of multiple
statistics.

• Various functions and parameters are renamed so as to be more meaningful.

3

P1708R10

• Overloaded functions to allow the data type of a statistic to be changed are removed, since this can (instead) be done by way of
views.

• Mean and variance (and standard deviation) convenience functions are changed so as to return mean and variance (and standard
deviation) as a struct, rather than a pair of values, so as to make such return values more meaningful, as suggested in [1].

• Kurtosis functions are changed so as to take parameters sample and excess as a struct, rather than individual values, so as
to make such parameters more meaningful, as suggested in [1].

• Accumulator object is deferred to a future proposal so as to allow for further study.

• Covariance is introduced from P2681 [2].

1 Introduction
This document proposes an extension to the C++ library, to support basic statistics.

2 Motivation and Scope
Basic statistics, not presently found in the standard (including the special math library), frequently arise in scientific and industrial, as
well as general, applications [3, 4, 5]. These functions do exist in Python [6], the foremost competitor to C++ in the area of machine
learning, along with Apache Commons Math [7], Calc [8], Excel [9], Julia [10], Maple [11], Mathematica [12], MATLAB [13], NumPy
[14], Pandas [15], PHP [16], R [17], Rust [18], SAS [19], SciPy [20], SPSS [21], Stata [22] and SQL [23]. Further need for such
functions has been identified as part of SG19 (machine learning) [24].

This is not the first proposal to move statistics in C++. In 2004, a number of statistical distributions were proposed in [25]. Additional
distributions followed in 2006 [26]. Statistical distributions ultimately appeared in the C++11 standard [27]. Statistical distributions and
functions are also found in Boost [28]. A C library, GNU Scientific Library [29], further includes support for statistics, special functions
and histograms.

Six statistics are defined in this proposal. Two additional statistics, specifically median (along with quantile) and mode, are not
included in this proposal. These more involved statistics are deferred to a future proposal. Proposed functions are similar to (ex-
isting) numeric operations, which includes std::accumulate [30] for instance, and those of numeric arrays, specifically std::
valarray [31], member functions such as std::valarray::sum [32]. Like existing entities of the (C++) standard library, this
proposal only specifies an interface, meaning that a variety of implementations are possible. This enables a vendor to favor accuracy
[33] over performance for instance. An implementation, released under the MIT license [34], is available at https://github.com
/dosselmann/statistics

2.1 Mean
The arithmetic mean [35, 36], denoted µ, of the n ≥ 1 values x1, x2, . . . , xn of a population [35], and x̄ in the case of a sample [35], is
defined as

µ = x̄ =
1

n

n∑
i=1

xi. (1)

The arithmetic mean is found in the ISO 3534 − 1:2006 [37] standard and Python [6]. The weighted arithmetic mean [36, 38, 39, 40],
for weights w1, w2, . . . , wn, is defined as

µw = x̄w =
1∑n

i=1 wi

n∑
i=1

wixi. (2)

The weighted mean is found in Python [6]. The geometric mean [35], having a number of applications in science and technology [3]
and found in Python [6], is defined as (

n∏
i=1

xi

) 1
n

(3)

and the weighted geometric mean [38] is defined as (
n∏

i=1

xwi
i

)(∑n
i=1 wi)

−1

. (4)

4

The harmonic mean [35] of positive values xi > 0, also having many applications in science and technology [4] and found in Python
[6], is defined as (

1

n

n∑
i=1

1

xi

)−1

(5)

and the weighted harmonic mean [41] is defined as ∑n
i=1 wi
n∑

i=1

wi

xi

. (6)

The weighted harmonic mean is found in Python [6]. Each of the arithmetic, geometric and harmonic means can be (accurately)
computed in linear time [42]. When computing the associated sums of these means, and indeed any sum in this proposal, robust
methods [43, 44] ought to be considered.

2.2 Variance
The population variance [45, 46, 47] of n ≥ 1 values is defined as

σ2 =
1

n

n∑
i=1

(xi − µ)
2 (7)

and an unbiased estimator [46, 48] of the sample variance [35, 47, 49] of n ≥ 2 values is

s2 =
1

n− 1

n∑
i=1

(xi − x̄)
2
. (8)

The population and sample variance are found in the ISO 3534 − 1:2006 standard and Python [6]. As there appears to be no common
definition of (sample) weighted variance (and standard deviation), as further discussed in Section 4.11, weighted variance is not consid-
ered in this proposal. Moving on, variance (and standard deviation) is computed using the terms 1/n and 1/(n− 1). Other terms might
be used instead [50], 1/(n− 1.5) as an example [51, 52, 53]. To allow for such terms, this proposal, like NumPy [54], Pandas [55] and
SciPy [56], enables one to specify delta degrees of freedom [54], a value subtracted from n. Variance (and standard deviation) can be
computed in linear time [42, 57, 58].

2.3 Standard Deviation
The standard deviation [35, 47] of n ≥ 2 values, denoted s, is defined as the square root of the variance. The population and sample
standard deviation are found in the ISO 3534− 1:2006 standard and Python [6].

2.4 Skewness
The population skewness [35, 59, 60, 61], a measure of the asymmetry [35] of n ≥ 1 values, is defined as

gs =
1

nσ3

n∑
i=1

(xi − µ)
3 (9)

and an unbiased estimator of the sample skewness [59], an adjusted Fisher-Pearson standardized moment coefficient [62, 63], of n ≥ 3
values is

Gs =

√
n (n− 1)

n− 2
gs. (10)

The population and sample skewness are found in the ISO 3534 − 1:2006 standard. Skewness (and kurtosis) can be used to check if
a dataset is unbalanced, as well as detect outliers [64]. Skewness (and kurtosis) can be computed in linear time [42, 65]. Weighted
skewness [36, 66] is highly specialized and is, therefore, not considered in this proposal.

2.5 Kurtosis
The population kurtosis [35, 61, 67], a measure of the “tailedness” [67] of n ≥ 1 values, is defined as

gk =
1

nσ4

n∑
i=1

(xi − µ)
4 (11)

5

and the population excess kurtosis [60, 67] is defined as

ĝk =
1

nσ4

n∑
i=1

(xi − µ)
4 − 3. (12)

An unbiased estimator of the sample kurtosis [67, 68, 69, 70], itself too an adjusted Fisher-Pearson standardized moment coefficient
[67], of n ≥ 4 values, is

Gk =
n(n+ 1)

(n− 1)(n− 2)(n− 3)s4

n∑
i=1

(xi − x̄)
4 (13)

and an unbiased estimator of the sample excess kurtosis [69] is

Ĝk =
n(n+ 1)

(n− 1)(n− 2)(n− 3)s4

n∑
i=1

(xi − x̄)
4 − 3(n− 1)2

(n− 2)(n− 3)
. (14)

The population and sample kurtosis are found in the ISO 3534− 1:2006 standard. Weighted kurtosis [36, 66] is highly specialized and
is, therefore, not considered in this proposal.

2.6 Covariance
The population [35] covariance [71], a measure of the joint variability of the (two sets of) values x1, x2, . . . , xn and y1, y2, . . . , yn
(n ≥ 1), is defined as

σxy =
1

n

n∑
i=1

(xi − µx)(yi − µy), (15)

where µx and µy are the (arithmetic) population means of the values x1, x2, . . . , xn and y1, y2, . . . , yn, respectively. The sample [35]
covariance [71] (n ≥ 2) is defined as

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ), (16)

where x̄ and ȳ are the sample means of the values. The sample covariance is found in the ISO 3534− 1:2006 [37] standard and Python
[6].

3 Impact on the Standard
This proposal is a pure library extension.

4 Design Decisions
The discussions of the following sections address the concerns that have been raised in regards to this proposal.

4.1 Special Values
Special values may sometimes turn up in a range. This includes values such as ±∞ and NaN. Special values may also arise during the
computation of a statistic, for instance the mean of an empty range (see Section 4.2), which results in a division by zero. The matter of
special values is raised in [1]. Checks for special values require that a branching statement be evaluated for each value of a range, a costly
operation. Following precedent, std::accumulate and std::val_array::sum as examples, the proposed functions do not
check for special values. When special values do occur in a range, functions return an unspecified value. Depending on the particular
(vendor) implementation, the proposed functions may call <cmath> functions that might, at times, raise floating-point exception flags,
such as FE_DIVBYZERO. Following [72], in which many of the <cmath> functions are marked constexpr, though they may raise
floating-point exception flags, the proposed functions are marked as constexpr.

From a user’s perspective, special values are readily addressed using ranges, a motivating factor for the introduction of ranges into
this proposal. As a result, a programmer might handle such values using, as an example, a statement of the form

auto m = data | std::ranges::filter([](auto x) { return std::isfinite(x); }) | std::mean;

6

4.2 Insufficient Values
It may be the case that there are too few values in a range over which a particular statistic is computed, a matter that is also brought up
in [1]. The prospect of returning an std::expected object has been suggested. Presently, std::expected objects are not used
(elsewhere) in this proposal, such as in the case of a special value. It would, therefore, be asymmetric to have some situations return an
std::expected object, but not others. There is precedent in the case of too few values, in particular std::val_array::sum,
namely “[i]f the std::valarray is empty, the behavior is undefined” [32]. In place of undefined behavior, this proposal requires that
a value be returned in the event that there are too few values in a range, albeit an unspecified value. The following is an example of such
a situation, namely

std::list<int> L;
auto average = std::mean(L);

4.3 Accuracy
(Numerical) accuracy is discussed in [1]. C++ makes no guarantees about the accuracy of a floating-point calculation, a fact that applies
to the functions of this proposal. As noted in [1], accuracy may be related to the order in which the values of a range are processed.
Following precedent, namely std::val_array::sum, in which, “[t]he order in which the elements are processed by this function
is unspecified” [32], the functions of this proposal make no guarantee about the order in which the values of a range are processed.
Vendors may wish to provide documentation regarding the recommended usage of functions, suggesting, for instance, that a range be
sorted in order to maximize the accuracy of the computation of a mean.

The author and (several of the) contributors of this proposal recognize the problems associated with accuracy (as well as special
values), problems that also arise in many contexts outside of this proposal. Given the complicated nature of such problems, and so as to
not burden vendors, this proposal does not attempt to resolve such problems. The author and contributors welcome future proposals to
tackle such problems.

4.4 Overflow and Underflow
Depending on the nature of a given implementation, the computation of a statistic may result in an (unexpected) overflow or underflow.
This might occur for example during the computation of the mean of a range of double values, each equal to DBL_MAX, again
depending on manner in which the mean is computed. In the interest of reducing the burden on vendors, this proposal does not insist
that every range of finite values yield a well-defined value. Instead, this proposal requires that the (numerical) range of values for which
overflow and underflow might occur be implemention defined, with an unspecified value returned when overflow and underflow occurs.

4.5 Casting
A frequent question is one of the ability to cast, generally promote, the values of a range. The mean of a range of integers, for instance,
is often a (strictly) floating-point value. Earlier versions of this proposal sought to (implicitly) convert a statistic, and, thus, return type
of a function, to a floating-point value. Given that this behavior might be unexpected on the part of a user, the proposed functions do
not perform any such conversion. Another option, template overloads of functions were proposed in 1709R9, one for which there is no
precedent. A user wishing to promote the type of a range may do so (explicitly) using a view, perhaps something of the form

auto data_ = data
| std::views::transform([](const auto& value) { return static_cast<float>(value); })
| std::ranges::to<std::vector<float>>();

in which a range data of values of type int is cast, by way of a view, to a range of values of type float. A (complete) example that
demonstrates the use of views is presented in Appendix A.

It is suggested in [1] that the proposed functions take an additional initialization parameter, in the same way as the function std::
accumulate [30] for example. The suggested function is given as

template<class T, ranges::input_range R>
constexpr auto mean(R&& r, T init) -> T;

This sort of design could allow a user to compute a statistic in stages. While this approach is natural in the case of a sum, in which a
parameter is added to a given sum, things are more involved in the case of the statistics of this proposal. Take as an example again, the
mean of a range of values, this time the mean of (any) ten values, denoted (as a set) S = {x1, x2, . . . , x10}. Further suppose that one
wishes to compute the mean of S in two stages, first using the values S1 = {x1, x2, x3, x4} and then S2 = {x5, x6, x7, x8, x9, x10}.
The (sample) mean of S1, computed first, is

x̄1 =
x1 + x2 + x3 + x4

4
. (17)

7

In the second stage, the (overall) mean is computed as

x̄ =
4x̄1 + x5 + x6 + x7 + x8 + x9 + x10

4 + 6
(18)

=

4

(
x1 + x2 + x3 + x4

4

)
+ x5 + x6 + x7 + x8 + x9 + x10

4 + 6
(19)

=
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

10
. (20)

As seen in the computations above, the first mean, namely x̄1, must be effectively “reversed”, that is multiplied by |S1| = 4, before it
can be combined with the values of S2. To allow for this sort of computation of a mean in stages, a function would need to take as an
additional parameter |S1|, a value that might not be available. Things are more involved yet in the case of the standard deviation for
example, in which a square root would additionally need to be “reversed”. Given the involved nature of such computations, this proposal
does not recommend nor propose that functions include an initialization parameter.

4.6 Trimmed Mean
The issue of a trimmed mean is raised in [73]. A p% trimmed mean [74] is one in which each of the (p/2)% highest and lowest values
(of a sorted range) are excluded from the computation of that mean. This feature would require that the values of a given range either
be presorted or sorted as part of the computation of a mean. A contributor, Phillip Ratzloff feels (a sentiment that was echoed by the
author of [73]) that one might handle this matter in much the same way as the special values of Section 4.1, specifically by using a
statement of the form

auto m = data | std::ranges::sort | trim(p) | std::mean;

4.7 Projections
The functions of P1708R3, P1708R4 and P1708R5 employ projections as a means of accessing individual components of aggregate
entities. Given that such functionality is available through the use of views, projections have been removed, thereby yielding simpler
functions. This is much like the approach suggested in Sections 4.1 and 4.6.

4.8 Zipped Ranges
Several of the functions of this proposal take both a range of values and a (corresponding) range of weights. It is natural to suggest
that the two ranges be replaced by a (single) zipped range. Not all functions, however, support weighted variants. Ranges of values and
weights are, thus, separated so as to clearly indicate which functions (and, therefore, statistics) support weighted variants and which do
not.

4.9 Concepts
Much like std::complex, the proposed (template) functions are defined for each of the (C++) arithmetic types, except for bool.
Also like std::complex, the effect of instantiating the templates for any other type is unspecified. A programmer can, therefore,
attempt to use custom types with the proposed functions. It is felt that the added flexibility afforded by not using concepts to strictly
limit functions to arithmetic types is in the interest of the C++ community. In fact, several concerned parties reached out to the author of
this proposal in regard to this matter, all of whom suggested that this flexible approach be taken. Note that concepts are still employed
in the case of execution policy, namely std::is_execution_policy_v, in which a fixed set of policies exists.

4.10 Header and Namespace
Early versions of this proposal, specifically P1708R0, P1708R1 and P17082, request that the proposed functions be placed into the
<numeric> header. Since P1708R3, it has instead been suggested that the functions be placed into a (new) header <statistics
>, just as was done with the rational arithmetic of <ratio>, probability distributions of <random>, bit operations of <bit> and
constants of <numbers>. Like rational arithmetic, probability distributions, bit operations and constants, basic statistics fit into the
existing std namespace.

8

4.11 Weighted Variance
The population weighted variance [39] of n ≥ 1 values is defined as

σ2
w =

1∑n
i=1 wi

n∑
i=1

wi (xi − x̄w)
2 (21)

and an unbiased estimator of the sample weighted variance [75] is

s2w,1 =
1∑n

i=1 wi − 1

n∑
i=1

wi (xi − x̄w)
2
. (22)

There are at least two other definitions of sample weighted variance in addition to that of s2w,1. Note that s2w,1 is the version implemented
in MATLAB [76], as well as an R package [77]. The first [78, 79] of these two is

s2w,2 =
1

n̂−1
n̂

∑n
i=1 wi

n∑
i=1

wi (xi − x̄w)
2
, (23)

where n̂ ≥ 1 is the number of non-zero weights wi. A second definition of sample weighted variance [36, 80], also used in the case of
reliability weights [50], is

s2w,3 =

∑n
i=1 wi

(
∑n

i=1 wi)2 −
∑n

i=1 w
2
i

n∑
i=1

wi (xi − x̄w)
2
. (24)

As there appears to be no common definition of (sample) weighted variance, this statistic is not considered in this proposal.
A future proposal may consider this statistic, perhaps indirectly as a function which computes the weighted second central moment

[81], along with each of n̂,
∑n

i=1 wi and
∑n

i=1 w
2
i . Thus, σ2

w could be computed as

// accumulate values of range R weighted by weights of range W
auto [second_central_moment, non_zero_count, w, w_sq] = std::weighted_variance(R, W);

auto sigma2_w = 1/w * second_central_moment;

and s2w,1 may be computed as

auto s2_w1 = 1/(w-1) * second_central_moment;

Likewise, s2w,2 may be computed as

auto s2_w2 = 1 / ((non_zero_count-1)/n_zero_count * w) * second_central_moment;

Lastly, the computation of s2w,3 might look something like

auto s2_w3 = w / (w*w - w_sq) * second_central_moment;

5 Technical Specifications
The templates of the functions specified in this section are defined for each of the arithmetic types, except for bool. The effect of
instantiating the templates for any other type is unspecified. Parallel function overloads follow the requirements of [algorithms.parallel].

5.1 Header <statistics> synopsis [statistics.syn]

#include <execution>

namespace std {

// functions

template<ranges::input_range R>
constexpr auto mean(R&& r) -> std::ranges::range_value_t<R>;

9

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean(ExecutionPolicy&& policy, R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<ranges::input_range R>
constexpr auto geometric_mean(R&& r) -> std::ranges::range_value_t<R>;

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto geometric_mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto geometric_mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto geometric_mean(ExecutionPolicy&& policy, R&& r, Weights&& w) ->

std::ranges::range_value_t<R>;

template<ranges::input_range R>
constexpr auto harmonic_mean(R&& r) -> std::ranges::range_value_t<R>;

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto harmonic_mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto harmonic_mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto harmonic_mean(ExecutionPolicy&& policy, R&& r, Weights&& w) ->

std::ranges::range_value_t<R>;

template<ranges::input_range R>
constexpr auto variance(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto variance(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

std::ranges::range_value_t<R>;

template<ranges::input_range R>
constexpr auto standard_deviation(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
std::ranges::range_value_t<R>;

10

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto standard_deviation(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

std::ranges::range_value_t<R>;

template<class T>
struct mean_variance_result { T mean, variance; };

template<class T>
struct mean_standard_deviation_result { T mean, standard_deviation; };

template<ranges::input_range R>
constexpr auto mean_variance(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
mean_variance_result<std::ranges::range_value_t<R>>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean_variance(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

mean_variance_result<std::ranges::range_value_t<R>>;

template<ranges::input_range R>
constexpr auto mean_standard_deviation(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
mean_standard_deviation_result<std::ranges::range_value_t<R>>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean_standard_deviation(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

mean_standard_deviation_result<std::ranges::range_value_t<R>>;

template<ranges::input_range R>
constexpr auto skewness(R&& r, bool sample=true) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto skewness(ExecutionPolicy&& policy, R&& r, bool sample=true) ->

std::ranges::range_value_t<R>;

struct kurtosis_parameters { bool sample = true; bool excess = true; };

template<ranges::input_range R>
constexpr auto kurtosis(R&& r, kurtosis_parameters params = {}) ->

std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto kurtosis(

11

ExecutionPolicy&& policy, R&& r, kurtosis_parameters params = {}) ->
std::ranges::range_value_t<R>;

template<ranges::input_range R1, ranges::input_range R2>
constexpr auto covariance(

R1&& r1, R2&& r2,
std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>> ddof = 1) ->

std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>>;

template<class ExecutionPolicy, ranges::input_range R1, ranges::input_range R2>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto covariance(

ExecutionPolicy&& policy,
R1&& r1, R2&& r2,
std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>> ddof = 1) ->

std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>>;
}

5.2 Functions
The functions specified in this section return an unspecified value:

• If any of the values of the ranges r, r1, r2 or w is a NaN, ∞ or −∞.

• If a NaN, ∞ or −∞ occurs during the evaluation of a function.

• If overflow or underflow occurs during the evaluation of a function, which might even occur in the case of finite ranges of values,
where the (numerical) range of values for which overflow or underflow might occur is implementation defined.

5.2.1 Mean Functions

template<ranges::input_range R>
constexpr auto mean(R&& r) -> std::ranges::range_value_t<R>;

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean(ExecutionPolicy&& policy, R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

1. Preconditions: r and w are ranges of finite values, where r has at least 1 value, and the length of r is less than or equal to the
length of w.

2. Returns: The (weighted) arithmetic mean of the values of r (weighted by the corresponding values of w) if the preconditions have
been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.2 Geometric Mean Functions

template<ranges::input_range R>
constexpr auto geometric_mean(R&& r) -> std::ranges::range_value_t<R>;

12

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto geometric_mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto geometric_mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto geometric_mean(ExecutionPolicy&& policy, R&& r, Weights&& w) ->

std::ranges::range_value_t<R>;

1. Preconditions: r and w are ranges of finite values, where r has at least 1 value, and the length of r is less than or equal to the
length of w, and, if the product of the values of r is negative, then ranges::distance(r) is odd.

2. Returns: The (weighted) geometric mean of the values of r (weighted by the corresponding values of w) if the preconditions have
been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.3 Harmonic Mean Functions

template<ranges::input_range R>
constexpr auto harmonic_mean(R&& r) -> std::ranges::range_value_t<R>;

template<ranges::input_range R, ranges::input_range Weights>
constexpr auto harmonic_mean(R&& r, Weights&& w) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto harmonic_mean(ExecutionPolicy&& policy, R&& r) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R, ranges::input_range Weights>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto harmonic_mean(ExecutionPolicy&& policy, R&& r, Weights&& w) ->

std::ranges::range_value_t<R>;

1. Preconditions: r and w are ranges of finite values, where r has at least 1 value, the length of r is less than or equal to the length
of w, and all of the values of r are positive.

2. Returns: The (weighted) harmonic mean of the values of r (weighted by the corresponding values of w) if the preconditions have
been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.4 Variance Functions

template<ranges::input_range R>
constexpr auto variance(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto variance(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

std::ranges::range_value_t<R>;

13

1. Preconditions: r is a range of finite values, where r has at least 1 value, and ddof is not equal to the length of r.

2. Returns: The variance of the values of r if the preconditions have been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.5 Standard Deviation Functions

template<ranges::input_range R>
constexpr auto standard_deviation(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto standard_deviation(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

std::ranges::range_value_t<R>;

1. Preconditions: r is a range of finite values, where r has at least 1 value, and ddof is not equal to the length of r.

2. Returns: The standard deviation of the values of r if the preconditions have been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.6 Mean and Variance and Standard Deviation Convenience Functions

template<class T>
struct mean_variance_result { T mean, variance; };

template<class T>
struct mean_standard_deviation_result { T mean, standard_deviation; };

template<ranges::input_range R>
constexpr auto mean_variance(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
mean_variance_result<std::ranges::range_value_t<R>>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean_variance(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

mean_variance_result<std::ranges::range_value_t<R>>;

template<ranges::input_range R>
constexpr auto mean_standard_deviation(

R&& r, std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->
mean_standard_deviation_result<std::ranges::range_value_t<R>>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
auto mean_standard_deviation(

ExecutionPolicy&& policy,
R&& r,
std::ranges::range_value_t<R> ddof = std::ranges::range_value_t<R>(1)) ->

mean_standard_deviation_result<std::ranges::range_value_t<R>>;

14

1. Preconditions: r is a range of finite values, where r has at least 1 value, and ddof is not equal to the length of r.

2. Returns: The mean and variance (or standard deviation) of the values of r if the preconditions have been met and an unspecified
value otherwise.

3. Complexity: Linear in ranges::distance(r).

5.2.7 Skewness Functions

template<ranges::input_range R>
constexpr auto skewness(R&& r, bool sample=true) -> std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto skewness(ExecutionPolicy&& policy, R&& r, bool sample=true) ->

std::ranges::range_value_t<R>;

1. Preconditions: r is a range of finite values, where r has at least 3 values if sample is true and 1 otherwise.

2. Returns: An unbiased sample estimator of the skewness of the values of r if sample is true and the population skewness
otherwise, if the preconditions have been met and an unspecified value otherwise, where the specific unbiased sample estimator
of the skewness is implementation defined.

3. Complexity: Linear in ranges::distance(r).

5.2.8 Kurtosis Functions

struct kurtosis_parameters { bool sample = true; bool excess = true; };

template<ranges::input_range R>
constexpr auto kurtosis(R&& r, kurtosis_parameters params = {}) ->

std::ranges::range_value_t<R>;

template<class ExecutionPolicy, ranges::input_range R>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto kurtosis(

ExecutionPolicy&& policy, R&& r, kurtosis_parameters params = {}) ->
std::ranges::range_value_t<R>;

1. Preconditions: r is a range of finite values, where r has at least 4 values if sample is true and 1 otherwise.

2. Returns: An unbiased sample estimator of the kurtosis of the values of r if sample is true and the population kurtosis otherwise,
if the preconditions have been met and an unspecified value otherwise, where the specific unbiased sample estimator of the kurtosis
is implementation defined.

3. Complexity: Linear in ranges::distance(r).

5.2.9 Covariance Functions

template<ranges::input_range R1, ranges::input_range R2>
constexpr auto covariance(

R1&& r1, R2&& r2,
std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>> ddof = 1) ->

std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>>;

template<class ExecutionPolicy, ranges::input_range R1, ranges::input_range R2>
requires std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>
constexpr auto covariance(

ExecutionPolicy&& policy,

15

R1&& r1, R2&& r2,
std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>> ddof = 1) ->

std::common_type_t<std::iter_value_t<R1>, std::iter_value_t<R2>>;

1. Preconditions: r1 and r2 are ranges of finite values, where r1 has at least 1 value, the length of r1 is less than or equal to the
length of r2, and ddof is not equal to ranges::distance(r).

2. Returns: The covariance of the values of r1 and r2 if the preconditions have been met and an unspecified value otherwise.

3. Complexity: Linear in ranges::distance(r).

6 Acknowledgements
Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the Standards Council of Canada.
The authors of this proposal wish to further thank the members of SG19 for their contributions. Additional thanks are extended to Jolanta
Opara, along with Axel Naumann of CERN.

References
[1] Oliver J. Rosten and Mark Hoemmen. Remarks on basis statistics, P1708r9. Programming Language C++, Library Working Group, accessed 25 Jan. 2025.

https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2024/p3495r0.pdf.

[2] Richard Dosselmann. More basic statistics. ISO JTC1/SC22/WG21: Programming Language C++, accessed 17 May 2025.
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2681r1.pdf.

[3] Geometric mean. Wikipedia, accessed 24 Mar. 2024.
https://en.wikipedia.org/wiki/Geometric mean.

[4] Harmonic mean. Wikipedia, accessed 24 Mar. 2024.
https://en.wikipedia.org/wiki/Harmonic mean.

[5] Petar Ĉisar and Sanja Maravić Ĉisar. Skewness and kurtosis in function of selection of network traffic distribution. Acta Polytechnica Hungarica, 7(2), 2020.

[6] statistics - mathematical statistics functions, Python. Python, accessed 14 Apr. 2020.
https://docs.python.org/3/library/statistics.html.

[7] Statistics. Apache, accessed 4 May 2025.
https://commons.apache.org/proper/commons-math/userguide/stat.html.

[8] Documentation/how tos/calc: Statistical functions. Apache OpenOffice, accessed 23 May 2020.
https://wiki.openoffice.org/wiki/Documentation/How Tos/Calc: Statistical functions.

[9] Statistical functions (reference). Microsoft, accessed 23 May 2020.
https://support.office.com/en-us/article/statistical-functions-reference-624dac86-a375-4435-bc25-76d659719ffd.

[10] Statistics. Julia, accessed 23 May 2020.
https://docs.julialang.org/en/v1/stdlib/Statistics/.

[11] Statistics. Maplesoft, accessed 25 Feb. 2024.
https://www.maplesoft.com/support/help/category.aspx?cid=1010.

[12] Numerical operations on data. Mathematica, accessed 25 Feb. 2024.
https://reference.wolfram.com/language/tutorial/NumericalOperationsOnData.html#7135.

[13] Computing with descriptive statistic. MathWorks, accessed 23 May 2020.
https://www.mathworks.com/help/matlab/data analysis/descriptive-statistics.html.

[14] Statistics. NumPy, accessed 25 Feb. 2024.
https://numpy.org/doc/stable/reference/routines.statistics.html.

[15] How to calculate summary statistics. pandas, accessed 25 Feb. 2024.
https://pandas.pydata.org/docs/getting started/intro tutorials/06 calculate statistics.html#.

[16] Statistics. php, accessed 23 May 2020.
https://www.php.net/manual/en/book.stats.php.

[17] stats. RDocumentation, accessed 23 May 2020.
https://www.rdocumentation.org/packages/stats/versions/3.6.2.

[18] Crate statistical. Rust, accessed 23 May 2020.
https://docs.rs/statistical/1.0.0/statistical/.

[19] The SURVEYMEANS procedure. sas, accessed 11 Jun. 2020.
https://support.sas.com/documentation/cdl/en/statug/65328/HTML/default/viewer.htm#statug surveymeans details06.htm.

[20] Statistical functions (scipy.stats). SciPy, accessed 25 Feb. 2024.
https://docs.scipy.org/doc/scipy/reference/stats.html.

[21] Statistical functions. IBM, accessed 28 Aug. 2020.
https://www.ibm.com/support/knowledgecenter/SSLVMB sub/statistics reference project ddita/spss/base/
syn transformation expressions statistical functions.html.

16

[22] summarize - summary statistics. stata, accessed 25 Feb. 2024.
https://www.stata.com/manuals13/rsummarize.pdf.

[23] Aggregate functions (Transact-SQL). Microsoft, accessed 23 May 2020.
https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15.

[24] Michael Wong et al. P1415r1: SG19 machine learning layered list. ISO JTC1/SC22/WG21: Programming Language C++, accessed 9 Aug. 2020.
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1415r1.pdf.

[25] Paul Bristow. A proposal to add mathematical functions for statistics to the C++ standard library. JTC 1/SC22/WG14/N1069, WG21/N1668, accessed 12 Jun. 2020.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1069.pdf.

[26] Walter E. Brown et al. Random number generation in C++0X: A comprehensive proposal, version2. WG21/N2032 = J16/06/0102, accessed 13 Jun. 2020.
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2032.pdf.

[27] Pseudo-random number generation. cppreference.com, accessed 13 Jun. 2020.
https://en.cppreference.com/w/cpp/numeric/random.

[28] Nikhar Agrawal et al. Math toolkit 4.2.1. Boost: C++ Libraries, accessed 12 Jun. 2020.
https://www.boost.org/doc/libs/latest/libs/math/doc/html/index.html.

[29] GNU scientific library. GNU Operating System, accessed 13 Jun. 2020.
https://www.gnu.org/software/gsl/doc/html/index.html#.

[30] std::accumulate. cppreference.com, accessed 15 Mar. 2025.
https://en.cppreference.com/w/cpp/algorithm/accumulate.

[31] Standard library header <valarray>. cppreference.com, accessed 15 Mar. 2025.
https://en.cppreference.com/w/cpp/header/valarray.

[32] std::valarray<T>::sum. cppreference.com, accessed 15 Mar. 2025.
https://en.cppreference.com/w/cpp/numeric/valarray/sum.

[33] Raymond Chen. On finding the average of two unsigned integers without overflow. Microsoft, accessed 22 Feb. 2022.
https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223.

[34] The MIT license. open source initiative, accessed 23 Mar. 2024.
https://opensource.org/license/mit.

[35] Martha L. Abell, James P. Braselton, and John A. Rafter. Statistics with Mathematica. Academic Press, 1999.

[36] Lorenzo Rimoldini. Weighted skewness and kurtosis unbiased by sample size. arXiv, Apr. 2013.
https://arxiv.org/abs/1304.6564.

[37] ISO 3534-1:2006(en): Statistics - Vocabulary and symbols - Part 1: General statistical terms and terms used in probability. ISO, Oct. 2006.
https://www.iso.org/obp/ui/en/#iso:std:iso:3534:-1:ed-2:v2:en.

[38] Alan Anderson. Statistics for Dummies. John Wiley & Sons, 2014.

[39] Ken Black, Kenneth Urban Black, Ignacio Castillo, Amy Goldlist, and Timothy Edmunds. Essentials of Business Statistics. John Wiley & Sons Canada, 2018.

[40] Godfrey Beddardm. Applying Maths in the Chemical and Biomolecular Sciences: An Example-based Approach. OUP Oxford, 2009.

[41] Naval Bajpai. Business Statistics. Pearson, 2009.

[42] Philippe Pébay, Timothy B. Terriberry, Hemanth Kolla, and Janine Bennett. Numerically stable, scalable formulas for parallel and online computation of higher-order
multivariate central moments with arbitrary weights. Computational Statistics, 31(4):1305–1325, 2016.

[43] John Michael McNamee. A comparison of methods for accurate summation. ACM SIGSAM Bulletin, 38(1), Mar. 2004.

[44] Johan Hoffman. Methods in Computational Science. Society for Industrial and Applied Mathematics, 2021.

[45] Variance. Wikipedia, accessed 24 Mar. 2024.
https://en.wikipedia.org/wiki/Variance.

[46] Karl-Rudolf Koch. Parameter Estimation and Hypothesis Testing in Linear Models. Springer, 1999.

[47] Anurag Pande and Brian Wolshon, editors. Traffic Engineering Handbook. Wiley, seventh edition, 2016.

[48] Michael J. Panik. Advanced Statistics from an Elementary Point of View. Elsevier Science, 2005.

[49] Kandethody M. Ramachandran and Chris P. Tsokos. Mathematical Statistics with Applications. Elsevier Science, 2009.

[50] Weighted arithmetic mean. Wikipedia, accessed 26 Dec. 2022.
https://en.wikipedia.org/wiki/Weighted arithmetic mean#Weighted sample variance.

[51] Unbiased estimation of standard deviation. Wikipedia, accessed 22 May 2021.
https://en.m.wikipedia.org/wiki/Unbiased estimation of standard deviation.

[52] John Gurland and Ram C. Tripathi. A simple approximation for unbiased estimation of the standard deviation. The American Statistician, 25(4):30–32, Oct. 1971.

[53] Cain Mckay. Probability and Statistics. EDTECH, 2019.

[54] numpy.var. NumPy, accessed 22 May 2021.
https://numpy.org/doc/stable/reference/generated/numpy.var.html.

[55] pandas.dataframe.var. pandas, accessed 25 Feb. 2024.
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.var.html.

[56] scipy.stats.tvar. SciPy, accessed 3 Mar. 2024.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tvar.html#scipy.stats.tvar.

[57] Algorithms for calculating variance. Wikipedia, accessed 19 Oct. 2019.
https://en.wikipedia.org/wiki/Algorithms for calculating variance.

17

[58] Algorithms for calculating variance. Project Gutenberg Self Publishing Press, accessed 23 Aug. 2020.
http://www.self.gutenberg.org/articles/Algorithms for calculating variance.

[59] Skewness. Wikipedia, accessed 25 Feb. 2024.
https://en.wikipedia.org/wiki/Skewness.

[60] Barry H. Cohen. Explaining Psychological Statistics. Wiley, 2013.

[61] Rex B. Kline. Principles and Practice of Structural Equation Modeling. Guilford Publications, 2023.

[62] Paul J. Mitchell. Experimental design and statistical analysis for pharmacology and the biomedical sciences, 2022.

[63] scipy.stats.skew. SciPy.org, accessed 24 May 2021.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html.

[64] Tom Keldenich. What is skewness and kurtosis? - Everything you need to know now. Inside Machine Learning, accessed Feb. 19, 2024.
https://inside-machinelearning.com/en/skewness-and-kurtosis/.

[65] Computing skewness and kurtosis in one pass. John D. Cook Consulting, accessed 20 Aug. 2020.
https://www.johndcook.com/blog/skewness kurtosis/.

[66] Richard Dosselmann. Basic statistics. ISO JTC1/SC22/WG21: Programming Language C++, accessed 3 Mar. 2024.
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p1708r8.pdf.

[67] Kurtosis. Wikipedia, accessed 29 Dec. 2022.
https://en.wikipedia.org/wiki/Kurtosis.

[68] James Wu and Stephen Coggeshall. Foundations of Predictive Analytics. CRC Press, 2012.

[69] Kurtosis formula. macroption, accessed 24 May 2021.
https://www.macroption.com/kurtosis-formula/.

[70] Ken A. Aho. Foundational and Applied Statistics for Biologists Using R. CRC Press, 2016.

[71] Peter Goos and David Meintrup. Statistics with JMP: Graphs, Descriptive Statistics and Probability. Wiley, 2015.

[72] Oliver J. Rosten. More constexpr for <cmath> and <complex>. Programming Language C++, Library Working Group, accessed 15 Mar. 2025.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1383r2.pdf.

[73] Jolanta Opara. P2119R0 feedback on P1708: Simple statistical functions. JTC1/SC22/WG21, accessed 14 Apr. 2020.
http://open-std.org/JTC1/SC22/WG21/docs/papers/2020/p2119r0.html.

[74] James A. Rosenthal. Statistics and Data Interpretation for Social Work. Springer, 2012.

[75] Charlie Amatutti. Statistical mean & business uses. bizfluent, accessed 2 Mar. 2024.
https://bizfluent.com/info-8031040-statistical-mean-business-uses.html.

[76] var. MathWorks, accessed 2 Mar. 2024.
https://www.mathworks.com/help/matlab/ref/var.html.

[77] weighted.var: Weighted univariate variance coping with missing values. RDocumentation, accessed 2 Mar. 2024.
R package: https://www.rdocumentation.org/packages/modi/versions/0.1.2/topics/weighted.var.

[78] Weightedstdev (weighted standard deviation of a sample). MicroStrategy, accessed 2 Mar. 2024.
https://www2.microstrategy.com/producthelp/current/FunctionsRef/Content/FuncRef/
WeightedStDev weighted standard deviation of a sa.htm#::̃textĀ%20weighted%20standard%20deviation%20allows,other
%20values%20in%20a%20sample.

[79] Weighted standard deviation. National Institute of Standards and Technology: U.S. Department of Commerce, accessed 2 Mar. 2024.
https://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf.

[80] Pawel Cichosz. Data Mining Algorithms: Explained Using R. Wiley, 2014.

[81] Central moment. Wikipedia, accessed 6 Jul. 2024.
https://en.wikipedia.org/wiki/Central moment.

Appendix A Examples

Example 1 The following example showcases the use of mean, variance and standard deviation functions.

struct PRODUCT {
float price;
int quantity;

};

std::array<PRODUCT, 5> A = { {{5.0f, 1}, {1.7f, 2}, {9.2f, 5}, {4.4f, 7}, {1.7f, 3}} };
auto A_ = A

| std::views::transform([](const auto& product) { return product.price; })
| std::ranges::to<std::vector<float>>();

std::array<float, 5> W = { { 2.0f, 2.0f, 1.0f, 3.0f, 5.0f } };

std::cout << "mean = " << std::mean(std::execution::par, A_);

18

std::cout << "\nweighted mean = " << std::mean(std::execution::par, A_, W);
std::cout << "\ngeometric mean = " << std::geometric_mean(A_);
std::cout << "\nweighted geometric mean = " << std::geometric_mean(A_, W);
std::cout << "\nharmonic mean = " << std::harmonic_mean(A_);
std::cout << "\nweighted harmonic mean = " << std::harmonic_mean(A_, W);
std::cout << "\nvariance = " << std::variance(A_);
std::cout << "\nstandard deviation = " << std::standard_deviation(A_);
std::cout << "\nskewness = " << std::skewness(A_);
std::cout << "\nkurtosis = " << std::kurtosis(A_);

Example 2 The following example showcases the use of a mean and variance function.

std::list<float> L = { 8.0f, 6.0f, 12.0f, 3.0f, 5.0f };

auto [mean, variance] = std::mean_variance(L);

std::cout << "mean = " << mean;
std::cout << "\nvariance = " << variance;

Example 3 The following example showcases the use of the skewness and kurtosis functions.

std::vector<double> v = { 2.0, 3.0, 5.0, 7.0, 11.0, 13.0, 17.0, 19.0 };

std::cout << "skewness = " << std::skewness(v, false);
std::cout << "\nkurtosis = " << std::kurtosis(v, { .sample=false, .excess=true });

Example 4 The following example showcases the use of a covariance function.

std::vector<double> v1 = { 2.0, 3.0, 5.0, 7.0, 11.0, 13.0, 17.0, 19.0 };
std::vector<double> v2 = { -2.0, -3.0, -5.0, -7.0, -11.0, -13.0, -17.0, -19.0 };

std::cout << "covariance = " << std::covariance(v1, v2);

19

	Revision History
	Introduction
	Motivation and Scope
	Mean
	Variance
	Standard Deviation
	Skewness
	Kurtosis
	Covariance

	Impact on the Standard
	Design Decisions
	Special Values
	Insufficient Values
	Accuracy
	Overflow and Underflow
	Casting
	Trimmed Mean
	Projections
	Zipped Ranges
	Concepts
	Header and Namespace
	Weighted Variance

	Technical Specifications
	Header !<statistics>! synopsis [statistics.syn]
	Functions
	Mean Functions
	Geometric Mean Functions
	Harmonic Mean Functions
	Variance Functions
	Standard Deviation Functions
	Mean and Variance and Standard Deviation Convenience Functions
	Skewness Functions
	Kurtosis Functions
	Covariance Functions

	Acknowledgements
	Examples

