
ISO/IEC JTC 1/SC 22 N 6049

ISO/IEC JTC 1/SC 22 "Programming languages, their environments and system
software interfaces"
Secretariat: ANSI
Committee manager: Ash Bill Mr

SoV and Collated Comments - ISO_IEC CD 14882

Document type Related content Document date Expected action
Ballot / Result of
voting 2025-10-02 INFO

Description

The CD consultation of 14882 closed with comments from Austria, Brazil, Bulgaria, Canada, China,
Czech Republic, Finland, France, Germany, Italy, Netherlands, Poland, Romania, Russian
Federation, Spain, Sweden, Switzerland, United Kingdom, and United States. The CD results and the
accompanying comments have been forwarded to the Project Editor and SC 22/WG 21 for review
and resolution of the comments. The Project Editor is instructed to prepare an approved Disposition
of Comments document and a revised text for further processing.

ISO/IEC JTC 1/SC 22/WG 21 N 5028

https://sd.iso.org/documents/open/49bf831e-84bb-4aa0-99d0-af271bcf49b0
https://sd.iso.org/documents/open/49bf831e-84bb-4aa0-99d0-af271bcf49b0

Result of voting

Ballot Information

Ballot reference ISO/IEC CD 14882

Ballot type CD

Ballot title Programming languages — C++

Opening date 2025-08-06

Closing date 2025-10-01

Note

Member responses:

Votes cast (26) Austria (ASI)
Brazil (ABNT)
Bulgaria (BDS)
Canada (SCC)
China (SAC)
Czech Republic (UNMZ)
Denmark (DS)
Finland (SFS)
France (AFNOR)
Germany (DIN)
India (BIS)
Ireland (NSAI)
Israel (SII)
Italy (UNI)
Japan (JISC)
Kazakhstan (CTRM)
Korea, Republic of (KATS)
Netherlands (NEN)
Poland (PKN)
Romania (ASRO)
Russian Federation (GOST R)
Spain (UNE)
Sweden (SIS)
Switzerland (SNV)
United Kingdom (BSI)
United States (ANSI)

Comments submitted (1) Türkiye (TSE)

Votes not cast (1) Ukraine (SE UkrNDNC)

Questions:

Q.1 "Do you have any comments related to the Committee Draft?"

Votes by members Q.1

Austria (ASI) Yes

Brazil (ABNT) Yes

Bulgaria (BDS) Yes

Canada (SCC) Yes

China (SAC) Yes

Czech Republic
(UNMZ)

Yes

Denmark (DS) Abstain

Finland (SFS) Yes

France (AFNOR) Yes

Germany (DIN) Yes

India (BIS) Abstain

Ireland (NSAI) No

Israel (SII) Abstain

Italy (UNI) Yes

Japan (JISC) No

Kazakhstan (CTRM) Abstain

Korea, Republic of
(KATS)

No

Netherlands (NEN) Yes

Poland (PKN) Yes

Romania (ASRO) Yes

Russian Federation
(GOST R)

Yes

Spain (UNE) Yes

Sweden (SIS) Yes

Switzerland (SNV) Yes

United Kingdom (BSI) Yes

United States (ANSI) Yes

Answers to Q.1: "Do you have any comments related to the Committee Draft?"

19 x Yes Austria (ASI)
Brazil (ABNT)
Bulgaria (BDS)
Canada (SCC)
China (SAC)
Czech Republic (UNMZ)
Finland (SFS)
France (AFNOR)
Germany (DIN)
Italy (UNI)
Netherlands (NEN)

Poland (PKN)
Romania (ASRO)
Russian Federation (GOST R)
Spain (UNE)
Sweden (SIS)
Switzerland (SNV)
United Kingdom (BSI)
United States (ANSI)

3 x No Ireland (NSAI)
Japan (JISC)
Korea, Republic of (KATS)

4 x Abstain Denmark (DS)
India (BIS)
Israel (SII)
Kazakhstan (CTRM)

Comments from Voters

Member: Comment: Date:

Austria (ASI) Comment File 2025-09-22
06:33:43

CommentFiles/ISO_IEC CD 14882_ASI.docx

Brazil (ABNT) Comment 2025-10-01
19:16:32

Adopt the bug fix wording proposed in P3579R2 "Fix
matching of constant template parameters when
matching template template parameters" (or latest
revsion) into the working draft.

Bulgaria (BDS) Comment File 2025-09-18
18:57:12

CommentFiles/ISO_IEC CD 14882_BDS.doc

Canada (SCC) Comment File 2025-09-17
21:52:02

CommentFiles/ISO_IEC CD 14882_SCC.doc

China (SAC) Comment 2025-09-15
08:28:35

Trivial relocatability should imply bitwise relocatability

Submitter: Mingxin Wang
Related paper: P2786R13: Trivial Relocatability For C++26

Summary of Concern

The current definition of "trivially relocatable" in P2786R13 does not guarantee bitwise relocatability (i.e., that
an object can be relocated via `memcpy`). This significantly weakens the utility of the feature, especially for
performance-critical applications such as type erasure, and creates a gap that other proposals (e.g., P3780R0
`is_bitwise_trivially_relocatable`) are trying to fill. We believe that "trivially relocatable" is the correct and
intuitive place for this guarantee.

CommentFiles/ISO_IEC CD 14882_ASI.docx
CommentFiles/ISO_IEC CD 14882_BDS.doc
CommentFiles/ISO_IEC CD 14882_SCC.doc

Proposed Wording Changes

*Modify 11.2 [class.prop] to reflect the bitwise copy requirement and implementation-defined behavior for
special pointers.*

Change the definition of when a class is *eligible for trivial relocation* as follows:

```diff
  A class is *eligible for trivial relocation* unless it
  
  — has any virtual base classes,
  — has a base class that is not a trivially relocatable class,
  — has a non-static data member of an object type that is not of a trivially relocatable type, or
+ — has a subobject of a type where a bitwise copy may not preserve the semantics of the object (e.g., types
with pointer authentication), or
  — has a deleted destructor,
  
  except that it is implementation-defined whether an otherwise-eligible union having one or more subobjects of
polymorphic class type is eligible for trivial relocation.
```

Detailed Comments

1. The "Trivial" in "Trivially Relocatable" Should Imply Bitwise Operation

The term "trivial" in C++ has a strong precedent for implying bitwise operations (e.g., trivially copyable). When a
developer sees "trivially relocatable", the natural and overwhelming expectation is that the object can be moved
with `memcpy`. Deviating from this expectation makes the feature less intuitive and harder to use correctly.

The argument that certain architectures or compiler optimizations (like pointer authentication) might require
more than a `memcpy` is noted. However, we believe this concern is misplaced for a "trivial" trait. If a type
requires special handling for relocation, it should not be considered "trivially relocatable", in the same way that
a polymorphic type with a vptr is not trivially copyable. The complexity should disqualify the type from being
"trivial," rather than watering down the meaning of "trivial" for all users.

2. Critical Need for Bitwise Relocatability in Type Erasure

Type erasure libraries are a primary motivator for this feature. These libraries manage objects of unknown
types through a common interface. For performance, they need to be able to relocate their owned objects in
memory (e.g., when a `std::vector`-like buffer reallocates) using `memcpy`. Without a guarantee of bitwise
relocatability, these libraries face a dilemma:

* **Assume `memcpy` is safe:** This is what many libraries do today for types that are
`std::is_trivially_copyable_v && std::is_trivially_destructible_v`, but it is not guaranteed to be correct for all
relocatable types under the proposed definition. This leads to subtle, hard-to-debug issues on platforms where
the assumption fails.
* **Use the move constructor:** This is safer but incurs a significant performance penalty, defeating one of the
main purposes of introducing a relocation mechanism.

Since type erasure facilities operate without compile-time type information, they cannot check for specific types
that might require special relocation logic. They need a single, reliable query (`is_trivially_relocatable`) that
guarantees `memcpy` is safe.

3. Proposed Solution

We propose that the definition of "trivially relocatable" be strengthened to guarantee bitwise relocatability. This
ensures that `std::is_trivially_relocatable_v<T>` provides the strong, portable guarantee that developers need:
if it is `true`, `memcpy` is safe.

To address the concerns about special pointer types (e.g., with pointer authentication), we suggest the
following:

**Make it implementation-defined whether types with special pointer semantics (like those requiring pointer
authentication) are considered `is_trivially_relocatable`.**

This approach has precedent. The behavior of many aspects of the C++ memory model and type system is
implementation-defined, allowing vendors to make choices appropriate for their platforms. An implementation
where pointers require special handling upon relocation would simply not mark types containing them as
trivially relocatable. This puts the burden of complexity on the implementation, where it belongs, rather than on
the user.

This makes the feature significantly more valuable and less error-prone for the entire C++ community.

Czech Republic
(UNMZ)

Comment File 2025-09-30
16:40:21

CommentFiles/ISO_IEC CD 14882_UNMZ.doc

Finland (SFS) Comment 2025-09-23
08:51:25

Comments attached

Finland (SFS) Comment File 2025-09-23
08:51:25

CommentFiles/ISO_IEC CD 14882_SFS.docx

France (AFNOR) Comment 2025-09-23
18:06:56

Please find attached the French comments.

France (AFNOR) Comment File 2025-09-23
18:06:56

CommentFiles/ISO_IEC CD 14882_AFNOR.docx

Germany (DIN) Comment File 2025-10-01
13:13:31

CommentFiles/ISO_IEC CD 14882_DIN.docx

Italy (UNI) Comment File 2025-09-15
12:07:08

CommentFiles/ISO_IEC CD 14882_UNI.doc

Netherlands (NEN) Comment 2025-09-19
14:12:19

- Contracts as present in C++26 are vital for future development of a plurality of safety features, including
functional safety and memory safety. Even if the US government has dropped its attention from our language,
we should not use that as an excuse to drop the ball and to forget that there are still many preventable
problems.

- The function evaluation_exception specified in the contract_violation objects created by the contract violation
handler may have a security risk on one platform, and offers insufficient tangible benefit for the risk it causes.
We propose to remove it from C++26 to potentially be added back in '29 if we can show that the security risk
does not actually materialize on that platform. See also P3819.

Poland (PKN) Comment File 2025-09-24
11:09:55

CommentFiles/ISO_IEC CD 14882_PKN.docx

Romania (ASRO) Comment File 2025-10-01
12:52:03

CommentFiles/ISO_IEC CD 14882_ASRO.docx

CommentFiles/ISO_IEC CD 14882_UNMZ.doc
CommentFiles/ISO_IEC CD 14882_SFS.docx
CommentFiles/ISO_IEC CD 14882_AFNOR.docx
CommentFiles/ISO_IEC CD 14882_DIN.docx
CommentFiles/ISO_IEC CD 14882_UNI.doc
CommentFiles/ISO_IEC CD 14882_PKN.docx
CommentFiles/ISO_IEC CD 14882_ASRO.docx

Russian Federation
(GOST R)

Comment File 2025-08-27
17:30:17

CommentFiles/ISO_IEC CD 14882_GOST R.doc

Spain (UNE) Comment File 2025-09-30
11:52:18

CommentFiles/ISO_IEC CD 14882_UNE.doc

Sweden (SIS) Comment 2025-10-01
09:39:00

There are several open points regarding the newly added chapter on contract assertions. The considerations
of our NB are summarized in P3849R0, which has been shared with WG21: https://isocpp.org/files/papers/
P3849R0.pdf We hope that the topics raised will be addressed accordingly.

Switzerland (SNV) Comment 2025-09-24
08:15:08

The Committee Draft proposes in clause 33 [exec] components for asynchronous execution of function objects.
The asynchronous execution might be triggered by asynchronous signals.
However, the existing components in clause 33 [exec] don't provide any mechanism to trigger such execution
in a signal-safe way.
This is a serious defect.
This defect needs to be fixed before the standard is published, e.g. by adopting a mechanism as proposed in
P3669.

United Kingdom
(BSI)

Comment File 2025-09-25
10:07:17

CommentFiles/ISO_IEC CD 14882_BSI.doc

United States (ANSI) Comment File 2025-09-23
21:02:42

CommentFiles/ISO_IEC CD 14882_ANSI.docx

Comments from Commenters

Member: Comment: Date:

Türkiye (TSE) Comment 2025-09-30
09:47:13

-

CommentFiles/ISO_IEC CD 14882_GOST R.doc
CommentFiles/ISO_IEC CD 14882_UNE.doc
CommentFiles/ISO_IEC CD 14882_BSI.doc
CommentFiles/ISO_IEC CD 14882_ANSI.docx

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 107

NC
IT-
002

- -

- Te P1789 adds support for destructuring
std::integer_sequence into a pack,
completing the design of P1061: Structured
Bindings can introduce a Pack.
To the best of our knowledge, this paper already
has a strong consensus, and has an extremely
narrow scope and minimum impact on the
standard document.

Adopt P1789

US 2-
404

 general

 ed There are two occurrences of
“compound-statement of an
expansion statement” and two of
compound-statement of an
expansion-statement”.

Decide on the correct wording and use
the same throughout.

US 1-
405

 general

 ed The tuple representing direct base
class relationships is sometimes in
code font (e.g., 6.7 bullet 16.4.2;
11.7.1 paragraph 2) and sometimes
not (e.g., 21.4.6 bullet 2.5).

Decide on one style and apply it
throughout.

GB01
-013

1

2
ed

Consider updating comparison to C
While not wrong, the list of features C++ provides
over and above C is essentially unchanged since
C++98. Given how much C++ has changed since
then, this list undersells the language by omitting
many key distinguishing features.
It is also the only place other than the index to
use the term "free store"

Consider updating this to include features that
differentiate the latest Draft C++ Standard from
the normative reference version of the C Standard
(ISO/IEC 9899:2024).
(Acknowledging that 1. C is a moving target, and
2. what goes here is inherently subjective and
only ever the tip of the iceberg).
Consider adding (e.g.):
- type safety and concepts
- automatic resource management
- contracts
- modules
- compile-time reflection and metaprogramming

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 107

Consider replacing "free store management
operators" with "type-aware allocation and
deallocation operators," or "automatic memory
management facilities," or removing in favour of
the existing "library facilities" already covering
recommended modern memory management
mechanisms.

FR-
001
-014

 4.1

8 te The hardened implementation should be
specified independently of contracts which are
not a proven technology. All existing deployed
field experience are not based on contracts.

Change “contract violation” to “runtime violation”.

US 3-
015

 4.1.1

8 te The hardened implementation should be
specified independently of contracts which are
not a proven technology. All existing deployed
field experience are not based on contracts.

Change “contract violation” to “runtime violation”.

RU-
016

 4.1.1

General
[intro.compli
ance.gener
al] p8

ge Hardening and contracts are long
awaited and desired safety features.
We’re not expecting that those
features would decrease interest in
“profiles” feature and we are eager to
see “profiles” in C++29 or even soon
after the C++26.

Keep the standard library hardening
and the contracts as a way to
customize it

US 4-
017

 4.1.2

5 te Describing the observable behavior of programs
with undefined behavior is significantly
complicated by the possibility of losing volatile
operations. This distinction from C23
necessitates a new, obscure library function
(std::observable_checkpoint) that is specific to
the volatile case; there is moreover no evidence
that it would actually change the behavior of any
implementation. SG23 strongly recommended
that something equivalent to the C23 rule be
adopted, and EWG failed to reach consensus for
that direction by the narrowest of margins.

Confirm with users of volatile that there is no need
for aggressive optimization (apparently beyond
current techniques) of volatile operations
preceding a potentially undefined operation; if so,
give volatile operations the same status as library
I/O functions and simplify the specification
accordingly (removing observable_checkpoint in
particular).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 107

US 5-
018

 5

 te Establish a definition for "whitespace character"
as that term is used repeatedly and significantly
in clauses 5 and 15.

Apply paper P3657r0.

US 7-
019

 5.2

 te As we are updating the phases of translation in
C++26, take advantage to split phase to convert
preproccessor tokens to tokens as a distinct
phase before translating the TU. This lines up
better with modules and header units being an
input into the phase after tokenization is
complete.

Assuming phase 6 merges into phase 5 above,
create a new phase 6 (preserving phase
numbering above) to perform the pp-token to
token conversion, prior to phase 7 starting with a
full set of (converted) tokens.

US 6-
020

 5.2

 te As we are updating the phases of translation in
C++26, take advantage to merge phases 5 and 6
which deal with the same contiguous sequences
of string literals.

Merge phase 5 and 6 of translation into just one
phase.

US 8-
021

 5.5

p1 te The program is ill-formed if it has a preprocessing
token matching the category of a single "other"
character. [cpp.pre]p5 relaxes the directive
syntax to ignore all preprocessor tokens within a
skipped group. Surveying known
implementations, all believe that [cpp.pre]
dominates, so add a note/normative text to
[lex.pptoken] to endorse the current behavior.

Revise in [lex.pptoken]p1: :"If a U+0027
APOSTROPHE, a U+0022 QUOTATION MARK,
or any character not in the basic character set
matches the last category, the program is ill-
formed unless skipping a group [cpp.cond]."

CA-
022

 5.5

Paragraph 1 ed The restriction

If any character not in the basic character
set matches the last category, the
program is ill-formed.

can benefit from an illustrative example that it
reserves space for future evolution of the language
and for potential "conforming extensions".

For example (where <U+3000> represents U+3000
IDEOGRAPHIC SPACE):

if 0

Add the example or clearly document reaffirmation
that the example code is ill-formed as a violation of
the quoted diagnosable rule.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 107

#<U+3000>else // ill-formed,
diagnostic required
int x;
endif

can, with a diagnostic, be accepted as expanding
to

int x;

via an extension that treats Unicode whitespace as
C++ whitespace.

US
10-
023

 5.11, 11.01,
11.2, A.9,
C.1.4, C.1.6

 ge The new identifiers with special meaning
"trivially_relocatable_if_eligible" and
"replaceable_if_eligible" are embarrassingly
verbose. They are too long for practical use.

They will not see use in industry because their
semantics do not match the semantics requested
by over a dozen industry veterans representing
seven major projects (Amadeus, Blender, Boost,
Parlay, Folly, Qt, HPX) across P3233, P3236,
P1144R13, P3780, etc.

Compiler vendors will have to add a `__keyword`
or `[[attribute]]` anyway, to permit their library
vendor to optimize types like `unique_ptr` in pre-
C++26 modes. Library vendors cannot use the
new identifiers with special meaning outside of
C++26 mode.

Even in C++26 mode, a compiler-specific "opt-in"
(P1144-style) attribute or keyword may be
needed in order to support constexpr `optional`
and `inplace_vector`, for which the P2786-style
warrant is insufficient.

The new identifiers as such are useful only for
user-defined resource-management classes, in
C++26-only codebases. (Rule-of-Zero classes do

Adopt P3823R0 "Wording for US NB comment
10".

Alternatively, adopting all of P1144R13
"std::is_trivially_relocatable" would moot this
issue.

p3823r0.html p1144r13.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 107

not need them. C++23 codebases must use a
vendor-specific mechanism such as an attribute.)
This is a very small fraction of a small fraction:
permitting this syntax gains very little in
performance, but loses much in confusion to the
industry and embarrassment to the community.

For all these reasons these identifiers should be
removed from C++26, and their design
reconsidered for C++29 after there has been any
implementation and usage experience. We can
safely remove these identifiers with special
meaning, without at all harming the library feature
of "relocation" itself.

p3233r0.html p3236r1.html

p1144r13.html p3780r0.html

p2786r13.html

US 9-
024

 5.11,
6.09.1,
7.5.6.2,
11.1, 11.2,
16.4.6.11,
21.3, 21.4,
A.9, C.1.4,
C.1.6

 te The new notion of "replaceable types" (6.9.1) is
confusingly similar to the existing notions of
"transparently replaceable objects" (6.8.4) and
"replaceable functions", such as replaceable
allocation functions (9.6.5) and replaceable
contract-violation handlers (6.11.3).

The new notion of "replaceable" is not used by
any C++26 library machinery. Therefore it does
not need to exist in C++26. The proposed change
is entirely removal of various terms of art all of

Adopt P3827R0 "Wording for US NB comment 9",
which proposes the following edits only:

In 5.11: Strike "replaceable_if_eligible" from Table
4.

In 6.9.1: Strike the sentence "Cv-unqualified
scalar types, replaceable class types (11.2), and
arrays of such types are collectively called
replaceable types."

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 107

which are dangling loose ends. The removal of
this type trait has no effect on the rest of C++.

There are 88 instances of the string "replaceab"
in the Committee Draft. Adopting the proposed
change will remove

- 36 instances concerned with
"replaceable_if_eligible"

leaving:
- instances concerned with

"system_context_replaceability"
- 4 concerned with "transparently

replaceable"
- 35 instances concerned with replaceable

functions

In 7.5.6.2: Strike "whether the closure type is
replaceable (11.2), or"

In 11.1: Strike "replaceable_if_eligible" from the
grammar. Replace the words
"trivially_relocatable_if_eligible, or
replaceable_if_eligible" with "or
trivially_relocatable_if_eligible".

Strike 11.2/6 and 11.2/7 in their entirety. Strike "or
replaceability" from Note 2 and "or replaceable"
from Note 3.

Strike 16.4.6.11/3 in its entirety.

In 21.3.3: Strike "is_replaceable" and
"is_replaceable_v".

In 21.3.6.4: Strike "is_replaceable" from Table 54.

In 21.4.1: Strike "is_replaceable_type".

In 21.4.17: Strike "is_replaceable_type".

In A.9: Strike "replaceable_if_eligible".

In C.1.4: Strike the words "and
replaceable_if_eligible". Strike the words "and
replaceable". In Example 1, replace
"replaceable_if_eligible" with
"trivially_relocatable_if_eligible".

In C.1.6: Strike the words "or
replaceable_if_eligible".

Alternatively, adopting all of P1144R13
"std::is_trivially_relocatable" would moot this
issue.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 107

p3827r0.html

FR-
002
-025

 5.12

Table 5 te The class property specifiers
trivially_relocatable_if_eligible and
replaceable_if_eligible are not keywords to avoid
clashing with user-defined identifiers. However,
that makes it impossible to extend them into a
conditional version in future C++ versions, similar
to how explicit can receive a boolean condition.
Given that the identifiers are quite verbose,
making them keywords is unlikely to break
anything.

Make trivially_relocatable_if_eligible and
replaceable_if_eligible keywords by adding them to
Table 5.

US
11-
400

 6–14

 ge The document confuses the plain text term
"declaration" with the grammar production
declaration in several places. Perform a thorough
review of each usage of the term to confirm it is
rendered in the correct style. Uses as a
compound noun can be safely ignored, e.g.,
function declaration, template declaration.

Perform a thorough review of each usage of the
term "declaration" to confirm that it is rendered in
the correct style.

US
12-
026

 6.2

p2 te This paragraph refers to declarations according
to the grammar term defined in clause 9, but
multiple entries in the list are not subject to that
grammar, but rather of the more broadly defined
plain-text term grammar defined in the preceding
[basic.pre]

Change the font for "declaration" from a grammar
term to plain text.

US
13-
027

 6.4.1

1 te The list of scope introducers is incomplete. Add lambda expressions.

CA-
028

 6.4.6

Paragraph 1 te As documented by Core Issue 3033, “Scope after
declarator-id before determining correspondence”,
the specified scope may be unknown when

Consider the approach documented in CWG 3033.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 107

 knowledge of it is required. Such a requirement
may come from a call to
access_context::current().

US
14-
029

 6.5.1

p2 te There is no clear definition of a program point,
which is fundamental to a lot of the syntax rules
in many clauses. This reference in name lookup
seems the closest to a definition, but we might
prefer an entry in clause 3?

Define a program point such that, in translation
phase 7, "There is a program point between every
pair of adjacent tokens, before the first token of
the translation unit, and after the last token of the
translation unit."

US
17-
030

 6.7

10 te All C++ implementations have converged on
“strong ownership” of modules, with none
planning to implement “weak ownership”. This
disposition no longer serves any purpose other
than removing certainty.

Codify only the strong ownership model as
follows: “If two declarations of an entity are
attached to different modules, the program is ill-
formed if one declaration is reachable from the
other.”

FR-
003
-031

 6.7

10 te All C++ implementations have converged on
“strong ownership” of modules, with none
planning to implement “weak ownership”. This
disposition no longer serves any purpose other
than removing certainty.

Codify only the strong ownership model as
follows: “If two declarations of an entity are
attached to different modules, the program is ill-
formed if one declaration is reachable from the
other.”

US
15-
032

 6.7

p1 te A program is defined as one or more translation
units linked together, but translation units are
defined as just a sequence of tokens and linking
(translation phase 8) takes translated translation
units as its input.

Update p1: A program consists of one or more
<ins>translated</ins> translation units (5.2) linked
together.

US
16-
033

 6.7

p4 te Two different definitions for the term "attach to a
module": [basic.link]p4 and [module.unit]p7

Pick one as the primary definition. Then
(editorially) cross-reference uses of the term
attach to that definition.

BDS2
-034

6.8.1
[basic.typ
es.general
], 11.2
[class.pro

te

In the current draft, trivial relocation can only be
performed by the standard library function
std::trivially_relocate, which requires that the type
of the objects in the storage region be known.
This is too restrictive and does not correspond to
how current C++ libraries implement relocation.

Change the definition of trivially relocatable in
[basic.types.general] and [class.prop] such that a
trivially relocatable type can be relocated via
memcpy or equivalent.

This makes “trivially relocatable” exactly
analogous to the existing “trivially copyable”

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 107

p], 20.2.6
[obj.lifeti
me]

The existing practice is that objects are
relocated via copying the storage bytes,
using memmove or equivalent. This is
much more useful in practice, because it
allows the use of realloc, allows non-
C++ languages (such as C code, f.ex. OS
kernel code) to move blocks of memory
even if they contain trivially relocatable
C++ objects, and allows C++ code to
relocate blocks of memory without
knowing the types of the contained C++
objects.

concept, in that both refer to the use of memcpy to
relocate or copy an object.

Note that this concept already exists in a hidden
form; whether union { T t; } is trivially relocatable
(by the current draft definition) is exactly whether
T can be relocated by copying the untyped bytes
(i.e. T is trivially relocatable by the new definition).

However, since the core language does not at
present guarantee anything about trivial relocation
using memcpy or equivalent, C++ code can’t take
advantage of the above fact.

US
18-
035

 6.8.4

8 ed The comma in "or, after" is spurious. Remove it.

GB02
-036

6.8.5

2
te

Fix erroneous behaviour termination semantics
With the current specification of erroneous
behaviour (EB), a program effectively enters an
“erroneous state” once any erroneous behaviour
happens, and may be terminated at any arbitrary
point in time after that. The expectation is that it
will be either reasonably soon or never, but the
specification gives significantly more
implementation freedom. This degree of freedom
makes it much harder to reason about the
behaviour of the program. It also presents a
significant impediment to applying the concept of
EB more broadly across the C++ language to
remove undefined behaviour (in particular in
cases unrelated to uninitialised values). These
issues can be addressed without losing
compatibility with existing implementations by
removing the “delayed termination” aspect from
the specification and instead making erroneous

Apply the changes proposed in P3684R0.
Remove the “delayed termination” aspect from the
specification and instead make erroneous values
propagate out of operations that produce them.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 107

values propagate out of operations that produce
them.

US
19-
037

 6.8.7

5 ed The change to use “several” instead of a count
loses the implication that the contexts listed
below are exhaustive.

Clarify that lifetime extension is not otherwise
performed.

US
21-
038

 6.8.7

7,8 te This specification has numerous issues. For
example, an enumerating expansion statement
does not have a for-range-initializer or a full-
expression to speak of. To the extent that this is
intended for the range-for analog, that’s an
iterating expansion statement (which also does
not have a for-range-initializer).

Resolve Core issue 3043.

US
20-
039

 6.8.7

p7 te P1306R5 added a lifetime extension rule for
enumerating expansion statements, which was
subsequently discovered to be incorrectly
worded. This is CWG3043. However, the
"Possible resolution" listed for that issue would
remove the lifetime extension rule entirely,
causing temporaries created within a given
element of the braced list to be destroyed before
executing any other code associated with the
corresponding iteration. Such a specification is
likely to cause bugs similar to those that were
fixed by the lifetime extension rule for range-
based for loops (adopted in C++23).

Amend the proposed resolution to CWG3043 so
that the lifetime of temporaries created within
each element of the expression-list is extended to
that of the variable created by the for-range-
declaration, then resolve CWG3043 by adopting
the resolution.

CA-
040

 6.8.7

Paragraph 6 te P2748R5, "Disallow Binding a Returned Glvalue to
a Temporary", created a misfeature that introduces
lifetime extension of temporaries created during
the evaluation of a function to opaque lifetimes
past function return.

Resolve Core Issue 3063, “Lifetime extension of
temporaries past function return”.

CA-
041

 6.8.7

Paragraph 6 te The resolution of Core Issue 2894 was applied
without updating the set of casts that lifetime
extension for reference binding “looks through”,
resulting in Core Issue 2941, “Lifetime extension
for function-style cast to reference type”.

Apply the suggested resolution in CWG 2941.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 107

US
22-
042

 6.9.2

17 ed The list in paragraph 17 contains 21 items but
example 2 illustrates only 18 of them.

Add examples illustrating the missing items
(function parameter, annotation, and alias
template).

US
23-
043

 6.10.2.3

5 ed Note 4 is incorrect with the addition of bullets 1.2
and 1.6.

Strike the note.

US
24-
044

 6.10.3.4

3 te It is not clear whether "completion of the
constructor" includes delegating constructors.

Specify that only non-delegating constructors (for
the most derived type) are considered.

CA-
045

 6.10.3.4

Paragraph 3 te The subject paragraph conflates the idea of
completing a constructor (which, in theory, can
include the non-delegating constructor called by a
delegating constructor) and completing dynamic
initialization of an object (possibly including the
destruction of any temporaries). Additional clarity
over what happens for block-scope statics
initialized as part of executing destructor calls for
temporaries of the initialization construct is
needed.

Also, the subject paragraph talks about the
destructor of objects (of which arrays of class
objects have none) and is incompatible with the
treatment (consistent with the 2024-11-22
proposed resolution to Core Issue 2929, "Lifetime
of trivially-destructible static or thread-local
objects") where cleanup registration does not
happen individually for the destruction of array
elements.

Furthermore, the word "during" in the last sentence
of the subject paragraph seems imprecise in the
presence of asynchronous execution.

Adopt the proposed resolution to Core Issue 2929.

Also, modify 9.5.1 [dcl.init.general] paragraph 22 as
follows:

An object whose initialization has
completed (including, if the
initialization is a full-expression, the
destruction of associated
temporaries) is deemed to be
constructed, even if the object is of
non-class type or no constructor of
the object’s class is invoked for the
initialization.

Additionally, modify 6.10.3.4 [basic.start.term]
paragraph 3 as follows:

If the completion of the constructor
or dynamic initialization deemed
construction of an a complete
object with static storage duration
strongly happens before that of
another, the completion of the

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 107

Additionally, without changes like the proposed
resolution to Core Issue 2929, that last sentence
raises questions as to whether the destruction of
subobjects occurs when `exit` is called during
initialization of a complete class object of static
storage duration.

destructor destruction of the
second is sequenced before the
initiation of the destructor
destruction of the first. If the
completion of the constructor or
dynamic initialization deemed
construction of an a complete
object with thread storage duration
is sequenced before that of another,
the completion of the destructor
destruction of the second is
sequenced before the initiation of
the destructor destruction of the
first. If an object is initialized
statically, the object is destroyed in
the same order as if the object was
dynamically initialized. For an object
of array or class type, all subobjects
of that object are destroyed before
any block variable with static
storage duration initialized during
the construction of the subobjects
is destroyed.

Append an example to 6.10.3.4 [basic.start.term]
paragraph 3:

In the following program, the
elements of a are destroyed,
followed by dt, and finally the two
BTemp objects:

struct DTemp { ~DTemp(); };
struct Temp {
 ~Temp() {
 static DTemp dt;
 }
};

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 107

struct BTemp {
 ~BTemp();
};
struct A {
 const BTemp &tb;
 ~A();
};

A a[] = {(Temp(), BTemp()), BTemp()};
int main() {}

Finally, make similar changes to 6.10.3.4
[basic.start.term] paragraph 5 as follows:

If the completion of the initialization
deemed construction of an a
complete object with static storage
duration strongly happens before a
call to std::atexit (see
<cstdlib>, 17.5
[support.start.term]), the call to the
function passed to std::atexit
is sequenced before the call to the
destructor for initiation of the
destruction of the object. If a call to
std::atexit strongly happens
before the completion of the
initialization deemed construction
of an a complete object with static
storage duration, the call to the
destructor for completion of the
destruction of the object is
sequenced before the call to the
function passed to std::atexit.
If a call to std::atexit strongly
happens before another call to
std::atexit, the call to the
function passed to the second

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 14 of 107

std::atexit call is sequenced
before the call to the function
passed to the first std::atexit
call.

ES-
046

 6.11

 te In paper P3829 [examples are given on how
contract assertions may lead to situations where a
critical check may end-up elided. As the papers
states this might be a powerful tool for new supply-
chain attacks.

Please see paper P3851 and P3829 for
details.

This is another major safety issue.
Contracts should not worsen the safety dimension
of the language.
Safety must be given the highest priority for
C++26.

ES-
047

 6.11

 te When there are multiple dependent assertions (a
precondition that checks for null pointer and
another precondition that dereferences that
pointer), the evaluation in non-terminating modes
may lead to undefined behavior.

This is a safety issue. It may be mitigated by not
evaluating dependent contract assertions when
the first assertion fails.

Please, see paper P3851 for details.

Provide a solution for multiple dependent
assertions in non-terminating modes.

Safety must be given the highest priority for
C++26.

ES-
048

 6.11

 te In P3835 examples are given for a header file that
contains an inline function with a contract
assertion and is used from different translations
units with different evaluation semantics.
The same applies to constexpr functions,
consteval functions and templates.

This a major safety issue as the same assertion
might be checked or not depending on the caller.
Yet subsequent code might depend on the validity
of that assertion.

Provide a solution for mixed mode builds that is
not safety concern.

Safety must be given the highest
priority for C++26.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 15 of 107

Please, see papers P3851 and P3835
for details.

ES-
049

 6.11

 te The contracts feature is a major feature that lacks
of enough deployment experience. While it is true
that some portions have been experimented in
projects. There are many features that have not
been tried sufficiently.

Moreover, at this point we also lack of enough user
experience, implementation experience and build
system experience. The latter is specially
significant in presence of mixed mode builds. We
should also have experience in multiple domains.
What is acceptable in one problem domain
becomes critically unacceptable in a different
domain.

Please, see paper P3851 for details.

The safest path would be to get more
experience by providing the feature
either in a technical specification or in
a white paper, so that all the issues are
better understood.

ES-
050

 6.11

 te Contract assertions in its current form exhibit
several serious problems that should be addressed
before incorporation into an international standard.

Please, see paper P3851 for details.

Either the concerns are addressed or
the feature should be eliminated for
the proposed standard .

US
26-
051

 6.11

 te The Contracts feature as specified has too many
important implementation defined semantics, and
does not have enough in-field deployment
experience. It shall be removed.

All edits applied by P2900R13 shall be reverted.

US
25-
052

 6.11

 te Contracts are not ready for standardization as
specified in P3829R0 and P3835R0.

p3835r0.html

Contracts should be removed from the C++26
working draft until the safety and other issues can
be resolved.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 16 of 107

FR-
004
-053

 6.11

 ge C++ Contract design Is insufficiently
tested and will require modification as
experience accumulates; that’s not
adapted for an international standard.

Contracts should be removed from the C++26
working draft until significant user experience of
the proposed contract design has been
accumulated. Experience with different contract
designs is not sufficient. These contracts should
be included specifically in a technical specification
related to C++26. France would keen to support
the elaboration of a new technical specification on
that matter.

FR-
005
-054

 6.11

 te All the paragraphs modified or added by
P2900R13.

The Contracts feature as specified has too many
important implementation defined semantics, and
does not have enough in-field deployment
experience. It shall be removed.

All edits applied by P2900R13 shall be reverted.

ES-
055

 6.11.1

4 te Clause 6.11.1/4 makes any variable to be const
within the predicate of a contract assertion. This
also applies to the this pointer. This is specially
problematic when invoking an overloaded
function, as the overload resolution mechanism
might select a different version than in other
context.
This is major concern from the teachability point
of view, as it will make the code harder to
understand.
Moreover, this might not be acceptable for
projects where maintainability and simplicity are
major drivers.

Please see paper P3851 for details.

Change the wording to avoid making
variables const. Provide an alternate
solution that does not change overload
resolution

RO 2-
056

1-13 6.11.2

 te Although contract assertions ([basic.contract])
were introduced to improve the “safety and
correctness of software” (as stated in
https://wg21.link/P2900R14), the current design
lacks adequate control and tunability, and relies

Append the functionality described in
https://wg21.link/P3400R1 - Controlling Contract-
Assertion Properties to the contract assertions
feature.

https://wg21.link/P2900R14)
https://wg21.link/P3400R1

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 17 of 107

excessively on implementation-defined
behaviour. This significantly limits its applicability
in large codebases.
In particular, the feature does not allow a function
to be made “safe” in the sense of being provably
correct at a given point in time and protected by
contract assertions. The global contract
semantics can be altered at any time, rendering
those assertions effectively no-ops.
In large codebases, this undermines reliability
and consistency, and in practice will result in the
feature being disabled or forbidden, thereby
defeating its intended purpose.

This would address the above issues by providing
fine-grained control over contract behaviour.

Alternative resolutions:

• Remove the ignore semantic for C++26.
This could be added later, together with
the properties feature. This would impact
lib hardening, which needs another way
to be configured - that can be addressed
in a separate topic.

• Remove the Contract assertions feature
entirely from C++26 and continue
development for possible inclusion in
C++29.

AT1-
057

 6.11.3

 te There is no programmatic way to check for the
implementation-defined replaceability of the
contract-violation handler. Providing one if not
supported is IFNDR.

Add a feature test macro to version.syn
(17.3.2) to query whether the contract-violation
handler is replaceable (analogous to
__cpp_lib_freestanding_operator_new).

CZ4-
058

 7.5.5.2

items 6.1,
6.2 and 7.3

te Contracts make referenced outside variable const
which is to avoid common error when a
modification in an assert(...) leads to conditionally
evaluated code based on compilation mode. This is
useful, but it makes the contract_assert(<EXPR>)
represent asserting of other expression then
visually is obvious, mostly because such
operations will select different code path
(overloading, template instantiation) This makes
automatic assertion insertion by tooling harder
(they need to introduce const_cast on every
external variable to remove the const-ness and
keep the asserted expression meaning exactly
same).

Remove the constification (const T => T on 6.1,
const U => U on 6.2 and const T => T on 7.2) and
replace any attempt to modify referenced outside
objects / values erroneous behavior. This will keep
the intent of constification from P2900, but won’t
introduce a new asymmetry into the language.

BDS3
-004

 7.5.9 [expr.pri
m.splice]

te Currently, splicing a constructor is explicitly
disallowed. This is unnecessarily restrictive.

Remove “if S a constructor” from the ill-formed
bullet in [expr.prim.splice], and add a bullet such
that splicing when S is a constructor denotes a
synthesized free function with the same

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 18 of 107

parameters as S and with a return value of the
corresponding type.

This allows the form

[: ct :](1, 2)

and the form

&[: ct :]

which are both highly useful in practice.

US
27-
059

 7.5.9

7.6.1.5

2

6

te 7.5.9 makes no provision for splicing a reflection
representing a direct base class relationship, yet
7.6.1.5 presupposes that this is possible.

Add specification for splicing such a reflection to
7.5.9. Update the description of value categories
in 7.2.1 to include such an expression. Disallow
the use of such expressions outside of a class
member access (similar to the existing rule for
non-static data members).

US
28-
060

 7.5.9

4 te Splicing a concept is disallowed but splicing a
variable template is allowed, which is
inconsistent. Any issues related to dependent
concepts should have already been resolved with
the addition of concept template parameters.

Allow splicing concepts.

US
30-
061

 7.6.1.10

6 te Both the note and the following normative rule
are outdated by the allowance for noexcept to be
missing from the apparent type.

Specify that the pointer value is unchanged (as for
any reinterpret_cast between unrelated object
types) and update the note to use "call-
compatible".

US
29-
062

 7.6.1.5

2 te If the second expression represents a direct base
class relationship, the first expression should be
required to be a glvalue.

Add this requirement.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 19 of 107

US
32-
063

 7.7

 te Many reflection APIs either return vectors which
require allocation (e.g. members_of) or
deliberately avoid returning objects which require
allocation (e.g. identifier_of). Using vector is
convenient for many uses, but it pushes the issue
front and center onto all reflection users that we
do not yet have non-transient allocation. While
workarounds exist, they are cumbersome and
verbose at best.
While we do not have a good, general solution to
this problem, a significant amount of value can be
derived from taking the two most common
allocating types (std::vector and std::basic_string)
and simply blessing those allocations as being
acceptable. This would additionally allow
reflection APIs to return std::string instead of a
null-terminated std::string_view, which is simply
bizarre.

Adopt P3554.

p3554r0.html

US
31-
064

 7.7

 te We currently do not have a way to represent
values that can only exist at compile-time, and
the lack of ability to do so means that we don’t
have a satisfactory way to implement variant
visitation when consteval functions are involved
(LWG 4197). Additionally, while constexpr up
until now always means runtime or compile-time,
it can now also mean compile-time-only
depending on the contents of the variable. This is
a messy model, which brings with it complexity
but cannot actually solve the problems it needs to
solve.
The introduction of consteval variables — as
properly compile-time only variables — allows for
a very clean solution to the variant visitation
problem as well as a clean model for variables in
general: we can allow constexpr to continue to
always mean runtime or compile time while
consteval in all contexts means compile-time-
only.

Adopt P3603.

p3603r0.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 20 of 107

US
33-
065

 7.7

1 te It is not clear when constant evaluation actually
takes place, as is becoming increasingly
important given new and upcoming features like
reflection and constexpr output.

Specify when during translation and/or execution
constant initialization and destruction (including of
local variables) and the evaluation of manifestly
constant evaluated expressions take place.

US
35-
066

 8.1

8 te The second sentence is redundant to the first as
class and enum definitions can only be defined
by a defining-type-specifier.

Strike it.

US
34-
067

 8.1

8 te This restriction should apply to the structured-
binding-declaration of the for-range-declaration
too.

Add “or the for-range-declaration” after “of the
condition”.

DE-
068

8.7
[stmt.expan
d]

 te

Expansion statements have several
inconsistencies,
as discussed in core issues 3043, 3044, 3045,
and 3048.

Apply the suggested resolution of the
aforementioned core issues.

US
36-
069

 8.8.3

1 te There is no iteration-statement production that
contains a compound-statement.

Strike “or compound-statement”.

US
37-
070

 9.1

1 ed The plain text term declaration has a distinct
meaning from the grammar production
declaration and the two are easily confused.
Rename one to remove confusion and to make
misuse stand out more.

Rename the grammar production declaration to
namespace-scope-declaration.

FI-
071

 9.4

 te The contracts facility has four major problems:
- lack of sufficient implementation experience
- lack of sufficient deployment experience
- the standard gives a specific and terse syntax

Remove the contracts facility from
C++26 and ship the current form of it in

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 21 of 107

for a contract-checking facility that is not a safety
facility.

- we in particular have no
implementation or deployment
experience on non-Itanium ABIs and
Microsoft ls telling us that they don’t
think it’s feasible to have exceptions
thrown from contract predicates
translated into contract violations.
This is a significant component of a
situation where the facility as
standardized won’t be portably
available, and when it’s not portably
available, it’s not useful to standardize
it.

All of these parts result in
standardizing an immature and
unbaked and untested-by-users
facility that we will regret in the
forthcoming years, and it’ll make it
more difficult to adopt a facility that
would strive for being an actual safety
facility, especially one that would be
safe by default, and a facility that
would provide serious support for
tools like static analysis tools.

a White Paper or a Technical
Specification instead.

ES-
072

 9.4.1

6 te C++ supports multiple styles of programming,
including object-oriented programming where
virtual functions play a major role. However, the
contract feature explicitly forbids the use of

Provide a solution to support pre/post-
conditions in virtual functions.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 22 of 107

contracts specifiers for virtual functions (cluase
9.4.1/6). This is a major drawback of the feature.
There are large codebases written in C++ that
make extensive use of virtual functions. By
providing a solution that does not support one of
the major styles the language is doing a
disservice to such portion of the user community.
Please see paper P3851 for details.

ES-
073

 9.4.1

7 te Clause 9.4.1/7 states that by a using a non-
reference parameter of a function in a post-
condition the parameter magically becomes
const. In this case, adding a post-condition to a
function is changing the signature of the function,
which seems counter-intuitive.
This is major concern from the teachability point
of view, as it will make the code harder to
understand.
Moreover, this might not be acceptable for
projects where maintainability and simplicity are
major drivers.
It is also worth to note that constification violates
a fundamental design principle for C++: given the
same object, the same operation should have the
same effect.
Please see paper P3851 for details.

Avoid constification of function
parameters because of mentioning
them in a postcondition.

ES-
074

 9.4.1

8 te Clause 9.4.1/8 states (inside a note) that “ A
pointer to function, pointer to member function, or
function type alias cannot have a function-
contract-specifier-seq associated directly with it”.
Pointer to functions are a first class citizen in C++
that should not be neglected.
Please see paper P3851 for details.

Provide a solution to support pre/post-
conditions in pointer to functions,
pointer to member functions, and
function type aliases.

US
38-
075

 9.5

 te It is still not possible to use designated-
initialization to properly initialize aggregates with
base classes, despite aggregates being able to
have base classes since C++20. This is a defect
that needs to be resolve.

Adopt P2287R5, which is also already basically
done with Core review.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 23 of 107

p2287r5.html

US
39-
076

 9.5.1

8 te A class that contains only std::meta::info data
members, or arrays thereof, should be const-
default-constructible.

Make the definition of const-default-constructible
properly recursive instead of having a special
case for std::meta::info.

US
40-
077

 9.5.5 List-
initialization
[dcl.init.list]

6 te “The backing array has the same lifetime as any
other temporary object (6.8.7), except that
initializing an initializer_list object from the array
extends the lifetime of the array exactly like
binding a reference to a temporary.”
Except that it is not exactly the same because
when the lifetime of a temporary is extended it
still has automatic storage duration changed from
the statement to the block, like a declared
variable. What is proposed is different because it
is being extended by being turned into something
that has static storage direction. In a note, far
from this standard verbiage, it is said to be
permitted as in it may or may not happen and the
decider is the compiler. This is unacceptable.
Lifetimes must be clearly defined and the criteria
for lifetimes need to be clearly delineated
especially for static storage duration otherwise it
would lead to unresolved use after free. If the
programmer thinks it is static based on the
provided example but the compiler left it as
automatic storage duration, then the programmer
likely did not make the necessary code changes
to ensure it doesn’t dangle. Not being able to
trust this feature can cause programmers to not
trust their compilers and to program around this
by writing more esoteric legacy code. The lack of
definiteness is not portable between compilers
that target the same standard and even worse
with just one compiler where the desired

Add verbiage to state static storage duration. The
proposed objective was for static storage duration
but the only mention of it is in an example and a
foot note in comment US 268.
https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3
.html

p3824r0.html p2752r3.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 24 of 107

behaviour could vary based on compiler flags or
added and removed due to optimization. This
breeds use after free unsafety. The verbiage
should be as definite as it is for string literals that
it DOES have static storage duration.
5.13.5 String literals [lex.string]
Paragraph 9
“Evaluating a string-literal results in a string literal
object with static storage duration (6.8.6).”
Should a initializer list of ints or even chars be
specified radically nebulous from the clear
straight forward verbiage of string literals.
A programmer can’t be expected to be
responsible for dangling, if the programmer can’t
definitely reason about the lifetimes of objects. A
code reviewer/code auditor can’t be expected to
find dangling, if the reviewer/auditor can’t
definitely reason about the lifetimes of objects.
None of these three people should be forced to
look at assembly, a different programming
language, to know what the compiler decided to
do in this instant and worse to repeat the process
for each initializer list/braced initializer in a
program.
Another issue that may or may not need to be
fixed is the original proposal was for “Static
storage for braced initializers” yet the current
verbiage is only for initializer lists. If the currently
worded functionality is reasonable even for an
initializer list of size one, why not for single
instance objects that are braced initialized
entirely of constant literals. Might this be viewed
as an inconsistency and even worse, a missed
opportunity to fix a swath of use after free by
lifetime extending objects to have static storage
duration.

US
42-
078

 9.13.12

1 ed Declaration of function parameters are not
explicitly spelled out as being a valid target.

Add "or to a parameter-declaration of a function
declaration"

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 25 of 107

US
41-
079

 9.13.12

1 te base-specifiers are not declared and so do not
have declarations.

Reword the sentence.

US
43-
080

 10.2

7 te The note about linkage is not correct for header
units.

Mention their internal-linkage case.

US
45-
081

 11.1

 te The trivial relocation language feature exists to
allow implementations to memcpy data instead of
performing a move followed by a destroy.
Approximately everyone learning about trivial
relocation will hear it described in this way, and
approximately everyone in the C++ community
will assume as a result that memcpying data is
well defined, especially since that is what existing
practice looks like. That is, that for any trivially
relocatable type T, the following is well-formed
code:

auto make() -> T;
auto consume(T const&) -> void;

auto f() -> void {
 // put a T in buffer
 alignas(T) std::array<unsigned
char, sizeof(T)> buffer;
 new (buffer) T(make());

 // perform a memcpy
 alignas(T) std::array<unsigned
char, sizeof(T)> buffer2 = buffer;

Either the memory model should be adjusted so
that memcpying trivially relocatable types is well-
defined behavior, or the feature should be
removed until we can do it correctly.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 26 of 107

 // expect a T in buffer 2
 consume(*reinterpret_cast<T
const*>(buffer2.data());
}

However, this code is undefined if T isn’t trivially
copyable. Approximately nobody will get this
right. Although it may just happen to work.

US
44-
082

 11.1

 te The trivial relocation language feature currently
does not allow for the ability to mark a type as
being conditionally trivially relocatable. The
suggested workaround in the paper is that users
manually have to add conditionally-non-
relocatable base classes or members to achieve
this.
That workaround is atrocious, and means that
we’re adding a language feature in C++26 that
has worse ergonomics than a library feature that
we could implement in C++26. That’s not an
acceptable situation to be in.

In decreasing order of preference:

1. The trivial relocation keywords should
become attributes and accept a
parenthesized conditional.

2. The trivial relocation keywords should
become annotations that could be
contructed or invoked with a bool.

3. The trivial relocation feature should be
removed entirely.

4. The trivial relocation keywords should
become full keywords and accept a
parenthesized conditional.

CA-
083

 11.1

Paragraph 5 ed The use of “the identifier” as the introduction for a
list of multiple identifiers is ungrammatical.

Replace “the identifier” with “one of the identifiers”.

US
47-
084

 11.2

2 Te Implicitly deleted move operation should not
disable trivial relocation

Change each occurrence of “nor deleted” (3
places) in the bullet list of paragraph 2 to “nor
explicitly deleted”, as per the suggested resolution
to CWG issue 3049.

US
46-
085

 11.2, 20.2.6

 te So-called "trivial" relocation is currently permitted
to do arbitrarily more than a bitwise copy of the
object representation. This has at least four bad
effects:

In 11.2: Strike the words "except that it is
implementation-defined whether an otherwise-
eligible union having one or more subobjects of

https://cplusplus.github.io/CWG/issues/3049.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 27 of 107

 (1) It means that std::is_trivially_relocatable
returns true for types that are not in fact "trivially
relocatable" by the industry definition.

Google Gemini, when asked "what is trivially
relocatable type in c++", responds:

> A trivially relocatable type in C++ is a type
whose objects can be moved from one memory
location to another by simply copying their raw
bytes (e.g., using memcpy) without needing to
call the move constructor at the new location and
the destructor at the old location. This allows for
significant performance optimizations [...] Key
characteristics and implications of trivially
relocatable types include:

> Bitwise Copying: The core idea is that the
object's internal state remains valid and
consistent after a bitwise copy to a new address.
[...]

> Safety and Correctness: The concept ensures
that relocating an object via a bitwise copy is a
safe and correct operation, preserving the
object's invariants and avoiding undefined
behavior.

It would be unfortunate if C++26 standardizes a
meaning for "is_trivially_relocatable" that is
inconsistent with this widely understood and well-
supported definition. Programmers (and LLMs)
will assume that trivially relocatable types can
in fact be memcpy'ed, realloc'ed, mmap'ed with
safety. C++ should provide them that safety, not
undercut them.

(2) "Trivial" means "bitwise" in every other
situation (e.g. "trivially copy constructible" always
means "as if by memcpy," never anything more

polymorphic class type is eligible for trivial
relocation".

In 20.2.6: Strike the words "except for any parts of
the object representations used by the
implementation to represent type information
(6.8.2)".

In 20.2.6 /10: Strike the precondition "No element
in the range [first, last) is a potentially-overlapping
subobject."

In 20.2.6 /17: Strike the precondition "No element
in the range [first, last) is a potentially-overlapping
subobject."

Alternatively, adopting all of P1144R13
"std::is_trivially_relocatable" would moot this
issue.

p1144r13.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 28 of 107

expensive: e.g. polymorphic types are never
trivially copy constructible; ptrauth-qualified
scalar types are never trivially copy
constructible). Trying to make "trivial" mean
something different from "bitwise" in the solitary
case of relocation is inconsistent with the rest of
C++.

(2) It means that if you put two trivially relocatable
types together in a union, the union itself might
not be trivially relocatable. This makes trivial
relocatability non-composable.

(3) It introduces new implementation-defined
behavior in 11.2, which could be made well-
defined if we adopt the proposed change.

(4) It introduces new undefined behavior in
20.2.6, which could be made well-defined if we
adopt the proposed change.

Namely,
`std::relocate(static_cast<Base*>(derivedSrc),
static_cast<Base*>(derivedSrc)+1, baseDst)` is
well-formed on paper, but physically results in a
"radioactive" baseDst object with the vptr of a
Derived but the data members of a Base.
20.2.6/10 and /17 add preconditions (UB) on all
functions that use relocation, in order to make
sure the Standard doesn't accidentally claim that
0the "radioactive" behavior complies with the
abstract machine. The proposed change makes
`std::trivially_relocate(static_cast<Base*>(derived
Src), static_cast<Base*>(derivedSrc)+1,
baseDst)` ill-formed instead of UB, and makes
`std::relocate(static_cast<Base*>(derivedSrc),
static_cast<Base*>(derivedSrc)+1, baseDst)`
well-defined instead of UB.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 29 of 107

PL-
003

 11.4.5.2 [class.defau
lt.ctor]

te The changes to the [class.default.ctor] p4 from
P3074R7 paper (starting lifetime of first implicit
lifetime member), introduced a breaking change,
when a type containing an union is used as NTTP.

union U { int a, b; };
template<U u> class X {};
constexpr U make() { U u; return u; }
void f(X<make()>) {}

These changes were aimed to allow
inplace_vector<T, N> to be more usable at compile
time, but that functionality can be postponed.

Revert the following changes introduced by
P3074R7:
Additions to [class.default.ctor] p4:
If a default constructor of a union-like class X is
trivial, then for each union U that is either X or an
anonymous union member of X, if the first variant
member, if any, of U has implicit-lifetime type
([basic.types.general]), the default constructor of X
begins the lifetime of that member if it is not the
active member of its union. [Note 1: It is already the
active member if U was value-initialized. — end
note]

Removal of [inplace.vector.overview] p4:
For any N>0, if is_trivial_v<T> is false, then no
inplace_vector<T, N> member functions are usable
in constant expressions.

Adding __cpp_lib_constexpr_inplace_vector
to [version.syn].

US
48-
086

 11.4.5.2

 te P3074 made unions trivial, but it did so in a way
that breaks some (admittedly obscure) code but
also doesn’t help solving a closely related
problem of wanting to have constexpr variables
of types that have such unions inside of them.
Both problems can be fixed by specifying the
rules better.

Adopt P3726.

p3726r0.html

DE-
087

 11.4.5.2
[class.defau
lt.ctor],
11.5.1
[class.union
.general],
7.7
[expr.const]

 te

Trivial unions in the CD are an essential
improvement but the open CWG issue 2999 (Trivial
unions changing existing
behavior) should be addressed.

Adapt both proposal 1 and proposal 2 from P3726

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 30 of 107

FR-
006
-088

 11.5.1

 te trivial unions (P3074) have been through many
completely different design iterations. Yet, the
version that has been adopted constitutes a
breaking change (CWG2999). It is also harder to
teach, or at least is less obvious than a library
solution, while making the rules around unions
even more convoluted.

Remove trivial union from C+26 and explore simpler
library solutions(std::uninitialized) reflective of
existing practices

AT2-
089

 13.1
[temp.pre]

Paragraph
8.2

te An entity defined in the for-range-declaration of
an expansion-statement should also be
templated. Currently, a structured binding pack
can only be declared in the for-range-declaration
of an expansion-statement if there is an
enclosing template.

Change 8.2 to: an entity defined (6.2) or created
(6.8.7) within the for-range-declaration or
compound-statement of an expansion statement
(8.7),

US
49-
090

 13.2

 Several parts of the standard and library
reference structural types, including library
mandates that types be structural, yet there is no
way to query whether a type is structural. Note
that the library mandates clauses mean that
library implementers must somehow have this
functionality, it is simply not exposed to users.

Add either a is_structural type trait, an
is_structural_type meta function, or both.

US
50-
091

 13.3

8, 9 ed Paragraph 8 says that “names or designates” but
paragraph 9 uses just “designates” when the
subject and object are the same.

Make the paragraphs consistent using whatever
the correct terminology is.

CA-
092

 13.3

Paragraph 1 te The change to the grammar of template-argument
in P2841R7, “Concept and variable-template
template-parameters”, causes dependent names
used (without template qualification) as
template arguments to be considered to name a
non-type, non-template entity, causing any
instantiation where the dependent name names a
template to be ill-formed. This is seen in the
treatment of the template argument in g<T::TT> in
the case of A<Tmpl> in the example from Core

Apply the suggested resolution in CWG 3032 except
that the last alternative should not use constant-
expression (e.g., in case it is the argument to a
template parameter of reference type). Instead, it
should use just expression.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 31 of 107

Issue 3032, “Template argument disambiguation”.
Said Core Issue also documents other similar
issues in the area that can be addressed at the
same time.

FR-
008
-093

 13.5.2.5

 te A fold expanded constraint should have a
parameter mapping behaving like the parameter
mapping of an atomic constraint.
Satisfaction of the Nth expansion of the fold
expression substitutes the Nth corresponding
argument from the expansion in the mapping.

CA-
094

 13.5.5

Paragraph 1 te The development of the “compatible for
subsumption” restriction for ordering of constraints
involving fold expressions was not sufficient to
prevent the class of problems it was designed to
handle. In particular, the effect of fold expressions
in concept definitions was overlooked. This
resulted in Core Issue 3021, “Subsumption rules
for fold expanded constraints”.

Consider the approach documented in CWG 3021.

US
51-
095

 13.7.4

 ed In [temp.variadic], bullet (6.9) has two sentences:

- In an attribute-list (9.13.1); the pattern is an
attribute. In an annotation-list; the pattern is an
annotation.

Each sentence in 13.7.4/(6.9) should be its own
bullet point, like this:

- In an attribute-list (9.13.1); the pattern is an
attribute.

- In an annotation-list (9.13.1); the pattern is an
annotation.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 32 of 107

US
52-
096

 13.7.8

2 ed The first sentence uses “designates” but the
second sentence uses “names”.

Make them consistent.

FR-
007
-001

13.08

 te A number of issues introduced by P2893
(Variadic friends) persist which make part of the
paper unimplementable

Adopt the proposed resolution to CWG2917

US
53-
097

 13.8.3.3

6 te It is not specified when/if an expansion-init-list is
type-dependent.

Add it to paragraph 6.

AT3-
098

 13.8.3.3
[temp.dep.e
xpr]

Paragraph
3.6

te This bullet was added by P1061R10 (Structured
Bindings can introduce a Pack), but it also affects
the type-dependence of non-structured binding
packs (i.e., constant template parameter packs
with non-dependent types).

Change 3.6 to “associated by name lookup with a
structured binding pack”

AT4-
099

 13.8.3.4
[temp.dep.c
onstexpr]

Paragraph 4 te The special case for a structured binding pack
introduces an unnecessary inconsistency. A
structured binding pack with a non-dependent
initializer should either always be instantiated
early or never, regardless of the expression it is
used in. The more comprehensive rule to always
instantiate early was removed after R7 of the
paper (P1061R7 Structured Bindings can
introduce a Pack), but the special case for “sizeof
...” remained.

Delete “unless the identifier is a structured binding
pack whose initializer is not dependent.”

US
54-
100

 13.10.3.1

8 te The term "immediate context" is crucially
important for understanding the behavior of
templates, but has remained undefined in the
Standard for over a decade. It is evident that a
perfect definition is not forthcoming, but the
Standard remains incomplete unless some
definition, even an imperfect one, is provided.

CWG should determine a wording strategy for the
resolution of CWG1844 (which may exclude
unresolved design questions such as CWG2296)
and solicit a paper to implement that direction to
the greatest extent practicable.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 33 of 107

CA-
101

 13.10.3.6

Paragraph
20

te As documented in Core Issue 2900, “Deduction of
non-type template arguments with placeholder
types”, the wording has not been updated to
handle template arguments (in either the P or A
positions) declared using placeholder types.

Apply the suggested resolution in CWG 2900.

US
55-
102

 15.1

 te This prohibits all preprocessing directives before
a module. This includes `#line` directives, which
are used by implementations in various
preprocessing or partial preprocessing modes.
This currently breaks several different build
systems that rely on these modes.

Allow `#line` and an implementation defined set of
preprocessing directives at the start of the
module-file grammar.

US
56-
103

 15.5

 te Paper P3034R1 made the declaration of private
module fragments ill-formed in phase 4, as the
pp-token private is an identifier in phase 4, so
matches the grammar for a module partition
without a module name.

p3034r1.html

Amend the grammar for pp-module, according to
P(TBD).

CA-
104

 15.7.1

Paragraph 9 te The implied behaviour that `likely` and `unlikely`
can be defined as names of function-like macros
but cannot be undefined does not seem to have
strong rationale.

Extend the exception for `likely` and `unlikely` to
include use with `#undef`.

US
57-
105

 15.7.1,
C.1.6

 te [diff.cpp23.library]/2 currently says:

 Affected subclause: 16.4.6.3
[res.on.macro.definitions]
 Effect on original feature: Names of special
identifiers may not be used as macro names.
Valid C++ 2023 code that defines
replaceable_if_eligible or
trivially_relocatable_if_eligible as macros is
invalid in this revision of C++.

In 15.7.1 /9, replace the phrase "the identifiers
listed in Table 4" by "the identifiers with special
meaning listed in Table 4".

In C.1.6, replace "16.4.6.3 [res.on.macro.names]"
by "15.7.1 [cpp.replace.general]".

Add "identifiers with special meaning" as a term in
the Index, pointing to [cpp.replace.general] and
[lex.name] at least.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 34 of 107

"special identifiers" presumably means
"identifiers with special meaning." But
[res.on.macro.names] doesn't say that you can't
define those as macros; in fact, [lex.name]
strongly implies that you can. [macro.names]/2
used to say you can't, but that wording was
recently moved to [cpp.replace.general]/9
instead:

 A translation unit shall not #define or #undef
names lexically identical to keywords, to the
identifiers listed in Table 4, or to the attribute-
tokens described in [dcl.attr], except that the
names likely and unlikely may be defined as
function-like macros.

And [res.on.macro.names] restricts macros
defined by the Standard Library, not by user
code.

In 5.11 [lex.name], between sentences 2 and 3,
insert: "[Note: Identifiers with special meaning are
not permitted to be used as macro names
[cpp.replace.general]. —end note]"

US
58-
106

 15.7.3

2 te The order of evaluation between # and ##
operators is unspecified, which means it is not
only not portable between compilers, but has no
guarantee to produce the same result on two
successive translations of the same source file by
the same compiler. As the user cannot take
control of the ordering with parentheses, the
order of evaluation should at least be
implementation defined to bring consistency and
predictability.

Replace unspecified in the last sentence with
implementation defined. If all implementations
produce the same definition, we might fully specify
the order for the next standard.

US
59-
107

 15.7.4

3 te The order of evaluation between two ##
operators is unspecified, which means it is not
only not portable between compilers, but has no
guarantee to produce the same result on two
successive translations of the same source file by
the same compiler. As the user cannot take
control of the ordering with parentheses, the

Replace unspecified in the last sentence with
implementation defined. If all implementations
produce the same definition, we might fully specify
the order for the next standard.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 35 of 107

order of evaluation should at least be
implementation defined to bring consistency and
predictability.

FR-
009
-108

 15.8

 te The restrictions in the range of values [1,
2147483647] does not match existing
practice, some implementations accept 0 or a
number greater than 2147483647

Make the value accepted by line a positive integer in
an implementation-defined range,

CA-
109

 15.12

Paragraph 1 te The value of `__cplusplus` should be updated. At the 2026-03 meeting, update the macro to
202603L

US
60-
110

 15.13

1 te There are multiple kinds of string literal prefixes
now, not just the character L. C fixed their
corresponding specification in C11.

remove the L and replace as "deleting the
encoding-prefix, if present, ..."

CA-
111

 15.13

Paragraph 1 te The destringization mechanism specified omits any
treatment of the d-char-sequence, etc. of a raw
string literal.

Make cases where the string-literal is a raw string
literal ill-formed.

US
61-
112

 16.3.2.4

03.4

te The hardened implementation should be
specified independently of contracts which are
not a proven technology. All existing deployed
field experience are not based on contracts.

Change “contract violation” to “runtime violation”.

FR-
010
-113

 16.3.2.4

03.4

te The hardened implementation should be
specified independently of contracts which are
not a proven technology. All existing deployed
field experience are not based on contracts.

Change “contract violation” to “runtime violation”.

US
62-
114

 16.3.3.2

16.3.3.7

16.4.2.5

1

1, 5

4

ed The wording should be updated to reflect the fact
that type aliases are now entities.

Remove the references to typedef-names from
16.3.3.2 paragraph 1, 16.3.3.7 paragraph 1, the
introductory text of 16.3.3.7 paragraph 5, and
16.4.2.5 paragraph 4. 16.3.3.7 bullet 5.7 should
now say “type alias” instead of “typedef-name”.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 36 of 107

US
63-
115

 16.3.3.3.4.1

01.2

ed Character sets should be defined in [lex.charset].
The execution character sets are referenced only
in the definition of NTMBS in the library wording.

Move [character.seq.general]p(1.2) to immediately
precede [lex.charset]p4.

US
65-
116

 17.3.2

 te There are forward declarations of entities from
<spanstream> and <syncstream> in <iosfwd> so
their feature macros should be added to that
header too.

Add <iosfwd> to the "also in" entries for
`__cpp_lib_char8_t`, `__cpp_lib_spanstream`,
and `__cpp_lib_syncbuf`.

US
66-
117

 17.3.2,
23.7.3.2,
23.7.3.7.4,
23.7.3.7.5,
23.7.3.7.6.1
, 23.7.3.7.7

 te As P3663 explains, it is currently undefined
behavior if future C++ versions expand the set of
valid slice specifier types for submdspan, and if
the new types get used with a C++26 – compliant
user customization of submdspan_mapping. Any
addition to the tuple-like exposition-only concept
would add to the set of valid slice types. This will
happen in C++26 (std::complex is now tuple-like)
and WG21 proposals in flight may make it
happen in future C++ versions.

P3663 fixes this by having submdspan
“canonicalize” the open set of valid slice types to
a fixed set of canonical types before calling the
user’s submdspan_mapping, and by requiring
that customizations of submdspan_mapping be
ill-formed if called with non-canonical slice types.
This makes behavior of C++26 – compliant
customizations well-defined with new slice types.

p3663r2.html

Adopt the latest revision of P3663 (currently R2),
“Future-proof submdspan_mapping.”

p3663r2.html

PL-
012 17.9

[support.exc
eption] te Making current_exception/uncaught_exceptions

constexpr, causes a breaking change, where the
existing code changes its meaning for the

Address the breakage.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 37 of 107

following code:
int const u = std::uncaught_exceptions();
bool const c = std::current_exception();

US
67-
118

 17.9.2,
17.9.6

 te As pointed out on the CWG mailing list, both
assertions here may fail in C++26:

 const int n1 = std::uncaught_exceptions();
 assert(n1 == std::uncaught_exceptions()); //
FAIL
 int n2 = std::uncaught_exceptions();
 assert(n1 == n2); // FAIL

Because `uncaught_exceptions()` became
constexpr in C++26, the initializer for n1 can now
be evaluated at compile-time, where it is
invariably zero.

C++23 was fine with a non-constexpr
`uncaught_exceptions()`. We have discovered
that constexpr `uncaught_exceptions()` causes
real problems in the CD. The best course of
action is to continue shipping C++23's non-
constexpr `uncaught_exceptions()` for now; we
will have the next three years to think about how
(and whether) to constexpr-ify it.

There is a similar issue with constexpr
`std::current_exception()` and code like:

 const auto ep1 = std::current_exception();
 auto ep2 = std::current_exception();
 assert(ep1 == ep2); // FAIL

Intuitively this latter issue seems less likely to bite
programmers in practice, but perhaps it also
should be fixed.

In 17.9.2, strike the word "constexpr" from
 constexpr int uncaught_exceptions() noexcept;

In 17.9.6, strike the word "constexpr" from
 constexpr int uncaught_exceptions() noexcept;

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 38 of 107

In the long term, we suggest that C++29 should
deprecate "trial constant-evaluation" of `const`
scalar variables, and then C++32 remove trial
constant-evaluation. Then n1's initializer would
never be constant-evaluated, even if
`uncaught_exceptions()` were made constexpr in
C++32.

GB03
-119

17.9.6

te

Adding the constexpr specifier to
uncaught_exceptions() and
current_exception() causes breaking
changes in trial constant evaluation
Consider:
#include <exception>
int i = 1;
int main () {
 try {
 struct S {
 ~S() {
 // x is initialized to 0 in
 // trial constant evaluation
 const int x =
 std::uncaught_exceptions();
 i = x;
 }
 };
 S s;
 throw 0;
 } catch (...) {
 const bool x =
(std::current_exception() !=
nullptr);
 return i + x;
 }
}
The program returns 0, which is a breaking
change compared to C++23, where it returns 2.

Adopt the proposed wording change of
P3842R0: “A conservative fix for
constexpr uncaught_exceptions() and
current_exception().”

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 39 of 107

Previously discussed on the core and lib
reflectors (same thread mirrored on both):

https://lists.isocpp.org/core/2025/08/18460.php
https://lists.isocpp.org/lib/2025/08/32521.php
Discussed on LEWG telecon 9th Sep 2025:
https://wiki.edg.com/bin/view/Wg21telecons2025/
P3818#Library_Evolution_Telecon-2025-09-09

DE-
120

 17.9.6
[support.exc
eption.unca
ught.excepti
ons],

17.9.7
[support.exc
eption.prop
agation]

 te

Both std::uncaught_exceptions() and
std::current_exception() refer
to global state of the runtime, but are marked
"constexpr".
It is understood that the exception machinery
during constant evaluation
maintains state different from the runtime state, so
it is unclear
which state is referred to in situations where both
could be in view,
also in existing code, e.g.

 const int x = std::uncaught_exceptions();
 const bool b = std::current_exception() == nullptr;

Remove "constexpr" from these two functions for
C++26 and
design a more comprehensive approach for C++29.

FI-
121

 17.9.6/17.9.
7

 te Making std::uncaught_exceptions()
and std::current_exception()
constexpr is a breaking change. Undo
that breaking change, and do nothing
else to these facilities. Figure out a
better solution in the next standard.

Adopt the wording in P3842 that strikes
the constexpr decl-specifier from the
functions mentioned.

US
68-
122

 17.9.7

13-15 te template constexpr const E*
exception_ptr_cast(const exception_ptr& p)
noexcept; should be revised to use const

https://isocpp.org/files/papers/P3739R2.html

https://lists.isocpp.org/core/2025/08/18460.php
https://lists.isocpp.org/lib/2025/08/32521.php
https://wiki.edg.com/bin/view/Wg21telecons2025/P3818#Library_Evolution_Telecon-2025-09-09
https://wiki.edg.com/bin/view/Wg21telecons2025/P3818#Library_Evolution_Telecon-2025-09-09
https://isocpp.org/files/papers/P3739R2.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 40 of 107

 optional<&> instead of pointer as it is safer from
null pointer dereference, pointer arithmetic and
indexing issues

p3739r2.html

CZ3-
123

 17.9.7
[propagatio
n]

current_exc
eption and
uncaught_e
xception

te Interaction between constant evaluation and 7.7.8
[expr.const] “potentially constant” initialization is
introducing a silent breaking change of code using
const integer local variables to store result of
uncaught_exception

Explicitly limit the breaking change by adding
“Constant when: not evaluated within potentially-
constant [expr.const] initialization.” as proposed in
P3818R1

GB04
-124

17.10.3

5
te

Remove evaluation_exception() from
contract-violation handling
On some platforms, a conforming implementation
of
std::contracts::contract_violation::
evaluation_exception() may have to copy
the exception object thrown from a contract
check before invoking the contract-violation
handler. This copy may execute user code (copy
constructor of a user-defined exception type).
However, user code execution after a contract
violation has been detected but before the
contract-violation handler is called may pose a
security risk. To mitigate any such risk, we should
remove member function
evaluation_exception() from the standard
library type
std::contracts::contract_violation.
We can add this function back in future versions
of C++ if it can be shown that the security risk is
fully avoidable. In the meantime, the functionality
it offers is available through other means.

Apply the changes proposed in P3819R0
Remove member function
evaluation_exception() from the standard
library type
std::contracts::contract_violation.

US
69-
125

 17.10.3

5 te During implementation it was discovered that
evaluation_exception() cannot be implemented
with a trivial implementation in general ---
something must be done to enable retrieving an
exception_ptr that might not be the top of the
exception stack when evaluation_exception() is
invoked, and the exception facility does not
natively provide that functionality. Given the tools

Adopt P3819R0 (i.e., Remove
contract_violation::evaluation_exception()).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 41 of 107

that an exception facility must currently provide
an implementation must create an exception_ptr
when an exception escapes a predicate, and that
might involve copying the exception after a
violation has been identified but before the
violation handler is invoked (which would violate
essential principles of Contracts in supporting the
need to fail fast). See P3819R0 for additional
discussion and rationale.

US
70-
126

 17.12.7

 te type_order and type_order_v should allow
incomplete types.

Add explicit permission to do so.

US
64-
127

 17–33

 ed Consistently remove every redundant typename
after a using declaring a type alias in the
standard library, as per P2150r0.

p2150r0.html

Adopt “3.2.1 Remove typename from Alias
Definitions” from P2150r0.

p2150r0.html

US
71-
128

 18.7.3,
24.3.4.5

 ed In [concept.regularinvocable], "This requirement
supersedes the annotation in the definition of
invocable" is confusing, because there are no
annotations (9.13.12) in the definition of
invocable.

The same issue recurs in [iterator.concept.inc].

In 18.7.3, replace the word "annotation" with
"comment".

In 24.3.4.5, replace the word "annotations" with
"comments".

GB05
-129

19.3.3

3
te

assert should forbid uses of co_await and
co_yield
Should not try to support things
like assert((co_await x, true))

Add to paragraph 3: If its expansion
contains the co_await or co_yield

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 42 of 107

keywords, the program is ill-formed, no
diagnostic required.

US
72-
130

 20

 te P3516's std::uninitialized_relocate and
std::uninitialized_relocate_backward were
design-approved and entered LWG review, but
are not actually present in the CD.

These algorithms are convenient in order to
implement user-defined containers similar to
std::vector with relocation. They are used in
practice already (6700 hits in a GitHub search for
"uninitialized_relocate"). These algorithms are a
flagship part of the "relocation" feature.

We should not ship a "relocation" feature without
these standard library algorithms.

p3516r2.html

Adopt P3516R2 "Uninitialized algorithms for
relocation".

p3516r2.html

US
73-
131

 20.2.2,
20.2.6

 te std::relocate is redundant with the STL algorithms
std::uninitialized_relocate and
std::uninitialized_relocate_backward as design-
approved in P3516.

The latter algorithms are more general, and are
used in practice (6700 hits in a GitHub search for
"uninitialized_relocate"). The former function
template is novel and unused in practice; the only
Google hits for "std::relocate" are talking about a
different function, from P1144R6, which has
entirely different semantics from the CD's
std::relocate. (P1144R6's "std::relocate" relocates
from its argument into its return slot, enabling
return-by-relocate. The CD's std::relocate simply

Adopt P3631R0 "Cleaning up the trivial relocation
APIs in C++26".

p3631r0.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 43 of 107

duplicates the functionality of the CD's
std::uninitialized_relocate.)

p3516r2.html p1144r6.html

RU-
132

 20.2.3.3

Member
functions
[pointer.trait
s.functions]

te `pointer_traits::pointer_to` should be
`constexpr` to implement some of
the constexpr containers

Consider applying the remaining part
of the fix from library issue 3454 and
close it as fixed.

CA-
133

 20.2.6

 te The std::relocate function provides a confusing,
insufficient and unsafe API. It works with raw
pointers (safety issue), it does not handle
potentially throwing moves (which makes it
insufficient for usage within general containers),
and it steps on the toes of the uninitialized
algorithms (P3516) that WG21 agreed was the
correct user-facing API. P3516 was design-
approved but missed C++26 due to limited LWG
bandwidth in Sofia. We should remove
std::relocate instead of introducing an API that we
know to be problematic and already have a
designed successor for.

Remove std::relocate from [obj.lifetime].

RO 1-
134

9-15 20.2.6

 te Although trivially_relocate was intended
as the most fundamental operation for trivial
relocatability, it’s insufficient for key functions like
realloc, which may either move an object’s
data or leave it in place. A more primitive
operation, start_lifetime_at, addresses this
and related use-cases.

Add the following to 20.2.6 [obj.lifetime]:

template T*
start_lifetime_at(uintptr_t origin,
void* p) noexcept;

Mandates: is_trivially_relocatable_v
&& ! is_const_v is true.

Preconditions:
– [p, (char*)p + sizeof(T)) denotes a
region of allocated storage that is a subset of the
region of storage reachable through
[basic.compound] p and suitably aligned for the
type T.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 44 of 107

– The contents of [p, (char*)p + sizeof(T))
is the value representation of an object a that was
stored at origin.
Effects: Implicitly creates an object b within the
denoted region of type T whose address is p,
whose lifetime has begun, and whose object
representation is the same as that of a.
Returns: A pointer to the b defined in the Effects
paragraph.

US
74-
135

9-15 20.2.6

 te Although trivially_relocate was intended
as the most fundamental operation for trivial
relocatability, it’s insufficient for key functions like
realloc, which may either move an object’s
data or leave it in place. A more primitive
operation, start_lifetime_at, addresses this
and related use-cases.

Add the following to 20.2.6 [obj.lifetime]:

template T*
start_lifetime_at(uintptr_t origin,
void* p) noexcept;

Mandates: is_trivially_relocatable_v
&& ! is_const_v is true.

Preconditions:
– [p, (char*)p + sizeof(T)) denotes a
region of allocated storage that is a subset of the
region of storage reachable through
[basic.compound] p and suitably aligned for the
type T.
– The contents of [p, (char*)p + sizeof(T))
is the value representation of an object a that was
stored at origin.
Effects: Implicitly creates an object b within the
denoted region of type T whose address is p,
whose lifetime has begun, and whose object
representation is the same as that of a.
Returns: A pointer to the b defined in the Effects
paragraph.

CA-
136

 20.2.6

Paragraph
16

te Const objects can be destroyed and const objects
can also be created therefore requiring

Allow const-qualified types for `relocate` by
striking the `!is_const_v<T>` mandate.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 45 of 107

`!is_const_v<T>` for `relocate` is
overconstraining.

CA-
137

 20.2.6

Paragraph 9 te Const objects can be destroyed and const objects
can also be created therefore requiring
`!is_const_v<T>` for `trivially_relocate` is
overconstraining.

Allow const-qualified types for `trivially_relocate`
by striking the `!is_const_v<T>` mandate.

US
75-
138

 20.3.2.2
20.3.2.3
20.3.2.4

 te There seems to be few if any valid constexpr use
of owner_before outside of extremely contrived
examples.

Reconsider whether it makes sense for
owner_before and owner_less to be constexpr.

US
76-
139

 20.3.2.2.7

13,19,28 te These attempt to form the type U[N] which is not
a valid type when N == 0.

Specify what happens in that case.

US
77-
140

 20.4.1

 te indirect<T> should convert to T& to simplify the
use cases (e.g., returning the object from a
function with a return type T&) where indirect<T>
appears as a drop-in replacement for T when T
may be an incomplete type conditionally. With the
proposed change, indirect<T> is closer to
reference_wrapper<T>, but carries storage

Add (constexpr and noexcept) operator const T&()
const &, operator T&() &, operator const T&&()
const &&, and operator T&&() &&,

GB06
-141

21

te

Support emitting messages at compile-time.
With the greatly increased support for compile-
time programming (constexpr exceptions,
constexpr containers, reflection, …) it is more
important than ever that we can debug compile-
time code. There is currently no support for this.

Adopt P2758 “Emitting messages at
compile time”

FR-
007-
011
-142

 21.2

 te While we have expansion statements and the
ability to introduce packs in C++26, we cannot
use them with std::integer_sequence. That makes
them significantly less useful.
The remedy is to give the type support for the
structured bindings protocol, as proposed by
P1789R1, which was already forwarded by
LEWG.

Adopt P1789R1.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 46 of 107

CZ2-
143

 21.2 [intseq]

whole
section

te Index sequence should be destructurable as
proposed in P1789R1, and this functionality is
missing to improve metaprograming facilities. And
it was missing in proposal P1061R10 which added
ability to introduce pack in structured binding.

Adopt changes proposed by P1789R1.

US
78-
144

 21.2.2

 te With the adoption of allowing packs in structured
bindings and expansion statements, it now
becomes very useful to have
std::integer_sequence opt into structured
bindings. Failing to do so makes it behave as a
type with no members, which is a very surprising
outcome.

Adopt P1789.

US
82-
145

 21.3.12

 te P2641 added the function std::is_within_lifetime,
but it is too specific. A very slight generalization
allows it to also check for derived classes being
within their lifetime, which is significantly more
useful.

p2641r4.html

Adopt P3450.

p3450r0.html

US
79-
146

 21.3.3

 te The “cw-fixed-value” construction in the default
template argument for the second template
parameter of constant_wrapper is redundant.

Delete it.

RU-
147

 21.3.3

Header
<type_traits
> synopsis
[meta.type.s
ynop]

te Misuses if type traits cause UB and
hard to debug errors. Put time into
solving library issues 3099 and 3022
and consider hardening the compile
time preconditions

US
80-
148

 21.3.5

 te The trailing requires-clause of operator() has an
unused (Args…).

Remove it.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 47 of 107

US
81-
149

 21.3.6.4

Table 54 te The precondition for is_consteval_only is
insufficient. A definitive false answer requires
every type that T is compounded from to be
complete or cv void.

Modify the precondition accordingly.

US
85-
150

 21.4

 te The reflection APIs are specified to throw an
exception, but the contents of that exception are
insufficiently precise. We should specify that the
exception thrown has its from() populated from
the API that failed.

Adopt P3795R0, section 2.7

p3795r0.html

US
84-
151

 21.4

 ed In some examples static_asserts are presented
without comment while others they are presented
with the comment // OK.

Make them consistent.

US
83-
152

 21.4

 ed In many cases a Throws: or a Remarks:
paragraph is separated from the rest of the
specification of the function by a long example,
making it easy to miss.

Move the examples to the end.

RU-
153

 21.4

Reflection
[meta.reflect
ion]

te Reflection allows stateful
metaprogramming, however Core
issue 2118 "Stateful
metaprogramming via friend injection"
still tries to prohibit it. Consider
explicitly stating that “it is fine” as
some of the popular applications rely
on friend injection stateful
metaprogramming

Consider closing Core issue 2118
"Stateful metaprogramming via friend
injection" as NAD.

BDS1
-154

21.4
[meta.refl
ection]

te

Reflection functions in [meta.reflection]
are specified to throw
std::meta::exception, but the contents of
the thrown exceptions aren’t specified.

Add a paragraph to [meta.syn] with the following
contents:

When a function or function template F
specified in this header throws a
meta::exception E, E.what() is a string

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 48 of 107

describing the error, E.from() is a
reflection representing F, and E.where()
is the source location of the call to F.

FR-
017
-155

 21.04.01

 Te meta::has_ellipsis_parameter is a
confusing name, as it could refer to either a C-
variadic function, or to a variadic C++ template
parameter.

Introduce a core term to describe functions with
such an ellipsis - (maybe c-variadic function) and
rename
meta::info::has_ellipsis_parameter to
be reflective of that term

US
87-
156

 21.4.1
21.4.18

 ed The annotations functions should be grouped
with the other queries instead of being placed at
the end of 21.4.

Move 21.4.18 to after 21.4.11 and likewise update
the synopsis.

US
86-
157

 21.4.1
21.4.3
21.4.15

 ed The title of 21.4.3 is misleading since two of the
three functions are not about to strings.
Additionally, the specification in 21.4.3 is heavily
dependent on the functions specified way below
in 21.4.15.

Merge 21.4.3 and 21.4.15 into one subclause
“Promoting to static storage”. Update the synopsis
in 21.4.1 accordingly

PL-
010

 21.4.1 [meta.syn]

te The functions inside the std::meta should not be
marked as addressable functions. This prevents
us from changing their signature or providing
additional overloads with the same name in the
future, as this would break existing code that
passes &std::meta::function to algorithms.

For illustration, currently, traits like
is_constructible_type do not allow you to define
the context in which the constructibility should be
checked and use the equivalent of
std::access_context::unprivileged, i.e., private
members are not usable.

In the future standard, we could add additional
overloads accepting access_context arguments
that would allow us to inspect if the class has a
private constructor.

Remove [meta.syn] p1:
Unless otherwise specified, each function, and
each specialization of any function template,
specified in this header is a designated
addressable function ([namespace.std]).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 49 of 107

FR-
012
-158

 21.4.1

 te that std::meta::is_class_type would error when the
parameter is not a type is confusing, and would
lead to needlessly verbose and cumbersome usage
of reflection interfaces.
This problem is fairly well described by P3781

Adopt something along the lines of what is
proposed by P3781

FR-
013
-159

 21.4.1

 ge It is not clear how range producing methods such
as members_of are supposed to be implemented
efficiently.
A compiler cannot manipulate std::vector
directly, as they are fairly complex types with large
implementation divergence.
And we want to avoid going from the constant
evaluation domain to compiler internals for each
reflected element as this would be inefficient.
Instead, to implement members_of an
implementation should either
- Construct a vector of the correct size in
an uninitialized state and pass data() to the
compiler (which would require 2 round trips
between constant evaluation and compiler
internals)
- Have a vector interface that takes
ownership of a pointer + size

Given the number of compilers and standard
libraries that need to interoperate, it would have
been useful to standardize a way to construct a
vector from a range of reflection efficiently.

Adding a constructor to std::vector that would take
ownership of an allocation would facilitate
implementation of reflection.
Such a constructor could be exposition-only but it
should be consistent across implementations.

We would prefer reflection to keep using std::vector
rather than a new type such a proposed by P3429

FR-
014
-160

 21.4.1

 te define_static_string and
define_static_object exist as a library
solution to limitations to the set of types that are
allowed to exist as template parameters.
However, while these functions technically solve
the problem, it's unlikely that they would be useful

- make string_view structural
- make span of structural types structural
(a compiler can ignore access for these types)

- consider whether we could make
std::string and std::vector of structural types
structural in C++26. The general problem of making

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 50 of 107

long term and they add undue complexities to
common reflection use cases.

vectors of arbitrary types, or to make arbitrary
containers structural does not have to be solved to
make reflection more useful.

FR-
015
-161

 21.4.1

 It is not clear how meta::has_default_argument
should interact with CWG2701

remove meta::info::has_default_argument from
C++26 and consider a holistic solution to the
problem of reflecting on composants that can
change between different declarations of the same
entity.

FR-
016

-162

 21.4.1

 C++26 allows reflecting on function parameter
names.
Parameter names are historically not part of the
interface of libraries, as they were only referenced
inside functions.

Allowing reflection on function parameter names
extends the set of properties observable in existing
code that was never designed with that possibility.

Given Hyrum's law, this aspect of reflection in
particular (and the extension of what are the
constituent parts of a library interface in general)
will cause undue burden on library writers.

We would prefer solutions where
- parameters are manipulated through their
indexes
- there is some opt-in mechanism for
libraries that want to render their names visible.

Disallow reflecting on parameter names in C++26

US
88-
163

 21.4.1

2 ed In Note 2, “The behavior …have semantics” is
not grammatically correct.

Strike “The behavior of”.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 51 of 107

US
103-
164

 21.4.10

6 ed There is an extraneous “of” before “B”. Strike it.

US
104-
165

 21.4.11

2 ed “direct base class relationship” is not an entity. Change to “construct” or similar.

US
105-
166

 21.4.11

5 ed Bullet 5.3 does not work with the introductory text
of the list.

Move it out of the list.

US
106-
167

 21.4.11

6 te “W is not ⊥” should be “W is ⊥” as the goal is to
exclude bit-fields.

Strike “not”.

US
107-
168

 21.4.11
21.4.18

6, 8, 10
5

ed 21.4.11 bullets 6.2, 8.2, and 10.2 and 21.4.18
bullet 5.2 are saying the same thing but in two
different ways.

Change 21.4.11 bullet 10.2 and 21.4.18 bullet 5.2
to use the same words as 21.4.11 bullet 6.2 and
8.2.

US
108-
169

 21.4.11

7 ed In bullet 7.5, A is already a value; it does not
make sense to ask for “the value of A”.

Strike “of”.

US
109-
170

 21.4.11

8 te This should similarly disallow data member
descriptions of bit-fields.

Add “(T, N, A, W, NUA) (11.4.1) where W is ⊥”
after “data member description”.

US
110-
171

 21.4.12

07.1

ed There is an extraneous “T is” before
“is_convertible_v”. Additionally, X is formatted
differently (in code font in two places and not
when it first appeared).

Strike “T is”. Format X consistently.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 52 of 107

US
112-
172

 21.4.12

10 te Bullet 10.3 should disallow derived-to-base
conversions, just like bullet 10.1.

Add a requirement that remove_extent_v<U>*
and T are similar types.

US
113-
173

 21.4.12

12 te The second if branch should not be constexpr. Strike “constexpr”.

US
111-
174

 21.4.12

8, 10 ed U is in code font in paragraph 10 but not in
paragraph 8

Make them consistent.

US
114-
175

 21.4.13

 te This wording needs to be updated to account for
the splice-specifier changes.

Resolve LWG issue 4316.

US
115-
176

 21.4.13

1, 5 ed The wording should specify that the order of
elements of Args is that of the elements in
arguments. (This was in the incoming paper.)

Add “, in order” after “arguments” in paragraphs 1
and 5.

US
116-
177

 21.4.13

9 ed The first error message could be clarified to
explicitly say that the undeduced placeholder
type is the return type.

Reword as: // error: fn<int> contains an
undeduced placeholder type for its return type.

US
117-
178

 21.4.14

4 ed Does the class TCls need to be marked as
exposition-only?

Move the intended class template TCls to the end
of p2: "Let TCls be the invented template
template<T P> struct TCls;, strike ", with TCls as
defined below" from p3, and "given the invented
template template<T P> struct TCls;" from p4.

US
118-
179

 21.4.14

8, 11 te This should talk about the object/function
designated by expr/fn, rather than expr/fn.

Reword accordingly.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 53 of 107

US
119-
180

 21.4.15

1 ed The name and (1) seem incorrect here. The
section is called "Promoting to static storage
arrays", similar to 21.4.3, but it's doing strings as
well. (1) is also a copy-paste of the overview of
21.4.3 (1). This section and 21.4.3 should also be
merged or put alongside each other.

Merge this clause with the (renamed) 21.4.3
above.

US
120-
181

 21.4.15

10 te It is not clear what ei is when proxy references
are involved.

Specify that it is T.

US
121-
182

 21.4.15

11 te The initialization of P uses copy-initialization but
the Mandates clause uses direct-initialization.

Tighten the requirements.

AT5-
183

 21.4.15

Paragraph
11

te The return type of reflect_constant_array
is currently inconsistent as std::array is used
for zero-length results and language-level arrays
are used for all other sizes.

Rewrite paragraph 11 as:
Let P be the template parameter object (13.2) of
type const array<T, sizeof...(V)>
initialized with {[:V:]...}.

US
122-
184

 21.4.16

 te data_member_spec() separates the type from
every other option. But the name is almost
always mandatory, which makes the usage
strange. The type should be moved into the rest
of the options.

Adopt P3795R0, section 2.3.

FR-
018-
185

 21.4.16

 Te define_aggregate has a very narrow set of use
cases, and a very novel interface that offers limited
options and use cases.
That interface, whose usage is very different from
the rest of C++ will likely be obsoleted in the near
future, and will just become a maintenance
burden.
That interface is also not very extensible and it
seems it is solely motivated by the desire to ship a
barely usable form of generative meta
programming in 26.
It's also one of the most problematic aspect of
reflection/P2996 as there remain questions around

Remove define aggregate (and
data_member_options, data_member_spec) form
C++26

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 54 of 107

complete class contexts, reachability and lookup
(even if consteval blocks solved some of these
issues)

US
124-
186

 21.4.16

05.1

te This function throws if "dealias(type)" is either
and object type or reference type. However, the
worded appears to just assume that the given
"meta::info type" value represents a type at all.

Specify that is_type(type) must be true as a
precondition, or modify the wording to throw an
exception if this is false.

US
123-
187

 21.4.16

2, 3 ed The declaration is neither meaningful C++ nor
fragment from the class definition.

Either qualify as name-type::name-type or do not
qualify at all if it is intended as a “quote” from the
class definition.

US
125-
188

 21.4.16

7 ed Similar to the above comment; is the wording
here correct to ensure that C in indeed a
reflection of an incomplete class type? Should it
be written as a "Mandates:" requirement, making
the program ill-formed?

Add a new paragraph after
[meta.reflection.define.aggregate]p7: Mandates: C
shall be an incomplete class type.

US
126-
189

 21.4.16

8 te This should clarify that, despite the completeness
of C affecting the semantics of the program, no
implicit instantiation is performed not
withstanding 13.9.2.

Add an exception to the general rule, possibly as
a new Remarks paragraph.

US
127-
190

 21.4.16

8, 9 te NK is defined as an identifier (see 11.4.1) and
should not be compared with code or with string
literals in bullet 8.4. Similarly, 9.5.1 should not
talk about “character sequence encoded by NK”

Reword the specification to be consistent with the
language definition.

US
129-
191

 21.4.17

 te P2996 added a large number of consteval
functions named is_meow_type. Those currently
throw an exception when passed a reflection not
representing a type, but that is pretty surprising
and user-hostile. They should simply return false
for non-types, as the names suggest.

p2996r13.html

Adopt P3781.

p3781r0.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 55 of 107

US
128-
192

 21.4.17

 te P2996 added consteval metafunctions for every
type trait in the standard library, except for three
new ones that were adopted in Sofia:
is_applicable, is_nothrow_applicable, and
apply_result. Those should be added as well.

Adopt P3795R0, section 2.5

p3795r0.html

US
130-
193

 21.4.17

Table 64 te This table does not say what happens if
std::FOO_t<…> does not exist.

Specify that an exception is thrown.

DE-
194

 21.4.17
[meta.reflec
tion.traits]

 te

Reflection traits with a name of form "is_*_type"
should imply trait
'std::meta::is_type(std::meta::info)' as the name of
the trait implies. Such kind of a trait can be
answered with a clear 'yes' or 'no' - leaving no room
for anything else, such as raising an an exception.
Paper P3781r0 expands on that and gives details,
including a list of traits which are affected, and
which are not.

Do not apply clause 2 to said traits (as listed in
P3781r0), making them free of preconditions.

US
131-
195

 21.4.18

 te Annotations are not allowed on function
parameters, due to annotations and function
parameter reflection being added in parallel.
They should be allowed.

Adopt P3795R0, section 2.4

p3795r0.html

US
89-
196

 21.4.3

 ed The name of the section is "Promoting to static
storage strings". This makes sense if the only
function was define_static_string, but there is
also define_static_array and define_static_object.
The segment name should be more general.

Rename the segment to "Promoting to static
storage".

US
90-
197

 21.4.3

4-5 te template consteval const remove_cvref_t*
define_static_object(T&& t); should be revised to
return const T& instead const T* since it is never
nullptr. Current pointer interface requires usage
to constantly dereference with * even the default
usage in input parameters is const T&. automatic
and static storage duration is by default not
nullptr. A pointer interface implies the possibility

https://isocpp.org/files/papers/P3739R2.html

p3739r2.html

https://isocpp.org/files/papers/P3739R2.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 56 of 107

of nullptr which doesn’t seem to be the case
here. If nullptr was a possibility, which it isn’t,
then const optional<&> should have been used
instead.

US
91-
198

 21.4.5

2 ed There is an extraneous “the” before
“operators”.

Strike it.

US
92-
199

 21.4.5

Table 63 ed The header row should have borders on the left
and right.

Add them.

US
93-
200

 21.4.6

 te source_location_of seems inconsistent with other
query functions that may not have a sensible
return value. Some of these other functions have
a corresponding function for querying if the call
would be valid. For example, identifier_of has the
corresponding has_identifier function, and
template_arguments_of has
has_template_arguments.

Add a has_source_location function.
source_location_of can continue to return a
default value, or throw an exception like
identifier_of.

US
94-
201

 21.4.6

3 ed The font of N in bullet 3.6 should be consistent
between the two occurrences.

Make them consistent.

US
95-
202

 21.4.7

 te There are a few simple predicates that were
overlooked in the adoption of P2996, that are
consistent with other simple predicates that were
present: is_inline, is_constexpr, and is_consteval.

Adopt P3795R0, section 2.1.

p3795r0.html

US
97-
203

 21.4.7

25 te Language linkage is a property of functions,
variables, and function types (9.12), not of
names.

Respecify has_c_language_linkage according to
the language definition.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 57 of 107

US
98-
204

 21.4.7

26 te Years of experience with traditional type traits
have repeatedly demonstrated that
is_complete_type is an extremely dangerous
meta function that naturally leads to ODR
violations and other IFNDR conditions. There is a
strong demand for an assert_is_complete facility
that should be added to replace this specific
function.

Remove the is_complete_type meta function and
add a new meta function,
assert_is_complete_type that throws a
meta::exception unless passed a reflection to a
complete type. Revise the three applications of
the is_complete_type meta function in the meta
functions library to fail in the same way, ideally by
using the new assert_is_complete_type meta
function.

US
99-
205

 21.4.7
21.4.11

50 te The Throws paragraph on dealias is inconsistent
with its use in 21.4.11 (e.g., 21.4.11 paragraph 6
contemplates that dealias(r) can represent
various things that are not entities).

Either remove the restriction and specify that in
his case the input is returned unchanged, or edit
21.4.11 to not use dealias.

US
96-
206

 21.4.7

7 ed Second comment in example 2 should say
constant_of(^^x) instead of constant_of(x)

Add the missing ^^.

US
100-
207

 21.4.8

 te std::meta::access_context provides a mechanism
for getting the current scope, which is a useful
and occasionally asked for piece of functionality.
But it provides it in a very surprising and indirect
way. We should provide this functionality in a
more discoverable, direct way.

Adopt P3795R0, section 2.2.

p3795r0.html

US
101-
208

 21.4.8

11 ed The declaration of via has an extraneous
static.

Strike it.

US
102-
209

 21.4.9
21.4.18

6, 8
5

te “is a constant (sub)expression” is incorrect now
that errors are reported via exceptions

Change to “the evaluation of…would not exit via
an exception”.

FR-
019
-210

 22.2.1

 te The design space of constant evaluated function
parameters, constant_wrapper, nontype_t and its
integration in function_ref has not been fully
explored.

Remove constant_wrapper, cw and nontype_t from
C++26.
(function_ref's abi can be made forward compatible
by implementers)

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 58 of 107

We are concerned that the many proposals trying
to
improve the ergonomics of these types have not
been fully explored.
In particular it is concerning that
constant_wrapper is not suitable for the needs of
function_ref.
It would be prudent to delay this work to a future
version of C++.

Explore language-level solutions (constexpr
parameters) in future versions of the standard.

US
132-
211

 22.3.2

20, 23, 32,
36

te Unlike the more sophisticated optional and
variant, pair never has trivial assignment
operators. This surprise interferes with
metaprogramming and with trivial copyability
(under the current, restrictive definition).

Specify that the copy and move assignment
operators are trivial when appropriate.
Alternatively, broaden the core-language definition
of trivial copyability to reduce the impact of the
library design.

US
133-
212

 22.4.4.3

2, 5, 8, 12 te As with pair, tuple<int> and even tuple<> are not
trivially assignable and thus not trivially copyable.

As for pair.

AT7-
213

 22.4.7

Paragraphs
6 and 8

te complex has been made tuple-like (see
22.4.3 and 29.4.9), but the current wording does
not support cv-qualified complex.

Add <complex> to the list of headers that make
the const-specialization available.

PL-
011

 22.5 [optional]

te The range support was added to the optional,
making it usable with range adaptors defined in
std::views, however, we have not updated the
views specification to handle it optimally when
possible. This leads to unnecessary template
instantiations.

Add a special case to recognize optional<T> for
adaptors:

● views::as_const: should return
optional<const T> or optional<const U&>
(if T is U&)

● views::take(opt, n): empty optional<T> if n
is equal to zero, opt otherwise

● views::drop(opt, n): empty optional<T> if n
greater than zero, opt otherwise

views::reverse: input unchanged

FR-
020
-214

 22.5.2

 te As described by P3415, treating a kind of object
(such as optional) as a different kind of entity a
range can lead to breakage and incongruent

Remove P3168R2 from C++26.
Continue work on a maybe_view, or other explicit
coercion to ranges such as rust's as_range

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 59 of 107

 behavior in generic code - notably in any printing,
serialization etc code.
For example, there is no justification given as to
why a non-engaged optional should be formatted
as a range.
The standard side step that question by disabling
that formatting in [optional.syn]. However this is a
luxury that is not afforded to other libraries and will
make adoption of C++26 harder.
For a type to behave as a range we should be willing
for it to behave as a range by default by default in
all contexts.

Because an optional is more closely similar to a
pointer, than a range, should all pointers and
pointer-like-objects behave like ranges in all
contexts?

The notion of platonic types, described in P0705 is
fundamental to a healthy ecosystem of generic
components. If any type can behave as something
that it isn't, composition becomes surprising, or
impossible.
"f we are to succeed in producing widely reusable
components, idiosyncratic interfaces are no longer
usable. A component programmer must be able to
make some fundamental assumptions about the
interfaces she uses, without ever seeing their
implementations or even imagining their
applications. " - Stepanov.

US
134-
215

 22.5.4.1

 te optional<T&>, has a typical implementation which
just wraps a pointer, and so should be trivially
copyable.

Add the sentence “optional<T&> is a trivially
copyable type.”

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 60 of 107

US
135-
216

 22.8.6.4

2, 5 te As with pair, no specialization of expected is
trivially assignable and thus not trivially copyable.

As for pair.

US
136-
217

 22.8.7.4

1, 4 te As with the primary template, no
expected<void,E> is trivially assignable and thus
not trivially copyable.

As for the primary template.

FR-
021
-218

 22.10

 te Don’t rename std::nontype_t to std::constant_arg_t
as proposed by P3774R0. Instead, rename it to
something like std::function_wrapper and make it
callable, as originally proposed by P3774R1, by
adopting P3843R0.

In decreasing order of preference:
1. Adopt P3843R0.
2. Keep the status quo in the working draft

(std::nontype_t); do not adopt P3774R1.
3. Remove std::nontype_t and the

std::function_ref constructors using it.
4. Any other solution in the problem space.

Adopt P3774R1.

US
137-
219

 22.10.6.1

2 te The statement that reference_wrapper is trivially
copyable seems to contradict the synopsis.

Indicate that the relevant special member
functions are defaulted, perhaps by introducing
the obvious exposition-only non-static data
member.

RU-
220

 22.10.17.01

General
[func.wrap.g
eneral]

te Allow skipping indirection in
function_ref for a more efficient
implementation

Consider applying the fix from library
issue 4264

RU-
221

 22.10.17.05

Copyable
wrapper
[func.wrap.c
opy]

te `copyable_function()` and
`copyable_function(nullptr_t)` can
construct the object without any
dynamic initialization, leading to
better runtime efficiency and avoiding

Consider adding `constexpr` to
`copyable_function()` and
`copyable_function(nullptr_t)` in
[func.wrap.copy.class] and in
[func.wrap.copy.ctor]

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 61 of 107

all the potential initialization order
issues.

RU-
222

 22.10.17.06

Non-owning
wrapper
[func.wrap.r
ef]

te `function_ref(F*)` can construct the
object without any dynamic
initialization, leading to better runtime
efficiency and avoiding all the
potential initialization order issues.

Consider adding `constexpr` to
`function_ref(F*)` constructor in
[func.wrap.ref.class] and in
[func.wrap.ref.ctor]

PL-
005

 22.10.17.6.
5

[func.wrap.r
ef.deduct]

te As function_ref supports noexcept
specification, it should be properly
deduced by class argument
deduction. Currently, this is not true
for data member pointers, as for:
M C::* dm;
C c;
The function_ref(dm, c) deduces
function_ref<M&()>, instead of
function_ref<M&() noexcept>.

Modify [func.wrap.ref.deduct] as follows:
(6.2)
F is of the form M G::* for a type G and an object
type M, in which case let R be invoke_result_t<F,
T&>, A... be an empty pack, and E be
false<ins>true</ins>, or

GB07
-223

22.12

te

Add feature test macro for stdbit.h
The __STDC_VERSION_STDBIT_H__ macro
defined by C is not sufficient to check if a C++26
implementation provides a usable <stdbit.h>
header. If a libc header of that name is found
somewhere in the C++ compiler's include paths
(e.g. in /usr/include) then it might be included
and would define the macro. However, the libc
version of the header might use C-specific
features such as _Bool or _Generic and cause
errors in a C++ program. A C++-specific macro
would only be present in a C++-aware header,
and so a C++ program could check that to be
sure that the header is usable in C++ code.

Add a new __cpp_lib_stdbit_h macro

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 62 of 107

US
138-
224

 23.2.2.5,
23.3.15,
23.3.16

 te The new container std::inplace_vector<T,Cap>
does not take an allocator parameter. This makes
it inconsistent with every other STL container that
manages object lifetimes. (The two C++23
"containers" that lack the allocator parameter are
std::array, which does not need to construct or
destroy objects during its lifetime; and std::tuple,
likewise. std::tuple nevertheless has had to
develop an entirely parallel-universe constructor
API to deal with allocators. This indicates that
allocators can't be avoided in the modern STL.)

P3160 shows several examples where
inplace_vector<T,Cap,A> (such as
pmr::inplace_vector<T,Cap>) is required. For
example, you might like to replace one use of
std::pmr::vector<std::pmr::string> with
std::pmr::inplace_vector<std::pmr::string, 10> for
performance; but without an allocator, you can't
push_back new elements into that
inplace_vector; the inplace_vector user must do
v.emplace_back("abc", &mr) and pass around the
allocator parameter separately from the container
that uses it, but vice versa that strategy does
NOT work for the pmr::vector user because he is
not allowed to do v.emplace_back("abc", &mr)

This makes inplace_vector not a drop-in
replacement for std::vector; it is not composable
in generic code with the rest of the STL's
containers.

P3160 shows that adding an allocator parameter
to inplace_vector can be done with zero runtime
cost, zero memory cost, and effectively zero
compile-time cost (i.e., we follow the existing
practice for existing STL containers, and suffer
no penalty that the existing containers don't
already suffer). There is a reference

Adopt P3160R2 "Allocator-aware inplace_vector".

p3160r2.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 63 of 107

implementation of allocator-aware inplace_vector
in the SG14 repository.

GB08
-225

23.3.16

te

inplace_vector::try_xxx functions should return
optional<reference>
The try_emplace_back and try_push_back
members of inplace_vector should return
optional<reference> instead of pointer.
Those functions are closely related to
push_back and unchecked_push_back which
return references, so the try_push_back form
which can fail should return an optional-
reference, i.e. optional<reference>. A
pointer is not just a nullable reference.
Returning optional also allows the monadic
operations (and_then etc) to be used to take
actions based on whether the push back was
successful.

Change the return type of try_emplace_back
and try_push_back from pointer to
optional<reference>. Change the Returns:
element to say: nullopt if size() is equal to
capacity(), otherwise back().

US
149-
226

 23.3.16

 ge There are concerns over redesigning
inplace_vector.

See https://wg21.link/P3830

FR-
022
-
227

 23.3.16

 te inplace_vector is specified to throw bad_alloc when
size exceeds capacity.
However, inplace_vector does not allocate, and
exceeding the capacity does not constitute an allocation
failure.
This is important because bad_alloc is often caught for
either system wide monitoring of a system resource
(memory)- or to set up some sort of "liberate memory"
and retry schemes in some allocators. None of these
solutions would be applicable to inplace_vector.

While we would prefer inplace_vector interfaces to
have preconditions by default (not just in the unchecked_
functions), using any exceptions other than bad_alloc
would be an improvement

modify inplace_vector to throw a different
exception when size exceeds capacity.
std::length_error or a new exception type derived
from either std::logic_error or std::runtime_error
would be appropriate.

If, as claimed by P3830, issues with inplace_vector
should not be addressed in C++26, we should delay
the standardisation of inplace_vector to a future
version of the standard.

https://wg21.link/P3830

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 64 of 107

US
150-
228

 23.3.16.5

8-14 te inplace_vector's try_emplace_back and 2
try_push_back should be revised to use const
optional<&> instead of pointer as it is safer from
null pointer dereference, pointer arithmetic and
indexing issues

https://isocpp.org/files/papers/P3739R2.html

p3739r2.html

AT6-
229

 23.3.3.5

Paragraph 3 te This paragraph makes calling front/back for
zero-length arrays UB. New safety features
(“standard library hardening”) would make this a
hardened precondition (see 23.2.4.72 and
23.2.4.76). Hardened preconditions are
preferable to UB.

Strike this paragraph (effectively applying the
resolution to LWG4276).

NC
IT-
230

- 23.3.8

-- Te P0447 added std::hive which is a very narrow-
scope, performance-oriented, library-only
container.
An ABI stable implementation will not be able to
apply all the performance optimizations needed
to maintain the efficiency of this container in
future versions, while an external library will not
need to guarantee ABI stability, giving the
implementors more freedom to optimize their
code.
A standard implementation won't be competitive
with an external implementation, so the
usefulness of a standard implementation would
be limited.

Revert P0477

CZ1-
231

 23.3.8 [hive]
to 23.3.9.6

multiple
places of
[hive]

te “hive” container is not marked constexpr, as it was
merged after P3372R3 which made all other
containers marked with the “constexpr” qualifier. It
makes the section not symmetric in intent.

Mark all functions and member functions with
constexpr qualifier for symmetry of with rest of 23
[containers] as there is no technical reason for this
container be only not marked constexpr.

US
139-
232

 23.3.9.1

05.4

te Paragraph 5.4 allows for UB when the user
doesn't manage to keep the block limits within
bounds and the min below the max, yet no tools
are offered to check these conditions easily. In
terms of providing safe facilities this UB is an
easy trap to fall into. The methods that allow to
set block limits on hive should rather check the

Adjust all constructors and methods on hive to
throw in case specified block limits violate the
conditions set out here. Or at least provide a
function to the user to correctly check the
condition separately.

https://isocpp.org/files/papers/P3739R2.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 65 of 107

conditions and throw in case of violation or at
least some function should be provided to let the
user check the conditions easily.

US
140-
233

 23.3.9.2

 te For the constructors and assignment operators
that can construct a hive with a sequence of
elements, only one uses wording that prescribes
the resulting order of elements in the new object.
For a pair of iterators first/last, the effects say the
hive will be equal to the range. For other
constructors it only says that the elements are
the same without explicitly prescribing the order.
Given that the introductory matter for hive
mentions that the container chooses insertion
points for elements, it's unclear whether that
would mean the order is unspecified for such
constructors. Anyway it's unclear why the
wording is different.

Insert wording to say "Constructs a hive object
with the elements of x with the same order as they
appear in x" and possibly adjust the wording for
first/last in that fashion too. Applies to paragraphs
11, 13, 16, 19, 23, and assignment operators in
26 and 29. Or otherwise remove the ordering
guarantee from the iterator-based version in order
to match the other constructors. Then it's maybe
worth to say the elements of x are inserted in an
unspecified order.

US
145-
234

 23.3.9.3

12 te The function trim_capacity(size_type n) has the
effect of reducing capacity to no less than n. It
doesn't explain the behavior in case where the
capacity is less than n before the call. The
condition isn't stated as a Postcondition, but still
doesn't clear the confusion.

Change the Effects to include "if capacity() > n,
capacity() is reduced to no less than n, otherwise
no effect".

US
141-
235

 23.3.9.3

3 te The description for reserve(n) mentions that the
size of the sequence isn't changed, that iterators
aren't invalidated, but doesn't say that the
elements keep their order. Conceivably the
implementation could rearrange blocks and
possibly change the order of elements. Both
reserve and trim_capacity could state in their
remarks that the sequence is unchanged (which
implies the size doesn't change).

Add to the Remarks of reserve(n) and
trim_capacity that the sequence of elements
doesn't change.

US
142-
236

 23.3.9.3

4 te For "reserve(size_type n)" the postcondition
states that "capacity() >= n" and the throws-
clause applies only for "n > max_size()". This
does not account for cases where the current
"max_size() - capacity()" cannot be covered with

Change the postcondition to "capacity() >= n is
true or capacity() >= max_size() -
block_capacity_limits().min is true".

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 66 of 107

block sizes within the configured limits and n is
less than a block away from max_size. For
example when max_size=100, capacity=80,
block min/max both are 40, and n=90.
Furthermore, for cases where there would be a
solution it could restrain implementations too
much to be required to find it. When "max_size -
n" is less than the minimum block size the
implementation should either be allowed to throw
or be allowed to deliver capacity less than the
requested n, but at most one block away.

US
144-
237

 23.3.9.3

9 te The functions that allow for "reallocation" state
that in such case all iterators and references will
be invalidated. The user, however, has no way to
observe whether or not reallocation took place,
other than to possibly create a special allocator
type to observe such reallocation. So either the
user has to assume that all iterators are
invalidated on every call or they are given an
indication for example through returning a bool.

Change the return type for shrink_to_fit and
reshape to bool and add a Returns clause to say
"true if reallocation took place, false otherwise".

US
143-
238

 23.3.9.3

9 te The descriptions for shrink_to_fit and reshape
state that in case of exceptions other than for
block allocation, the effects are unspecified.
However, these operations don't have reason to
assign or swap any elements, thus leaving only
copy or move construction for the "reallocation".
When these exit with an exception (from the user
supplied type) it's in the user's hand to care for
exception safety on their types. So the contract
could state that reallocation only will happen
through those constructors and the destructor,
enabling the user to ensure no elements get lost,
only their order being unspecified in case of
those exceptions.

Add to the Effects that reallocation happens only
through constructing and destroying elements
such that exiting such a constructor by exception
will propagate the exception, leave the size of the
sequence as before, and leave the elements in an
unspecified order.

US
146-
239

 23.3.9.4

8 te The function insert_range(rg) has effects to insert
copies of the elements in rg. If the range iterators
return elements as rvalue-references this should
likely hit move-construction. Otherwise we

Change the Effects to say "Inserts the elements of
rg." This would also be subject to the comment
about the ordering guarantee.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 67 of 107

couldn't use it on move-only types such as
unique_ptr. The corresponding wording for
constructors avoids the word "copy" and says the
elements are inserted.

US
147-
240

 23.3.9.5

3 te The function splice could be more specific if in
case of a length_error the containers are left as is
or could possibly have changed. That is basically
to say whether the block condition is checked
upfront or while splicing blocks.

Add to the Effects "In case of an exception it is
unspecified which elements of x are still in x or are
now in *this, but all pointers and references stay
valid."

US
148-
241

 23.3.9.5

8 te The function template unique could state that in
case of an exception the container has only
removed an unspecified number of those
elements that the predicate indicated to remove.

Amend the Effects with: “In case an exception is
thrown it is unspecified which of the elements that
the predicate so far indicated to remove are
removed. Other elements are not removed.”

PL-
006

 23.3.16.1
[inplace.vec
tor.overview
]

te
As we now have optional support for references,
the try_push_back and try_emplace_back
functions of inplace_vector should return an
optional<reference>.
This makes the API more consistent with the other
overloads that return a reference. And allows the
monadic interface to be used.

Similarly the try_append_range should return an
subrange<iterator_t<R>, sentinel_t<R>>. This
provides a more convenient interface, where a
simple call to empty can be used to determine if all
elements were inserted.

Current:
auto range = createElemsViews();
auto it = iv.try_append_range(range);
if (it != range.end())
 std::cout << “Elements dropped” << std::endl;

Proposed:
if (!iv.try_apend_range(range).empty())
 std::cout << “Elements dropped” << std::endl;

Change the return type of inplace_vector
try_push_back and try_emplace_back functions to
optional<reference>.

Change the return type to try_append_range
function to:
conditional_t<ranges::borrowed_range<SR>, SR,
 ranges::dangling>;
Where SR is:
ranges::subrange<ranges::iterator_t<Rg>,
ranges::sentinel_t<Rg>>

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 68 of 107

US
151-
242

 23.7.2.1
29.10.2

 te We have two exposition-only concepts for similar
things (integral-constant-like and constant-
wrapper-like). The former can be express in
terms of the latter.

Move constant-wrapper-like to the library
introduction and update integral-constant-like to
use it.

US
152-
243

 23.7.3.2,
23.7.3.7

 te submdspan_mapping is a customization point,
but submdspan_extents was and is not intended
for users to customize. Adoption of P3663 for
C++26 would add
submdspan_canonicalize_slices, which again
was and is not intended for users to
customize. That makes three functions whose
names start with “submdspan_”, but only one of
them is a customization point. It would make
sense to distinguish the names that are not
customization points. We propose subextents
instead of submdspan_extents, and
canonical_slices instead of
submdspan_canonicalize_slices. We prefer
"canonical" to "canonicalize" because the latter
suggests an action applied in place to the
arguments, rather than a function that takes
some arguments and returns distinct objects of
possibly different types.

p3663r2.html

After applying the changes in the latest version of
P3663 (at least R3, which will follow LWG review
currently in progress as of 2025/09/02), change all
occurrences of submdspan_extents to subextents,
and change all occurrences of
submdspan_canonicalize_slices to
canonical_slices. (This affects [mdspan.syn] and
[mdspan.sub].)

p3663r2.html

PL-
007

 23.7.3.7 [mdspan.su
b]

te As currently specified, the strided_slice type has
the following meaning:
* elements from range [s.offset, s.offset + s.extent)
are referred,
* s.stride defines the step in which the element is
accessed.
As an illustration, given a 1-dimensional mapping
sm produced by slicing mapping m with s:
 sm(i) is equal to m(s.offset + i * s.step)

Define the extent member of the strided_slice to
represent the extent of the final slice object.

(optionally) Provide an equivalent of the current
functionality in the form of the additional slice_type,
which is canonicalized to strided_slice.

 template<typename Offset, typename Extent,

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 69 of 107

As a consequence of the above, the extent (number
of elements) of sm is equal to:
 1 + (s.extent - 1) / s.stride

Due to the above, it is currently not possible to
represent:
1. stride value of 0, as computing the number of
elements in sm, would require dividing by zero. A
special case is currently where for s.extent equal 0,
s.stride is ignored.
This prevents us from defining broadcasting
layouts.
2. static extent of final mdspan in combination with
dynamic stride value, as currently computing the
number of elements in produced mdspan, requires
knowing values of both s.extent and s.stride at
compile time.
Using a static extent value reduces the size of the
extent object, and thus in consequence, mapping
and mdspan.

We should redefine the meaning of the extent
member of the strided_slice to define the number
of elements to a given extent in the produced
mdspan. I.e. in the example defined above, the
extent of sm would be s.extent, and elements from
range [s.offset, s.offset + s.extent*s.stride) are
referred.

Such an approach naturally supports a zero
s.strides value.

Such a change should be done before C++26
finalization, as it would require the introduction of
another canonical slice_type.

 typename Stride = constant_wrapper<1zu>>
struct slice_range
{
 Offset offset;
 Extent extent;
 Stride stride = Stride();
};

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 70 of 107

PL-
008

 23.7.3.7 [mdspan.su
b]

te The submdspan_extents name is excessively long
and ties the functionality to creating submdspan.
However, creating a subset of extents objects is
generally useful in other contexts.

The similarity of this name to
submdspan_mapping also suggests that it may
be a customization point that is invoked by ADL.
However, the submdspan_extents is not
specified to be one, as extents are not
customizable.

Rename submdspan_extents to subextents.

PL-
009

 23.7.3.7 [mdspan.su
b]

te As currently specified, adding support for
additional slice types to the submdspan function
would break user-defined mappings and require
changes in each mapping.

We should decouple the user-facing interface of
submdspan and layout implementers facing
submdspan_mapping, by introducing a
canonicalization step that will reduce the number
of types that need to be handled later.

Accept P3663R2.

FR-
023
-244

 25

 te Remove the reserve_hint members of view
classes when their size members are already
provided. Users are expected to call
std::ranges::reserve_hint which doesn’t need the
member function when the range is sized.

Adopt P3763R0.

FR-
024
-245

 25

 te During the evolution of P2846 – Eagerly
reserving memory for not-quite-sized lazy ranges,
the customization point function and member
function names considered where size_hint,
approximate_size, and reserve_hint, with the latter
being adopted.
However, the concept is still called
approximately_sized_range, which is a mismatch.
There is no indication that in order to become an
approximately_sized_range, you have to add a
reserve_hint member function, which is

Rename reserve_hint to
approximate_size.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 71 of 107

inconsistent with how becoming a sized_range
requires a size member function. The name of the
concept should reflect the name of the
customization point.
Because there does not appear to be a non-
clunky concept name involving reserve_hint
(reserve_hintable_range?
range_with_reserve_hint?), we should rename the
function instead.

FR-
025
-246

 25.7.18.2

te P2846R6 which added a reserve_hint. did not cover
the full set of new ranges added in C++26. This
creates needless inconsistencies.

Add a reserve_hint function
to concat_view (sum of the reserve_hint of the
underlying ranges),

US
153-
247

 25.7.27.1,
25.7.28.1

02.1

te The result of adjacent<0> and
adjacent_transform<0> should have length one
greater than that of the input range, as there are
N+1 separate empty substrings of a string of size
N.

Provide a specialization of adjacent_view for
N==0 whose iterator's state is a single underlying
iterator and a bool to absorb the first increment
that can always be performed. Remove the N>0
restriction from adjacent_transform_view, which
would simply use that specialization if appropriate.

DE-
248

 25.7.35
[range.to.inp
ut]

 te

The view "to_input" should be renamed to
"as_input".

The current naming of "to_input" is misleading and
should better be "as_input" because we do not
process the range, we only mark it differently for
processing.

Remember, we currently have
- "as_constant" and "as_rvalue" for views that
make elements to deal in a different fashion
without processing them.
- "to<>()" to process the elements.
We should keep that consistent. "as_input" would
make clear that we do NOT process the elements.

Rename the view "to_input" should to "as_input" as
described in P3828

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 72 of 107

"to_..." should be reserved for utilities that process
elements of a range.

This also fits with the native meaning of "as" and
"to" because "as" descibes how we should handle
someting while "to" usually is meant more active.

AT9-
249

 25.7.8

 te Thera are long-standing, UB-related safety
concerns regarding mutation through a multi-
pass filter_view.

Adopt P3725 (which has already been design
approved by LEWG) which adds a way to create a
single-pass filter_view, making the safety
concern mute.

RU-
250

 25.7.8

Filter view
[range.filter]

te P3725R1 highlights issues with
`std::ranges::filter`, in particular
`container | views::filter(large) |
views::reverse | views::as_rvalue |
ranges::to<std::vector>()`. Those
issues are highly confusing for the
language users and cause UB that
should be diagnosed at compile time

Consider solutions for the issues
proposed in P3725

DE-
251

 25.7.8.2
[range.filter.v
iew]

 te
 For filter views, add a new const member functions

begin() and end() when it operates on an
 input ranges, which supports a const begin().

P3725 demonstrates how basic use of the filter
view can cause severe unexpected broken code
causing misbehavior and even overwriting memory
of other objects. With C++26, introducing the
to_input (or as_input, see other NB comment) view,
we could easily provide a workaround that brings
back safety when using the filter view. For this, a
small extension to the filter view is necessary,
which should be provided by C++26.

In Sofia LEWG took the following vote:

class filter should get:

A new const begin() and const end() member
function with constraints so that it applies to pure
input ranges only:

 constexpr const_iterator begin() const
 requires (input_range<const V> &&
!forward_range<const V> &&
 indirect_unary_predicate<const Pred&,
iterator_t<const V>>);

 constexpr auto end() const requires
(input_range<const V> && !forward_range<const
V>)

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 73 of 107

From “P3725R1: Filter View Extensions for Input
Ranges, Rev 1” to LWG with a recommendation to
apply for C++26 (if possible) as a bug fix and as a
DR for C++23, C++20.

SF F N A SA

17 10 2 0 0

For this a corresponding new type member
const_iterator is also introduced for filter views.

The description of the filter view does not have to be
change because it already does handle pure input
ranges as underlying ranges without performing
caching, which is exactly the behavior we need here
to fix the severe functional failures of the current
filter view.

 The exact wording will come as new version of
P3725 or a separate paper.

US
154-
252

 26.2

11 te “the semantics of s - i has” is not grammatically
correct. Additionally, “type, value, and value
category” are properties of expressions, not
“semantics”.

Strike “the semantics of”.

US
155-
253

 26.3.2

1 te “subsumes” does not work here because
regular_invocable and invocable subsume each
other.

Say that the type is required to model
regular_invocable.

US
156-
254

 26.3.5

 ed The title seems outdated. Change to “Parallel algorithm overloads”.

US
157-
255

 26.4

 te stable_sort, stable_partition and inplace_merge
range overloads should be marked // hosted, not
// freestanding-deleted

Modify accordingly.

US
158-
256

 26.6.9

 ed The title suggest an unwarranted parallel with
“find last”.

Consider renaming the title to “Find first of” (and
update the comment in the header synopsis).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 74 of 107

GB09
-257

26.7

te

Make user-defined constructors of view
iterators/sentinels private
Paper P3059 was not pursued, but seems like an
important improvement to the design. Users
should not be constructing iterators and sentinels
manually, they should only obtain them by calling
functions like begin() and end().

Adopt P3059

US
161-
258

 26.7.11
26.8.2.3
26.8.3
26.8.6

6, 18
7
7
14

te These do not handle sized-but-not-sized-sentinel
ranges correctly.

Use ranges::begin(r) + ranges::size(r) instead of
ranges::end(r).

US
159-
259

 26.7.5

 te The default template argument for the type of the
new value in range::replace and
ranges::replace_if should not have projections
applied.

Change to iter_value_t<I> or range_value_t<R>
as appropriate.

US
160-
260

 26.7.9

10 te This wording does not allow the source range to
be empty.

Add “if first != last” or similar to paragraph 10.

US
162-
261

 26.8.5

21 te The wording is unclear what happens if there is
not such element.

Clarify that out_true/out_false is returned in this
case.

US
163-
262

 26.8.6

1, 4 ed Bullets 1.3 and 1.4 and paragraph 3 should say
E(e1, e2) instead of E(e1, e1).

Modify accordingly.

US
164-
263

 26.8.7.3
26.8.7.4
26.8.7.5
26.8.7.6

 te The definition of M is not clear that it considers
the handling for multiple equivalent elements.
The Effects paragraph does not say which
elements are copied if M > N.

Respecify these to correct the issues, possibly by
defining the resulting sequence first without
regard to output capacity, and then say that the
first N elements of that sequence are copied.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 75 of 107

The Returns paragraph is unclear for the case
where no element was copied or skipped from a
given range.
The Remarks paragraph does not account for the
case where elements were not copied because
the output range is full.

US
165-
264

 26.8.7.5

4 te “and [first2, last2), respectively” is extraneous. Strike It and change “elements” to “element” and
“positions” to “the position”.

FR-
026
-265

 26.10.17

 te The names add_sat, sub_sat, mul_sat etc are
rather confusing and nondescript

Rename to saturating_add, saturating_sub,
saturating_mul, saturating_div

OR
Rename to add_saturate / sub_saturate /
mul_saturate / div_saturate

US
166-
266

 26.11.1

 te uninitialized_relocate is an essential algorithm for
using trivial relocation that is missing from the
specification.

Adopt P3516.

p3516r2.html

FR-
027
-267

 26.11.7

 te P2248R8 defaults some template parameters in
the algorithms to allow list initialization. P3217R0
adds it to ranges::find_last, which was forgotten.

However, we also forgot about uninitialized_fill.

Adopt P3787R0 - Adjoints to "Enabling list-
initialization for algorithms": uninitialized_fill

RU-
268

 27.4.3.7

Modifiers
[string.modif
iers]

te Construction of temporary string in
basic_string::append/assign should
be avoided for efficiency

Consider applying the fix from library
issue 3662.

GB10
-269

28.5

te

Make std::format usable in constant
expressions
Throwing exceptions in constant expressions and
using user-defined strings in static_assert

Make std::format and integer formatters usable
in constant expressions.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 76 of 107

are both hobbled by not being able to use
std::format. We can already use to_chars
in constant expressions, which would make it
possible to support strings and integers in
compile-time std::format calls. Waiting until
C++29 to be able to do this would be
disappointing.

US
167-
270

 28.5

 te A lot of work in the C++26 timeframe has gone
into both being able to support constexpr
std::format() and then also strongly motivating its
existence (static_assert with user-defined
messages and constexpr exceptions). The only
thing missing is simply allowing std::format() to
be constexpr. Delaying making std::format
constexpr pushes the burden onto users to figure
out how to do compile-time formatting
themselves, despite having just adopted a
standardized formatting mechanism.

Adopt P3391.

p3391r1.html

FR-
028
-271

 28.5

 te A lot of reflection use cases rely on the ability to
produce strings at compile time. std::format is the
obvious tool for such manipulation, however
std::format was not made constexpr in time
for C++26. We feel that this omission is an
impediment to the usability of reflection features in
C++26.

Adopt P3391 in C++26 (which is currently in LWG)

RU-
272

 29.5.3.1

General
requirement
s
[rand.req.ge
nl]

te Instantiating
uniform_int_distribution<uint8_t>
should either be permitted or rejected
at compile time as the UB is easily
detectable.

Consider applying one of the fixes from
library issue 4109.

FR-
029
-273

 29.9

 ge Special math functions were added in the standard
with the justification they were hard to implement
and the expectation was that standard libraries
maintainers would be the most qualified to do that
work for the benefit of a small number of C++
users.

Reconsider whether the C++ is the appropriate
vehicle for domain specific components such as
linear algebra. Remove [linalg] from C++26.
Alternatively, find a shipping vehicle that would not
require an implementation on platforms not
targeted by HPC platforms and other BLAS users

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 77 of 107

But because standard library maintainers are not
domain experts in all domains, and because their
time is limited and their resources scarce, multiple
implementations now depend on boost to
implement special math functions.

We are concerned that <linalg> which is very
clearly useful to a small subset of C++ users is
going to suffer the same fate. This is aggravated by
the rather large size of C++26 and the dwindling
contributions to standard libraries.

Lower level tools such as extended floating point
types, mdarray and mdspan should be enough to
allow interoperability in the domain and industries
that do benefit from linear algebra facilities.

US
171-
274

 29.9.13.9,
29.9.13.12

 te As LWG Issue 4315 explains, the Returns
clauses of vector_two_norm (29.9.13.9
[linalg.algs.blas1.nrm2]) and matrix_frob_norm
(29.9.13.12 [linalg.algs.blas1.matfrobnorm]) say
that the functions return the “square root” of an
expression. However, the wording does not
explain how to compute the square root. There
are at least three concerns.

1. The input mdspan’s value_type and the
initial value type Scalar (if applicable)
are not constrained in a way that would
ensure that calling std::sqrt of that
expression would be well formed.

2. The wording does not explain how to
find sqrt via argument-dependent
lookup, even though 29 [linalg] has
provisions to find abs, conj, real, and
imag via argument-dependent lookup.
There is no “sqrt-if-needed” analog to
abs-if-needed, conj-if-needed, real-if-
needed, and imag-if-needed.

Adopt the Suggested Fix of LWG Issue 4315
(“Insufficient specification of vector_two_norm and
matrix_frob_norm”), by constraining the input
mdspan’s value_type and Scalar (if applicable) to
be floating-point numbers or specializations of
std::complex.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 78 of 107

3. If the vector_two_norm and
matrix_frob_norm functions use std::sqrt
to compute square roots, and if Scalar
and the input mdspan’s value_type are
both integer types, then the square root
computed via std::sqrt would return
double, but the functions would silently
force a rounding conversion back to the
integer type.

Fixing this for general linear algebra value types
would involve two steps.

1. Define an exposition-only function sqrt-if-
needed that uses std::sqrt for arithmetic types,
and finds sqrt via argument-dependent lookup
otherwise.

2. Change the vector_two_norm and
matrix_frob_norm wording so the return type of
the functions that take a Scalar init parameter is
decltype(sqrt-if-needed(init + a * a)) instead of
decltype(init + a * a).

The second part of this could be considered a
design change, though, so for now we propose
simply constraining the function so that Scalar
and the mdspan’s value_type are either floating-
point numbers or std::complex. This will permit a
backwards-compatible fix later.

There is some debate whether a Constraint
would permit a backwards-compatible fix. If
WG21 does not think it would, then a Mandates
would be the right option.

US
172-
275

 29.9.14,
29.9.15

 te As LWG Issue 4137 explains, some of the
Mandates, Preconditions, and Complexity
elements of some BLAS 2 and BLAS 3
algorithms in [linalg] are incorrect.

Adopt the Proposed Resolution of LWG Issue
4137 (“Fix Mandates, Preconditions, and
Complexity elements of [linalg] algorithms”).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 79 of 107

US
169-
276

 29.9.2,
29.9.13.8

 te As LWG Issue 4302 explains, it is impossible to
implement vector_sum_of_squares in a way that
satisfies both requirements on
result.scaling_factor, without imposing more
requirements on InVec::value_type and Scalar (if
applicable). There are other concerns explained
in the Issue.

Adopt the Proposed Resolution of LWG Issue
4302 (“Problematic vector_sum_of_squares
wording”), by removing all mentions, declarations,
and descriptions of vector_sum_of_squares from
[linalg].

US
168-
277

 29.9.2,
29.9.4.1,
29.9.14.6,
29.9.14.7,
29.9.14.8,
29.9.15.4,
29.9.15.5

 te As P3371 explains, [linalg]’s rank-1, rank-2, rank-
k, and rank-2k update functions have behavior
not consistent with the Basic Linear Algebra
Subroutines (BLAS). Changing their behavior
would be a breaking semantic change to C++26
with no syntactic indication. P3371, which
proposes a fix, has passed LEWG review and
awaits LWG review. The implementation of
P3371 has been merged into the main reference
std::linalg implementation.

p3371r4.html

Adopt the latest revision of P3371 (currently R4),
“Fix C++26 by making the rank-1, rank-2, rank-k,
and rank-2k updates consistent with the BLAS.”

Please note that the changes proposed in
P3371R4 are rebased atop the changes proposed
in LWG Issue 4137, “Fix Mandates, Preconditions,
and Complexity elements of [linalg] algorithms.”
Thus, applying the changes in P3371R4 should
resolve LWG Issue 4137.

p3371r4.html

US
170-
278

 29.9.3

4 te As LWG Issue 4136 explains, the Hermitian
functions in [linalg] currently have undefined
behavior if they encounter a diagonal matrix
element with nonzero imaginary part. The Basic
Linear Algebra Subroutines (BLAS) define this
behavior by only using the real part of the
diagonal elements. Given that [linalg] aims to
follow BLAS behavior and aims also to be able to
use existing BLAS libraries where possible, it
would be best for [linalg] to adopt BLAS behavior
for diagonal matrix elements.

Adopt the Proposed Resolution of LWG Issue
4136 (“Specify behavior of [linalg] Hermitian
algorithms on diagonal with nonzero imaginary
part”), by specifying that functions whose name
starts with “hermitian” will use real-if-needed(m[i,
i]) to access diagonal elements m[i, i].

AT8-
279

 29.10.3

 te The simd library is missing reduction overloads
(reduce, reduce_min, reduce_max) for non-
simd, vectorizable types.

Add the missing overloads by applying P3690
(which has already been design approved by
LEWG).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 80 of 107

US
176-
280

 29.10.3

 te It does not appear that any of the class templates
in <simd> can be profitably specialized by the
user – or that the non-member functions can be
used with such user specializations.

Disallow all such specializations. Then remove
29.10.4 paragraph 3 as redundant.

US
175-
281

 29.10.3

 ed The ordering of the declarations in the synopsis
does not match the order of subclauses.

Reorder the declarations and/or the subclauses
as appropriate so that the content appear in a
consistent, logical order.

US
174-
282

 29.10.3

 te zero_element and uninit_element should be
inline and not static

Modify accordingly.

US
173-
283

 29.10.3

 ed Last overload of compress in the synopsis should
say M::value_type and not V.

Modify accordingly.

US
177-
284

 29.10.4

 ed The title of this subclause is “vec type traits” but
the traits defined apply to masks too.

Rename the title, possibly to “Data-parallel type
traits”.

DE-
285

 29.10.7.2

p13 & p14 te
 convertible_to<array<string, 4>, vec<float, 4>> is

true, but it should really be false. Likewise for
convertible_to<array<double, 4>, vec<float, 4>> or
convertible_to<array<complex<float>, 4>,
vec<float, 4>>.

What is currently under Mandates should go into
Constraints.

DE-
286

 29.10.7.2

p1–4 te
The broadcast constructor in the TS allowed
construction from (unsigned) int, allowing e.g.
'vec<float>() + 1', which is ill-formed in the CD
(breaking existing code). The design intent behind
std::simd was that this works. But the
understanding was that because of language

Add a 'consteval' broadcast constructor overload
and adjust the existing broadcast constructor if
necessary.

Consider P3844R0. At least the design space must
be considered to ensure C++26 does not preclude a
solution.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 81 of 107

limitations (missing constexpr function arguments)
this wasn’t possible. There is new information.

DE-
287

 29.10.7.2

p17 & p18 te

This deduction guide does not suffice to make
basic_vec x = mask<float>();

work. If the comment on 29.10.9.4 gets resolved
then there is no easy way (without using decltype)
for users to spell the basic_vec specialization that
the basic_mask type prefers to convert to. Using
‘auto’ instead of ‘basic_vec’ above does not work,
since it would not invoke the conversion from
basic_mask to basic_vec.

Add a deduction guide:
template <size_t Bytes, class Abi>
basic_vec(basic_mask<Bytes, Abi>) -> see below;
Then use the equivalent wording that is used to
resolve 29.10.9.4 to determine the basic_vec
specialization.

DE-
288

 29.10.7.2

p5 te
 This constructor is missing a constraint. Consider

conversion from vec<complex<float>, 4> to
vec<float, 4>.

Add “and constructible_from<value_type, U> is
true”

US
178-
289

 29.10.8

 ed The subclause titles sometimes use “vec” and
sometimes use “basic_vec”.

Make them consistent and update the synopsis as
appropriate.

US
183-
290

 29.10.8.10

5 te The order of the index positions in set-indices
needs to be specified.

Add “in ascending order” to bullet 5.1.

US
184-
291

 29.10.8.11

 ed This is finally just “vec” but the title says “simd
memory permute”.

Correct the title.

RO 3-
292

1-10
29.10.8.3

 te
The operator== for std::simd::basic_simd breaks
the Regular semantic expectations. As noted in
http://wg21.link/P2892R0, simd types are not
Regular, which is inconsistent with the rest of the
standard library’s design.

simd meets the semantic requirements of Regular
types, including operator== returning a bool for
scalar comparisons.

Alternative resolutions:

http://wg21.link/P2892R0

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 82 of 107

Specifically, an expression such as:

if (vec1 == vec2) { /* ... */ }

will not compile, even though operator== is
provided. This behaviour is surprising, violates
the principle of least astonishment, and creates
an inconsistency in the interface: the operator
exists, yet cannot be used in a context where a
boolean value is expected.
This undermines interoperability with generic
code that assumes regularity and boolean
comparability for types that provide equality
operators.

• simd adopts a distinct naming or API
pattern to avoid presenting an equality
operator that cannot be used in normal
boolean contexts (e.g., equals()).

US
179-
293

 29.10.8.4

 ed These are member functions, not non-member
functions.

Move this subclause under 20.10.7.

US
181-
294

 29.10.8.8
29.10.8.9
29.10.8.10

 ed The title says “vec”, and these are placed under a
subclause titled “basic_vec non-member
operations”, but these functions do not apply to
just “vec”s; nor do they match the header
synopsis.

Make things consistent, possibly by reorganizing
as appropriate.

US
180-
295

 29.10.8.8
29.10.8.9
29.10.8.10

 ed Various places uses “V” when “V or M” is meant. Either rename M to V or reword.

US
182-
296

 29.10.8.8

2 te This need to clarify that we are not actually
evaluating the expression (which might be ill-
formed) but are doing concepts satisfaction
checking.

Use “is satisfied” instead of “is true”.

DE-
297

 29.10.9.4

 te

operator+, operator-, and operator~ cannot be
implemented for mask<complex<double>>.

Resolve LWG4238

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 83 of 107

DE-
298

 29.10.9.4

 te

The use of basic_mask’s Abi tag for the return type
is wrong for mask<complex<T>> and
mask<complex<floating-point>> for targets like
Intel’s IvyBridge.

Resolve the correspoding LWG issue: spell out
constraints on the return type rather than spelling
out the exact ABI tag type.

US
185-
299

 29.10.9.5
29.10.9.6

 ed There is no such thing as “conversion operator”. Combine the two subclauses into one titled
“basic_mask conversions”. Update the class
definition accordingly.

US
186-
300

 29.10.10

 ed The title “Non-member operations” is too general. Add “basic_mask”.

US
187-
301

 29.10.10.03

 ed The parameters need to be named as they are
referenced in paragraph 2.

Name them lhs and rhs.

GB11
-302

29.11.1

te

Add feature test macro for stdckdint.h
The __STDC_VERSION_STDCKDINT_H__ macro
defined by C is not sufficient to check if a C++26
implementation provides a usable
<stdckdint.h> header. If a libc header of that
name is found somewhere in the C++ compiler's
include paths (e.g. in /usr/include) then it might
be included and would define the macro.
However, the libc version of the header might use
C-specific features such as _Bool or _Generic
and cause errors in a C++ program. A C++-
specific macro would only be present in a C++-
aware header, and so a C++ program could
check that to be sure that the header is usable in
C++ code.

Define a new
__cpp_lib_stdckdint_h macro.

US
188-
303

 31.6.3.5.5

04.1

ed "effects" is the wrong word here. Use "affects".

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 84 of 107

US
189-
304

 31.12.6.1,
31.12.6.5.6,
31.12.6.5.7,
D.22.2

 ge The system_encoded_string() and
generic_system_encoded_string()
member functions of std::filesystem::path
are misnamed.
These functions were added as renamed versions
of string() and generic_string()
respectively by P2319R5 (Prevent path
presentation problems). The original function
names are now deprecated.
The C++ standard does not define “system
encoding” and casual use of such a term is at best
ambiguous. In common language, one might
expect the “system encoding” to correspond to the
environment encoding (for which
std::text_encoding::environment()
provides a definition) or the encoding of the current
locale. However, neither of these encodings
corresponds to the encoding these functions are
expected to use.
31.12.6.3.2 ([fs.path.type.cvt]) defines “native
encoding” and, for char-based filesystem paths,
states (in a note) that “For Windows-based
operating systems, the native ordinary encoding is
determined by calling a Windows API function.” It is
not specified which Windows API function is
consulted, but existing implementations call
AreFileApisANSI() to choose between the
Active Code Page (CP_ACP) and the OEM Code
Page (CP_OEMCP). Microsoft’s implementation
also checks for a thread-local locale and, if the
locale encoding is UTF-8, prefers that (CP_UTF8)
over either of the other two.

Do one of these:
1) Remove system_encoded_string()

and
generic_system_encoded_string(
) and undeprecate string() and
generic_string().

2) Rename system_encoded_string()
and
generic_system_encoded_string(
) to names that reflect the defined “native
encoding”. For example,
native_filesystem_string() and
generic_native_filesystem_stri
ng(). Note however that “native” is also
used to define an operating system
dependent path format and that a
native() member function already
exists.

3) Rename “native encoding” to “filesystem
encoding” and rename
system_encoded_string() and
generic_system_encoded_string(
) accordingly. For example, to
filesystem_encoded_string() and
generic_filesystem_encoded_str
ing().

Replace the note in 31.12.6.3.2 ([fs.path.type.cvt])
with normative specification for the encoding to be
used (with explicit mention of
AreFileApisANSI() and any other Windows
APIs required to identify the intended encoding).

US
190-
305

 31.12.6.5.6
31.12.6.5.7

9
7

ed These should say std::format as we would
otherwise find path::format.

Add “std::”.

https://wg21.link/p2319r5
https://wg21.link/p2319r5
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-arefileapisansi

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 85 of 107

GB14
-306

32.5.12

te

Remove stdatomic.h from C++
The goal of the C++ version of the stdatomic.h
header was to provide a portable, cross-language
way to refer to atomics. However, simply adding
some macros that make the same names valid in
C and C++ does nothing to address any
incompatibilities between the definitions of
_Atomic(T) and std::atomic<T>. There is
no guarantee of ABI compatibility, and pretending
otherwise makes subtle ODR violations more
likely.

Remove stdatomic.h

US
191-
307

 32.5.2

 ed This synopsis can benefit from the new
freestanding specification style.

mark the header // mostly freestanding, then
remove all the // freestanding comments and add
// hosted for atomic_signed_lock_free and
atomic_unsigned_lock_free.

GB12
-308

32.5.6

te

atomic wait/notify should not be required for
freestanding
Requiring atomic waiting functions to be
supported for freestanding implementations adds
unreasonable burden on implementations. For
some implementations there is a freestanding
subset which can be supported by simply
disabling parts of a hosted implementation. But to
support atomic waiting functions for freestanding
requires a completely separate implementation,
probably based on spinlocks. For a typical
implementation that already supports two
implementations of those functions (one using
OS primitives like futexes or similar kernel
features, and one using mutexes and condition
variables), including those functions in the
freestanding subset requires supporting a third
spinlock-based (and so very low quality)
implementation.
If users want a spinlock, they can easily make
one themselves, and it seems unlikely anybody
would expect atomic::wait to be a low quality
implementation.

Remove atomic waiting functions from the
freestanding subset (it would still be
permitted in a freestanding
implementation, but not required).

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 86 of 107

GB13
-309

32.5.7

te

atomic_ref<T> is not convertible to
atomic_ref<const T>
The following paper added cv qualifiers to atomic
and atomic_ref: P3321R1 "cv-qualified types in
atomic and atomic_ref"
https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2024/p3323r
1.html
However, the conversion constructor between cv
qualifiers is overlooked.in [atomics.ref.generic]
hence atomic_ref<T> is not convertible to
atomic_ref<const T>.
There is no reason why the conversion should
fail. This is a valid use case where one thread
only needs the load operations.

FR-
030
-310

 32.5.7.2

 te P2835R7 added an address() method that allows
accessing the underlying pointer of an atomic_ref.
This is useful for comparisons, however accessing
the underlying object through that address method
is generally undefined behavior.
Given that the main reason for the current design is
that intptr_t is
not mandated to exist in the standard, we suggest
to make (u)intptr_t mandatory in C++26 - which
was already on track for C++29

adopt P3248 R4 Require [u]intptr_t in C++26

modify std::atomic_ref::address to return uintptr_t

US
193-
311

 32.5.7.3
32.5.7.4
32.5.7.5

10
10
11

te These should have a constraint that the relevant
type is not const.

Add appropriate constraints.

US
192-
312

 32.5.7.3
32.5.7.4
32.5.7.5

2
2
2

ed These should say integral-type, floating-point-
type, and pointer-type respectively rather than T.

Modify accordingly.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 87 of 107

US
195-
313

 32.5.7.5

11 te This should say “remove_pointer_t<pointer-
type>”, not T.

Modify accordingly.

US
194-
314

 32.5.7.5

2 ed This should be a full specialization rather than a
partial one.

Strike “class T”. Also delete “partial” from the
subclause title.

US
196-
315

 32.5.8.3
32.5.8.4

5, 14
5, 15

ed These should say integral-type and floating-point-
type respectively rather than T.

Modify accordingly.

US
197-
316

 32.5.8.4

 ed Some functions (fetch_max*) are not sufficiently
indented. Additionally, the second line of function
declarations are indented inconsistently.

Make indentation consistent.

US
198-
317

 32.5.8.5

4 ed These should say see above instead of ptrdiff_t. Modify accordingly.

CA-
318

 33

 te Operation states are required to store an actual
receiver which is required to contain at least a
pointer in order to report completion including in
situations where the offset of the parent operation
state is statically known. This provides an overhead
of at least the size of a pointer at each level of
asynchronous operation composition.

Adopt P3425, “Reducing operation-state sizes for
subobject child operations.”

FR-
031
-319

 33

 te P3826R0 proposes removing the ability to
remove the customization of the sender
algorithms. When adopted, this makes them
unusable for parallel use cases like GPUs.
Having uncustomizable sender algorithms is still
useful for concurrency use cases, but having
them means we’re constrained in how we can
add proper customization in C++29. When
adopting P3826R0 we should therefore go one

When adopting P3826R0, also make the following
changes

• Remove everything in [exec.adapt]
• Remove everything in [exec.affine.on]

As a consequence of the removal,
references to removed algorithms
need to be updated (e.g. behavior

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 88 of 107

step further and also defers the sender adaptors
to C++29.
Additionally, it buys us time to figure out a
solution for P3425 - Reducing operation-state
sizes for subobject child operations.
Note that even if the algorithms are deferred to
C++29, we can still accomplish all the goals for
senders/receivers:

• We have the concepts, customization
points, and vocabulary to talk about
senders, enabling third-party library and
unblocking work on networking.

• With std::execution::task, we have a
solution that makes coroutines usable.

• We still have the parallel scheduler to
get access to the default execution
context and the execution scopes for
structured concurrency.

We can still compose senders using coroutines
or by third-party libraries that implement sender
algorithms.

specified in terms of
execution::affine_on or
execution::write_env). This can be
avoided by making them exposition
only instead.

US
205-
320

 33.4
33.15,
33.16,
33.16.1,
33.16.2,
33.16.3

 ge The system_context_replaceability name
for a namespace is misleading and
unprecedentedly long for a namespace.
The mentioned name was chosen when the main
API of P2079R10 (Parallel scheduler) was called
system_scheduler in earlier revisions of the
paper. In the current C++ working draft the main
API is called parallel_scheduler. There is no
other mentioning of system_context beyond
this namespace name.

Also, this name is the longest among all the
namespace names the C++ working draft has.

Do one of these (rename stable names
accordingly):

1) Remove
std::execution::system_context
_replaceability namespace.

2) Rename
std::execution::system_context
_replaceability to:

a. std::execution::replace
ment, or

b. std::execution::replace
ment_functions, or

c. std::execution::psr
(abbreviation from
parallel_scheduler_repl
acement), or

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2079r10.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 89 of 107

p2079r10.html

d. something else meaningful.

US
204-
321

 33.4
33.15

 ed It seems more stylistically consistent to have the
definition of parallel_scheduler in 33.15 before
the text.

Remove { unspecified } from the declaration of
parallel_scheduler in the synopsis. Add the
definition to the beginning of 33.15

US
201-
322

 33.4

 ed The std::execution blocks at the end should be
merged, possibly with
system_context_replaceability nested. The task
related items should be moved after
with_awaitable_senders to match subclause
order.

Modify accordingly.

US
200-
323

 33.4

 ed Some comments are bare cross references
without text

Add some descriptive text.

US
199-
324

 33.4

 te enable_sender is not in the header synopsis. Add it.

US
206-
325

 33.4

2 te The “sizeof…(Env) > 1 is true” part seems
unreachable because CS is ill-formed in that
case.

Remove it.

US
202-
326

 33.4,
33.5.5,
33.5.6,
33.9.2,
33.9.12.3,
33.9.12.4,
33.9.12.5,
33.9.12.6,
33.9.12.8,
33.9.13.1,

 te The current approach to domain customization
hinders GPU scheduler customization, which was
a major motivation for std::execution’s design.
P3718 solves this, based on experience writing
two separate GPU-based std::execution libraries.
The solution will benefit all schedulers that
depend on customization for performance. Fixing
this issue later would be a breaking change to
C++26.

Adopt the latest revision of P3718 (currently R0),
“Fixing Lazy Sender Algorithm Customization,
Again.”

p3718r0.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 90 of 107

33.9.13.2

 p3718r0.html

US
203-
327

 33.4,
33.9.12.11,
33.15,
33.16.2,
33.16.3

 te The Working Draft currently provides only three
sender adapters for parallel execution of a
function over a [0, N) integer range: bulk,
bulk_chunked, and bulk_unchunked. Of these,
bulk and bulk_chunked behave most like a
“parallel for loop” and are thus the sender
adapters for most users, but they have obscure
names that do not suggest “parallel for loop.”
The bulk_unchunked sender adapter may give
unexpectedly poor performance if users do not
understand that it is a special-purpose function
that may create more execution agents than
users might realize. Thus, it would be best to
rename bulk and bulk_chunked so that users
looking for a “parallel for loop” can find them, by
including “for_loop” in their names. The less
used bulk_unchunked can thus be renamed to
“bulk,” which better conveys the original intent.

Change 33.4 [execution.syn] as follows.
• Replace all instances of bulk_t (the tag

type name) with for_loop_t
• Replace all instances of bulk (the inline

constexpr variable of type bulk_t) with
for_loop

• Replace all instances of bulk_chunked_t
(the tag type name) with
for_loop_chunked_t

• Replace all instances of bulk_chunked
(the inline constexpr variable of type
bulk_chunked_t) with for_loop_chunked

• Replace all instances of
bulk_unchunked_t (the tag type name)
with bulk_t

• Replace all instances of bulk_unchunked
(the inline constexpr variable of type
bulk_unchunked_t) with bulk

Rename 33.9.12.11 [exec.bulk] title as follows:
33.9.12.11 execution::bulkfor_loop,
execution::bulkfor_loop_chunked, and
execution::bulk_unchunked [exec.bulk]

Change 33.9.12.11 [exec.bulk] by replacing
names as in 33.4.

Change 33.15 [exec.par.scheduler] and 33.16
[exec.sysctxrepl] by replacing names as in 33.4
and by making the following changes.

• Replace all instances of the term bulk
chunked proxy ([exec.par.scheduler]

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 91 of 107

paragraphs 7 and 10.1.1) with the term
chunked for loop proxy.

• Replace all instances of the term bulk
unchunked proxy ([exec.par.scheduler]
paragraphs 8 and 11.1.1) with the term
bulk proxy.

• Replace all instances of
schedule_bulk_chunked
([exec.par.scheduler] 10.1,
[exec.sysctxrepl.psb] 1, 4) with
schedule_for_loop_chunked.

• Replace all instances of
schedule_bulk_unchunked
([exec.par.scheduler] 11.1,
[exec.sysctxrepl.psb] 1, 7) with
schedule_bulk.

US
207-
328

 33.5.5,
33.5.6,
33.9,
33.13.3,
33.15

 te Section [exec] in the Working Draft has sender
algorithms that are customizable. The
customization mechanism has seen a fair bit of
recent churn. P3718 was the latest effort to shore
up the mechanism. Unfortunately, there are gaps
in its proposed resolution. See D3826R0
(https://isocpp.org/files/papers/D3826R0.html)
for
technical details.

It is too late for additional fixes. The ability to
customize sender algorithms should be removed
for C++26 and added back once the issues have
been fixed.

d3826r0.html p3718r0.html

Accept the proposed resolution in D3826R0 (
https://isocpp.org/files/papers/D3826R0.html ,
which will become
https://isocpp.org/files/papers/P3826R0.html once
published).

d3826r0.html

CA-
329

 33.7.1

 te Receivers are permitted to throw from their move
constructor which necessitates pessimization as
described in P3388.

Adopt P3388, “When Do You Know `connect`
Doesn’t Throw?”

https://isocpp.org/files/papers/D3826R0.html
https://isocpp.org/files/papers/D3826R0.html
https://isocpp.org/files/papers/P3826R0.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 92 of 107

FR-
032
-330

 33.7.1

 te Adopt P3388R2 - When Do You Know connect
Doesn't Throw? - as a necessary bugfix for
C++26. It was already forwarded by LEWG.

Adopt P3388R2.

FI-
331

 33.9

 te The sender algorithm customization
mechanism isn’t quite functional,
based on practical implementation
and deployment experience. It will
need more work to get right, and the
time for such getting-right is in C++29.
We can keep the rest of
Senders&Receivers just fine, the
application-level API is unaffected by
this.

Adopt the paper P3826.

US
209-
332

 33.9

 te unspecified-exception is underspecified. Specify that it is publicly and unambiguously
derived from exception, and not related to
dependent_sender_error.

US
208-
333

 33.9

 ed Various cross-references for impls-for should go
to 33.9.2 rather than 33.9.1.

Update cross-references.

CA-
334

 33.9.10

Paragraph 6 te The fact that `connect` is allowed to throw for
same receivers with a certain environment type but
not for other receivers with that same environment
type necessitates pessimization as described in
P3388.

Adopt P3388, “When Do You Know `connect`
Doesn’t Throw?”

FR-
033
-335

 33.9.12

 ed The headings for [exec.associate],
[exec.stop.when], [exec.spawn.future],
[exec.spawn] use std::execution::foo, the rest of
the clause only execution::foo.

Remove the redundant std:: in the specified
headings.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 93 of 107

FR-
034
-336

 33.9.12

 te The naming of the monadic operations in
std::execution (then, let_value, let_error,
let_stopped) are inconsistent with the naming of
the monadic operations elsewhere in the
standard library (transform, and_then, or_else).
They should be renamed for greater consistency.

See P3845R0 for more motivation.

• Rename std::execution::then to
std::execution::transform

• Rename std::execution::let_value to
std::execution::and_then

• Rename std::execution::let_error to
std::execution::or_else_error

• Rename std::execution::let_stopped to
std::execution::or_else_stopped

FR-
035
-337

 33.9.12

 te The use of "counting" in
std::execution::simple_counting_scope and
std::execution::counting_scope is both non-
descriptive – all possible implementations of
async scopes have some implicit/explicit count to
drive their internal state machine - and not useful
to the user. We should remove the specifier.
Are we also sure that we want to imply that the
scope with the stop source is the reasonable
default that defers the shorter name?

Rename std::execution::{simple_counting_scope,
counting_scope} either to

• std::execution::{simple_scope, scope} if we
want to imply that the scope with stop
source is the reasonable default, or

• std::execution::{scope, stoppable_scope} if
we want to imply that the scope without
stop source is the default, or

std::execution::{simple_scope,
stoppable_scope} if we want to imply
that neither scope is the default.

CA-
338

 33.9.12.10

 te As described in detail in P3373 `let_value`,
`let_error`, and `let_stopped` all extend the
lifetime of the predecessor operation state thereby
unnecessarily increasing the lifetime of those
operation states and the storage occupied by a
`let_value`, `let_error`, or `let_stopped`
operation state.

Adopt P3373, “Of Operation States and Their
Lifetimes,” thereby causing `let_value`, `let_error`,
and `let_stopped` to function in the way the
implementations in libunifex do with respect to the
predecessor operation state’s lifetime.

US
221-
339

 33.9.12.11

5-7 te check-types was added to impls-
for<bulk_chunked_t>’s definition, but the
specification is under impls-
for<bulk_unchunked_t>. Additionally, the
specification of check-types is incorrect; data-
type<Sndr> is the product-type tuple, not an
invocable.

Add a check-types to impls-
for<bulk_unchunked_t> as well. Specify it
appropriately. Change the definition of check-
types to extract the invocable and shape types,
and check invocability correctly.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 94 of 107

US
222-
340

 33.9.12.11

6 te impls-for<bulk_unchunked_t>::complete unpacks
state incorrectly, since it is now a three-element
tuple.

Change “[shape, f]” to “[policy, shape, f]”.

US
225-
341

 33.9.12.12
33.9.12.13

18
6

te Tuple’s constructor is not required to be
conditionally noexcept. As a result, the
“potentially-throwing” check is not guaranteed to
work.

Either add conditional noexcept or change these
to check elementwise construction.

US
224-
342

 33.9.12.12

5 te This wording does not specify that other queries
are not forwarded.

Specify that.

US
223-
343

 33.9.12.12

5 te Bullet 5.3 should say “get_stop_token_t” instead
of “stop_token_t”, which does not exist.

Modify accordingly.

US
220-
344

 33.9.12.12

5 ed This should be made a Returns: paragraph.
state.stop-src should be stop_src and
get_env(rcvr).query should be env.query.

Modify accordingly.

US
226-
345

 33.9.12.17

2 te The bullet 2.2 case still needs to evaluate token. Change the last “sndr” to “(void) token, sndr,
except that token and sndr are indeterminately
sequenced”.

US
227-
346

 33.9.12.18
33.9.13.3

 te The allocator is rebound to spawn-state or
spawn-future-state and used as a data member
when the type is still incomplete. Allocators are
not required to support incomplete types.

Consider rebinding the allocator at the point of
use instead.

US
229-
347

 33.9.12.18

16 te The template arguments of the type of s is
unclear.

Specify the actual type.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 95 of 107

US
228-
348

 33.9.12.18

6 te ssource-t should be required to be default-
constructible and the resulting object should not
be disengaged. It should also be in code font.

Add wording to that effect and change the font.

US
218-
349

 33.9.12.3

3 ed Bullet 3.3 is really specifying check-types and
should be its own paragraph.

Modify accordingly..

US
219-
350

 33.9.12.9

5 te The selection of completion signature is incorrect. Replace set_value_t with decayed-typeof<set-
cpo>.

US
211-
351

 33.9.2

24 te The definition of Sndr in bullet 24.4 should
probably decay Data and Child, consistent with
the return type.

Modify accordingly.

US
212-
352

 33.9.2

26 ed This paragraph is talking about the default
template argument of make-sender but is
separated far from it.

Move it before the code block and turn it into a
Remarks: paragraph.

US
213-
353

 33.9.2

26-45 ed Much of paragraphs 27-45 are far from the
entities they specify and haphazardly organized.

Split the big code block before paragraph 26 into
pieces and move the corresponding parts of
paragraphs 27-45 under them.

US
210-
354

 33.9.2

3 te It is unclear if MAKE-ENV is still needed when we
have prop.

If not, strike it and replace its uses.

US
214-
355

 33.9.2

41 te The fold expression can pick up overloaded
comma operators.

Cast the call to get_completion_signatures to
void.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 96 of 107

US
215-
356

 33.9.2

43 ed The declaration of basic-sender::
get_completion_signatures does not match the
class definition.

Make it consistent.

US
216-
357

 33.9.2

49 ed This paragraph should say "function template"
instead of "function"; should say "new object of
type remove_cvref_t<T>" instead of "new object
of type T". Missing closing parens for the "i.e."
after "is valid".

Modify accordingly.

CA-
358

 33.9.6

 te There have been many late-breaking issues
discovered with sender customization, we
shouldn't ship it when we know it's broken in
multiple ways (in addition to ways we haven't yet
discovered).

Adopt P3826, “Defer Sender Algorithm
Customization to Post-C++26.”

US
217-
359

 33.9.9

4 ed This paragraph is a general requirement and
should not be indented.

Unindent it.

US
230-
360

 33.10

8 te fn can be called multiple times and therefore
should not be forwarded.

Remove the std::forward.

US
231-
361

 33.12.1.3
33.12.1.4

 ed count and state are not data members and the
various states are not enumerators. They should
not be in code font.

Either make them non-code-font, or make then
actual exposition-only data
members/enumerators.

US
236-
362

 33.13.3

 te The wording of affine_on doesn’t have a
specification for the default implementation. For
other algorithms the default implementation is
specified.

Provide a specification for the default
implementation. See LWG4344.

US
235-
363

 33.13.3

 te The main purpose of affine_on is to make sure
work resumes on a specific execution context.
The scheduling operation may take some time
and work may be cancelled in the meantime. If
this cancellation causes the scheduling to be
cancelled work cleaning up after the cancellation

Change the specification of affine_on to suppress
forwarding the stop token to the scheduling
operation. See LWG4332.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 97 of 107

would be executed on the wrong execution
context. Thus, the stop token from the receiver's
environment should only be forwarded when
connecting the sender but not to scheduling the
operation.

US
234-
364

 33.13.3

 te affine_on is specified to take a sender and a
scheduler as arguments. The scheduler is meant
to match the scheduler obtained from the
get_scheduler query on the receiver's
environment. Thus, the scheduler argument is
redundant and the semantics become weird if
these two schedulers don't match. The affine_on
algorithm should only take the sender as
argument.

Change the specification and use of affine_on to
omit the scheduler parameter and use the
scheduler from the receiver's environment
instead. See LWG4331.

US
233-
365

 33.13.3

 te The specification of affine_on uses "current
execution resource" and it is unclear what that
means exactly. Additionally, it is unclear what the
difference between affine_on and continues_on
is. The intended difference for affine_on is to
avoid unnecessary scheduling which
continues_on is already allowed to do in some
cases, too.

The intended semantics is that affine_on will
either complete inline on whatever execution
agent it was started on or it will complete
asynchronously on the specified execution
context. With this formulation affine_on may
complete on one of two different execution
context if it is started on an execution context that
is different from the one specified by the
scheduler.

Clarify the specification of affine_on to describe
the differences compared to continues_on. See
LWG4330.

US
232-
366

 33.13.3

 te There are no customizations of affine_on for
other algorithms specified. For example,
affine_on(just(), sched) can be equivalent to just()
because just() completes inline and, thus, on the
correct execution context.

Specify customisations of affine_on for sender
arguments which don't change the scheduler. See
LWG4329.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 98 of 107

US
239-
367

 33.13.5

 te As specified, there is an implicit precondition that
sch_ is not moved from on all the member
fucntions. If that is intended, the precondition
should be made explicit.

Make the precondition explicit.

US
238-
368

 33.13.5

 te When using task_scheduler algorithm
customizations are not picked up. For example,
even if the task_scheduler is actually referring to
a parallel_scheduler, bulk will execute work
sequentially. This behavior may be surprising.

Consider forwarding algorithms in a way which
picks up customisation, at least for known
algorithms and/or known schedulers. See
LWG4336.

US
237-
369

 33.13.5

 te The result of schedule(sched) for a scheduler
sched is only required to be movable. An object
of this type may need to be forwarded to an
operation state constructor by task_scheduler::ts-
sender::connect. Thus, this function should be
qualified with an rvalue reference.

Add an rvalue reference qualifier for
task_scheduler::ts-sender::connect both in the
synopsis (paragraph 8) and the specification
(paragraph 10). See LWG4342.

US
240-
370

 33.13.5

1 te shared_ptr owns a pointer (or nullptr_t), not the
pointee, but SCHED wants the pointee.

Say that SCHED(s) is the object pointed to by the
pointer owned by s.sch_.

US
241-
371

 33.13.5

7 ed This sentence should end with a period instead of
a semicolon. Additionally, there should be a “the”
before “type”.

Modify accordingly.

US
242-
372

 33.13.6

 te The specification of task doesn't spell out when
the coroutine frame is destroyed (i.e., when
handle.destroy() is called). As a result the lifetime
of arguments passed to the coroutine and/or of
local variables in the coroutine body may be
longer than expected.

Move the result and error types from the
promise_type to the state type and requires that
the coroutine frame is destroyed before invoking
any of completion dispositions. See LWG4339.

US
246-
373

 33.13.6.2

 te The specification of task doesn't require
symmetric transfer which can help with stack
overflow. Also, when another task is co_awaited
the scheduler on which the task resumes is
known and can be used to avoid unnecessary
scheduling by comparing the scheduler currently
installed by in two tasks involved.

Specify that symmetric transfer is used when a
task co_await's another task. See LWG4348.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 99 of 107

US
245-
374

 33.13.6.2

 te The task type doesn't have an operator
co_await(). Thus, a task can't be co_awaited
directly from a coroutine. Using as_awaitable on
the task object also doesn't work because this
function requires a reference to the promise as
second argument.

Consider adding an operator co_await(). See
LWG4338.

US
244-
375

 33.13.6.2

 te Coroutines can't be copied. Thus, a task can be
connect() just once. To represent that
task::connect() should be rvalue reference
qualified but currently it isn't.

Add an rvalue reference qualifier for
task::connect() both in the synopsis and the
specification (paragraph 3). See LWG4341.

US
243-
376

 33.13.6.2

 te The design discussion of task describes defaults
for the two template parameters T and
Environment of task but these defaults are not
reflected in the synopsis of [task.class]. This is an
oversight and should be fixed. The default for T
should be void and the default for Environment
should be env<> (the design paper used
empty_env but this struct was replaced by the
class template env by P3325r5).

Add default template arguments for task for T =
void and Environment = env<> in the synopsis of
[task.class]:
namespace std::execution { template<class T =
void, class Environment = env<>> class task { ...
}; }. See LWG4343.

US
247-
377

 33.13.6.2

3 te completion_signatures needs to be qualified. "a
specialization of
completion_signatures<ErrorSigs...>" also does
not really work.

Reword as “if error_types is not a specialization of
execution::completion_signatures, or if the
template arguments of that specialization contains
an element...”

US
248-
378

 33.13.6.4

 ed “Class template” should not be in code font in the
title, and “state” should be italicized.

Modify accordingly.

US
249-
379

 33.13.6.4

4 te It is not clear what bullet 4.6 is – it reads like a
requirement on stop_token_type, but if so, this
paragraph is a poor place for it.

If it is a requirement, move it under 33.13.6.2.

US
259-
380

 33.13.6.5

 ed Comments in the class definitions should not end
in semicolons.

Remove them.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 100 of 107

US
258-
381

 33.13.6.5

 te The wording for
task<...>::promise_type::initial_suspend in
[task.promise] paragraph 6 (second bullet) may
imply that a task is eagerly started, i.e., that the
awaiter returned from initial_suspend()
immediately starts the scheduling operation and
causes the task to be resumed. At the very least
the second bullet of the wording should be
clarified such that the scheduling operation is
only started when the coroutine gets resumed.

Change the specification of
task::promise_type::initial_suspend to return
std::suspend_always. See LWG4349.

US
257-
382

 33.13.6.5

 te The type task<...>::promise_type has exposition-
only members source and token. These can be
interpreted as always existing which would be a
performance issue for the former and an
unnecessary constraints for the latter (because
stop tokens aren't required to be default
constructible).

Remove the token exposition member entirely and
move the source member to the state, making its
type optional<stop_source_type> and make it
optionally present only if the receiver's stop token
type mismatches the
stop_source_type::token_type. See LWG4347.

US
256-
383

 33.13.6.5

 te The specification of
change_coroutine_scheduler(sched) uses
std::exchange to put the scheduler into place (in
[task.promise] paragraph 11). The problem is that
std::exchange(x, v) expects x to be assignable
from v but there is no requirement for scheduler
to be assignable.

Change the specification to avoid std::exchange
and rather transfer the scheduler using only
constructions. See LWG4337.

US
255-
384

 33.13.6.5

 te Normally, the get_allocator query forwards the
allocator from the receiver's environment. For
task the get_allocator query used for co_awaited
senders uses the allocator passed when creating
the coroutine or the default if there was none. It
should use the receiver's environment, at least, if
the receiver's environment supports a
get_allocator query. Supporting the receiver's
allocator isn't always possible: the used allocator
type needs to be known when the coroutine is
created. At that time the receiver isn't known, yet.
As a result the receiver's environment may
provide an allocator which is incompatible with
the allocator type used by the coroutine. It may

If the receiver's environment provides a
get_allocator query which is compatible with task's
scheduler_type use this allocator. See LWG4335.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 101 of 107

be possible to use the receiver's allocator if it is
convertible to the allocator type used by the
coroutine and to produce a compile-time error
otherwise.

US
254-
385

 33.13.6.5

 te Normally the allocator_arg argument has to be
the first argument when present. For
task<...>::promise_type the allocator_arg can
appear at an arbitrary position (except the last
because it always needs to be followed by the
allocator). This permission is inconsistent and the
position of the allocator_arg argument and the
allocator should be limited to come first. For
containers the optional support for allocators is
implemented once for every container. For
coroutines the optional support for allocators is
implemented once for every coroutine definition.
To support an optional allocator the coroutine
definition needs to use an allocator and either
gets duplicated not using an allocator or a
forwarding function is added which adds the
default allocator. With the flexible allocator
position optional allocator support can be
provided using a trailing argument list, i.e.,
adding , auto&&.... Instead of constraining task it
may be more reasonable to add the flexibility to
generator.

Constrain the allocator_arg argument to be the
first argument. See LWG4334.

US
253-
386

 33.13.6.5

 te Unlike generator the allocator customization of
task constraints the allocator type used for the
coroutine to be convertible to the configured
allocator_type. This prevents easy use of an
allocator especially when no allocator is
configured and the default
(std::allocator<std::byte>) is used. The reason for
this constraint is that the get_allocator is
forwarded to co_awaited senders and is intended
to be the same as the allocator used for the
coroutine frame.

It may be reasonable to allow use of an arbitrary
allocator when there is no explicit configuration of
the allocator_type. In this case it may also be

Allow use of any allocator for the coroutine frame
from the parameter list, even if this allocator can't
be exposed to child operations. See LWG4333.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 102 of 107

reasonable to not support the get_allocator query
when co_awaiting senders.

US
252-
387

 33.13.6.5

 te The function
task::promise_type::unhandled_stopped() is
called from set_stopped() of a receiver and calls
set_stopped itself. These functions are required
to be noexcept. Thus, unhandled_stopped() can't
throw an exception and should be marked
noexcept. All other declarations of
unhandled_stopped() are already marked
noexcept but
task::promise_type::unhandled_stopped() isn't.

Add noexcept to
task::promise_type::unhandled_stopped() both in
the synopsis and the specification. See
LWG4340.

US
251-
388

 33.13.6.5

 te The template parameter V of
task::promise_type::return_value doesn't have a
default template argument specified. Specifying a
default template argument of T would enable use
of co_return { ... } which would be consistent with
normal return statements. This feature was not
discussed in the design paper but based on the
LEWG discussion on 2025-08-26 it is considered
to be more a bug fix than a new feature.

Add a default argument in the synopsis of
return_value: template<typename V = T> void
return_value(V&& value); See LWG4345.

US
250-
389

 33.13.6.5

 te The synopsis for std::execution::task<T,
E>::promise_type declares return_void() or
return_value(V&&). However, there is no
specification of what these functions actually do.
return_void() doesn’t need to do anything at all.
return_value(V&& v) needs to store v into the
result.

Add specifications for the functions:
void return_void(); Effects: does nothing.
template<class V> void return_value(V&& v);
Effects: Equivalent to
result.emplace(std::forward<V>(v)). See
LWG4346.

US
260-
390

 33.13.6.5

2 te The template arguments of the specialization of
completion signatures are function types. We
want their parameter types.

Add “the parameter types of the” before “template
arguments”.

US
261-
391

 33.13.6.5

3, 16, 17 te The parameter’s type is const allocator_arg_t&. Either modify this to refer to the elements of Args,
or use the reference type if we want to talk about
the parameter.

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 103 of 107

FI-
392

 33.14

 te Scope association concepts were
removed from the async scope facility
during wording review. Subsequent
implementation experience has
shown that those concepts are useful
and beneficial both for standard
library implementations and
programmers wishing to write their
own async scopes. Bring back the
scope association concepts.

Adopt the paper P3815.

CA-
393

 33.14.1

Paragraph 2 te The transformation applied during LEWG review
which removed `scope_association` is a potential
pessimization.

Adopt P3815, “Add `scope_association` concept to
P3149”

US
262-
394

 33.15

3 ed Expressions cannot return things. Change “returns” to “has the value”.

RO 4-
395

 33.15: 7,8,
10, 11
33.16.02: 4,
6

te

The `parallel_scheduler` specification could use a
few tweaks to make it better:

- `receiver_proxy::try_query` could
possibly be const-qualified.
- `receiver_proxy` does not need a
virtual destructor as the object is never
destroyed polymorphically
- `receiver_proxy::try_query` requires
`inplace_stop_token` and doesn't accept
an arbitrary stop token
- `system_context_replaceability` is
not a good name to use for the
namespace in which the replaceability
APIs lie

Consider the proposals from P3804R0: Iterating
on `parallel_scheduler`:

• Make try_query const-qualified
• Remove virtual destructor from

receiver_proxy
• Allow other stop tokens to be propagated

through try_query
• Consider renaming

system_context_replaceability
Improve working around customizations for bulk

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 104 of 107

The wording around the customizations of
`bulk_unchunked`/`bulk_chunked` for
`parallel_scheduler` isn't precise enough.

US
263-
396

 33.16.2

2 te This should require the shared_ptr to actually
own the object. Additionally, “implements the
interface” is not C++.

Say “whose type is derived from”. Add the
ownership requirement.

US
264-
397

 33.16.2

4-7 ed This should be a separate subclause. Move these paragraphs into a new subclause
“Receiver proxies”.

US
265-
398

 33.16.3

1,4,7 te Storages do not have lifetimes; they have
durations.

Change the beginning to “The ends of the
lifetimes of *this and the object referred to by r,
and the end of the duration of any storage”.

US
266-
399

 33.16.3

4,7 ed The meaning of “one of the expressions below” is
not clear (it is meant to exclude execute).

Change to say “the call to set_value, set_error, or
set_done on r”.

US
267-
401

 Annex C

 te CWG2823 (adopted November 2023) clarified
that dereferencing a null or past-the-end pointer
is UB, even if the address is immediately taken.
CWG2875, which proposes to add an Annex C
entry documenting the difference from C, should
be resolved since no paper has materialized
within the C++26 timeframe to allow this
construct in C++.

Apply the proposed resolution for CWG2875.

US
268-
402

 C.1.4

Paragraph 2 te “Permit the implementation to store backing
arrays in static read-only memory.”

Change “Permit” to “Require”.
See comment US 40 for rationale.
https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3
.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2752r3.html

Template for comments and secretariat observations Date:2025-10-02 Document: Project:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 105 of 107

p2752r3.html p3824r0.html

AT10
-403

 D.15

Paragraphs
4 and 6

te complex has been made tuple-like (see
22.4.3 and 29.4.9), but the current wording does
not support cv-qualified complex.

Add <complex> to the list of headers that make
the volatile-specialization available.

US
269-
406

 Index

 ed If the new notion of "replaceable" is not removed
from the Standard, then it should be listed in the
Index under "replaceable," which currently lists
only the old meaning.

Index, page 2480: Replace:
 replaceable, 240
with:
 replaceable,
 class, 306
 function, 240
 type, 80

Template for comments and secretariat observations Date:2025-10-02 Document:

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Propo

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS
editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 106 of 107

File: ISO_IEC CD 14882_AFNOR.docx

ISO_IEC CD 14882_AFNOR.docx: Collation successful

ISO_IEC CD 14882_ANSI.docx: Collation successful

ISO_IEC CD 14882_ASI.docx: Collation successful

ISO_IEC CD 14882_ASRO.docx: Collation successful

ISO_IEC CD 14882_BDS.doc: Collation successful

ISO_IEC CD 14882_BSI.doc: Collation successful

ISO_IEC CD 14882_DIN v2.docx: Collation successful

ISO_IEC CD 14882_GOST R V2.doc: Collation successful

ISO_IEC CD 14882_PKN.docx: Collation successful

ISO_IEC CD 14882_SCC.doc: Collation successful

ISO_IEC CD 14882_SFS.docx: Collation successful

ISO_IEC CD 14882_UNE R1.doc: Collation successful

ISO_IEC CD 14882_UNI.doc: Collation successful

ISO_IEC CD 14882_UNMZ.doc: Collation successful

Collation of files was successful. Number of collated files: 14

SELECTED (number of files): 14

PASSED TEST (number of files conformed to CCT table model): 14

FAILED TEST (number of files conformed to CCT table model): 0

ISO_IEC CD 14882_AFNOR.docx: Collation successful

PASSED OTHER FILES (number of files to be collated at the end of the result file not
conformed to CCT table model): 1

CCT - Version 2021.1

