constexpr containers and adaptors
This paper proposes marking all containers and adaptors constexpr
. This will make compile time programming much easier by making normal C++ and constexpr
C++ more similar.
All necessary constexpr
functionality required by the containers to be changed is supported by the language. There is no reason for them not to be constexpr, and the standard library should support these in order for them to properly serve as vocabulary types.
The following table shows what this paper proposes, and the status quo:
container / adapter | before | after | note |
std::array | βοΈ | βοΈ | since C++11/14 |
std::deque | x | βοΈ | |
std::forward_list | x | βοΈ | |
std::list | x | βοΈ | |
std::vector | βοΈ | βοΈ | since C++20 π« |
std::map | x | βοΈ | using node_handle::key() is UB (CWG-2514) |
std::multimap | x | βοΈ | using node_handle::key() is UB (CWG-2514) |
std::set | x | βοΈ | |
std::multiset | x | βοΈ | |
std::unordered_map | x | βοΈ | using node_handle::key() is UB (CWG-2514) |
std::unordered_multimap | x | βοΈ | using node_handle::key() is UB (CWG-2514) |
std::unordered_set | x | βοΈ | |
std::unordered_multiset | x | βοΈ | |
std::queue | x | βοΈ | |
std::priority_queue | x | βοΈ | |
std::stack | x | βοΈ | |
std::flat_map | x | βοΈ | new adapter in C++23, originally proposed for C++20 |
std::flat_multimap | x | βοΈ | new adapter in C++23, originally proposed for C++20 |
std::flat_set | x | βοΈ | new adapter in C++23, originally proposed for C++20 |
std::flat_multiset | x | βοΈ | new adapter in C++23, originally proposed for C++20 |
std::span | βοΈ | βοΈ | |
std::mdspan | βοΈ | βοΈ | |
std::basic_string | βοΈ | βοΈ | since C++20 π« |
std::basic_string_view | βοΈ | βοΈ | since C++17 |
I implemented the proposal in a personal fork of libc++ by marking all functions and member functions associated with containers with constexpr
. Containers deque
, forward_list
, list
, and all adaptors (note: libc++ doesn't have flat_map and flat_set yet) were modified without any problem.
When marking set
, map
, unordered_set
, and unordered_map
I ran into problems with UB in the construction of nodes, where the node is allocated but not constructed and only its subobject with value is constructed. Another UB I ran into was type-punning via union
and static_cast
from size_t
into unsigned char
when calculating hash; both these issues were fixed by using std::bit_cast
instead. This is actually a good argument for constexpr ALL the things as proper testing during constant evaluation can easily catch such problems.
Another problem with unordered_set
and unordered_map
was the absence of constexpr ceilf(float)
function, a prime calculation function in hash.cpp
, and a non-constexpr
std::hash
type template.
Here are examples with iterators and here are examples with normal operations.
One remaining UB needs to be solved in order to make std::hash<T *>
constexpr
: converting pointer to a number. For my implementation I did it by extending std::bit_cast
to convert constexpr
symbolic address to an integer.
This approach has the problem of returning an inconsistent result for constant evaluated hash in comparison to runtime computation. Same thing already applies to comparing pointers with std::less<T*>
.
Personally I would just allow std::bit_cast
from (but not to) pointer. Another alternative implementation would be a single purpose builtin __builtin_ptr_to_hash
.
Another problem I ran into is the already existing CWG-2514 where node_handle::key()
returns non-const reference to key
which is const
inside node_type
. I don't think this is a problem with constexpr
; more with the general specification of map
and unordered_map
and when fixed it will allow using this functionality in constexpr
too.
This change does not allow non-transient allocation, so no allocation done during constant evaluation can survive to runtime. This is currently an unsolved problem and is not specific to the proposed change. This is also an argument to allow constexpr std::hash<T *>
as we can see constexpr pointers and runtime pointers as two different address spaces.
None, this is purely an API extension as the previous API wasn't usable in constexpr, and all types are templates and must be available in headers already.
Mechanically mark all functionality in [container] constexpr. Also make sure all iterator types are constexpr.
It may be used to transfer that
ownership to another container with compatible nodes
. Containers with
compatible nodes have the same node handle type
. Elements may be transferred in
either direction between container types in the same row of
Table
86. Table
86: Container types with compatible nodes
[tab:container.node.compat] | | |
| | |
| | |
| | |
| unordered_map<K, T, H1, E1, A> | unordered_map<K, T, H2, E2, A> |
| unordered_map<K, T, H1, E1, A> | unordered_multimap<K, T, H2, E2, A> |
| unordered_set<K, H1, E1, A> | unordered_set<K, H2, E2, A> |
| unordered_set<K, H1, E1, A> | unordered_multiset<K, H2, E2, A> |
If a node handle is not empty, then it contains an allocator that is equal to
the allocator of the container when the element was extracted
. If a node handle
is empty, it contains no allocator
.Class
node-handle is for exposition only
.If a user-defined specialization of
pair exists for
pair<const Key, T> or
pair<Key, T>, where
Key is the
container's
key_type and
T is the container's
mapped_type, the behavior of operations involving node handles is
undefined
.template<unspecified>
class node-handle {
public:
using value_type = see below;
using key_type = see below;
using mapped_type = see below;
using allocator_type = see below;
private:
using container_node_type = unspecified;
using ator_traits = allocator_traits<allocator_type>;
typename ator_traits::template
rebind_traits<container_node_type>::pointer ptr_;
optional<allocator_type> alloc_;
public:
constexpr node-handle() noexcept : ptr_(), alloc_() {}
constexpr node-handle(node-handle&&) noexcept;
constexpr node-handle& operator=(node-handle&&);
constexpr ~node-handle();
constexpr value_type& value() const;
constexpr key_type& key() const;
constexpr mapped_type& mapped() const;
constexpr allocator_type get_allocator() const;
constexpr explicit operator bool() const noexcept;
constexpr bool empty() const noexcept;
constexpr void swap(node-handle&)
noexcept(ator_traits::propagate_on_container_swap::value ||
ator_traits::is_always_equal::value);
constexpr friend void swap(node-handle& x, node-handle& y) noexcept(noexcept(x.swap(y))) {
x.swap(y);
}
};
constexpr node-handle(node-handle&& nh) noexcept;
Effects: Constructs a
node-handle object initializing
ptr_ with
nh.ptr_. Move constructs
alloc_ with
nh.alloc_. Assigns
nullptr to
nh.ptr_ and assigns
nullopt to
nh.alloc_.constexpr node-handle& operator=(node-handle&& nh);
Preconditions: Either
!alloc_, or
ator_traits::propagate_on_container_move_assignment::value
is
true, or
alloc_ == nh.alloc_. Effects:
If
ptr_ != nullptr, destroys the
value_type
subobject in the
container_node_type object pointed to by
ptr_
by calling
ator_traits::destroy, then deallocates
ptr_ by
calling
ator_traits::template rebind_traits<container_node_type>::deallocate.If
!alloc_ or
ator_traits::propagate_on_container_move_assignment::value
is
true, move assigns
nh.alloc_ to
alloc_.Assigns
nullptr to
nh.ptr_ and assigns
nullopt to
nh.alloc_.
constexpr ~node-handle();
Effects: If
ptr_ != nullptr, destroys the
value_type subobject
in the
container_node_type object pointed to by
ptr_ by calling
ator_traits::destroy, then deallocates
ptr_ by calling
ator_traits::template rebind_traits<container_node_type>::deallocate. constexpr value_type& value() const;
Preconditions:
empty() == false. Returns: A reference to the
value_type subobject in the
container_node_type object pointed to by
ptr_. constexpr key_type& key() const;
Preconditions:
empty() == false. Returns: A non-const reference to the
key_type member of the
value_type subobject in the
container_node_type object
pointed to by
ptr_. Remarks: Modifying the key through the returned reference is permitted
. constexpr mapped_type& mapped() const;
Preconditions:
empty() == false. Returns: A reference to the
mapped_type member of the
value_type subobject in the
container_node_type object
pointed to by
ptr_. constexpr allocator_type get_allocator() const;
Preconditions:
empty() == false. constexpr explicit operator bool() const noexcept;
Returns:
ptr_ != nullptr. constexpr bool empty() const noexcept;
Returns:
ptr_ == nullptr. constexpr void swap(node-handle& nh)
noexcept(ator_traits::propagate_on_container_swap::value ||
ator_traits::is_always_equal::value);
Preconditions:
!alloc_, or
!nh.alloc_, or
ator_traits::propagate_on_container_swap::value is
true,
or
alloc_ == nh.alloc_. Effects: Calls
swap(ptr_, nh.ptr_). If
!alloc_, or
!nh.alloc_, or
ator_traits::propagate_on_container_swap::value
is
true calls
swap(alloc_, nh.alloc_).
In addition, it supports constant time insert and erase operations at the beginning or the end;
insert and erase in the middle take linear time
. That is, a deque is especially optimized for pushing and popping elements at the beginning and end
. Storage management is handled automatically
. Descriptions are provided here only for operations on
deque
that are not described in one of these tables
or for operations where there is additional semantic information
.
namespace std {
template<class T, class Allocator = allocator<T>>
class deque {
public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr deque() : deque(Allocator()) { }
constexpr explicit deque(const Allocator&);
constexpr explicit deque(size_type n, const Allocator& = Allocator());
constexpr deque(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>
constexpr deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>
constexpr deque(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr deque(const deque& x);
constexpr deque(deque&&);
constexpr deque(const deque&, const type_identity_t<Allocator>&);
constexpr deque(deque&&, const type_identity_t<Allocator>&);
constexpr deque(initializer_list<T>, const Allocator& = Allocator());
constexpr ~deque();
constexpr deque& operator=(const deque& x);
constexpr deque& operator=(deque&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr deque& operator=(initializer_list<T>);
template<class InputIterator>
constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const T& t);
constexpr void assign(initializer_list<T>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr void resize(size_type sz);
constexpr void resize(size_type sz, const T& c);
constexpr void shrink_to_fit();
constexpr reference operator[](size_type n);
constexpr const_reference operator[](size_type n) const;
constexpr reference at(size_type n);
constexpr const_reference at(size_type n) const;
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;
template<class... Args> constexpr reference emplace_front(Args&&... args);
template<class... Args> constexpr reference emplace_back(Args&&... args);
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
template<container-compatible-range<T> R>
constexpr void prepend_range(R&& rg);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>
constexpr void append_range(R&& rg);
constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>
constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T>);
constexpr void pop_front();
constexpr void pop_back();
constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(deque&)
noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr void clear() noexcept;
};
template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
deque(InputIterator, InputIterator, Allocator = Allocator())
-> deque<iter-value-type<InputIterator>, Allocator>;
template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
deque(from_range_t, R&&, Allocator = Allocator())
-> deque<ranges::range_value_t<R>, Allocator>;
}
constexpr explicit deque(const Allocator&);
Effects: Constructs an empty
deque,
using the specified allocator
. constexpr explicit deque(size_type n, const Allocator& = Allocator());
Preconditions:
T is
Cpp17DefaultInsertable into
deque. Effects: Constructs a
deque with
n default-inserted elements using the specified allocator
. constexpr deque(size_type n, const T& value, const Allocator& = Allocator());
Preconditions:
T is
Cpp17CopyInsertable into
deque. Effects: Constructs a
deque
with
n copies of
value,
using the specified allocator
. template<class InputIterator>
constexpr deque(InputIterator first, InputIterator last, const Allocator& = Allocator());
Effects: Constructs a
deque
equal to the range
[
first, last),
using the specified allocator
. Complexity: Linear in
distance(first, last). Effects: Constructs a
deque with the elements of the range
rg,
using the specified allocator
. Complexity: Linear in
ranges::distance(rg). constexpr void resize(size_type sz);
Preconditions:
T is
Cpp17MoveInsertable and
Cpp17DefaultInsertable into
deque. Effects: If
sz < size(), erases the last
size() - sz elements
from the sequence
. Otherwise,
appends
sz - size() default-inserted elements to the sequence
.constexpr void resize(size_type sz, const T& c);
Preconditions:
T is
Cpp17CopyInsertable into
deque. Effects: If
sz < size(), erases the last
size() - sz elements
from the sequence
. Otherwise,
appends
sz - size() copies of
c to the sequence
.constexpr void shrink_to_fit();
Preconditions:
T is
Cpp17MoveInsertable into
deque. Effects:
shrink_to_fit is a non-binding request to reduce memory use
but does not change the size of the sequence
. [
Note 1:
The request is non-binding to allow latitude for
implementation-specific optimizations
. β
end note]
If the size is equal to the old capacity, or
if an exception is thrown other than by the move constructor
of a non-
Cpp17CopyInsertable T,
then there are no effects
.Complexity: If the size is not equal to the old capacity,
linear in the size of the sequence;
otherwise constant
. Remarks: If the size is not equal to the old capacity,
then invalidates all the references, pointers, and iterators
referring to the elements in the sequence,
as well as the past-the-end iterator
. constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>
constexpr iterator insert(const_iterator position,
InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T>);
template<class... Args> constexpr reference emplace_front(Args&&... args);
template<class... Args> constexpr reference emplace_back(Args&&... args);
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
template<container-compatible-range<T> R>
constexpr void prepend_range(R&& rg);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>
constexpr void append_range(R&& rg);
Effects: An insertion in the middle of the deque invalidates all the iterators and
references to elements of the deque
. An insertion at either end of the
deque invalidates all the iterators to the deque, but has no effect on
the validity of references to elements of the deque
.Complexity: The complexity is linear in the number of elements inserted plus the lesser
of the distances to the beginning and end of the deque
. Inserting a single element at either the beginning or end of a deque always takes constant time
and causes a single call to a constructor of
T.Remarks: If an exception is thrown other than by the
copy constructor, move constructor,
assignment operator, or move assignment operator of
T
there are no effects
. If an exception is thrown while inserting a single element at either end,
there are no effects
. Otherwise, if an exception is thrown by the move constructor of a
non-
Cpp17CopyInsertable
T, the effects are unspecified
.constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void pop_front();
constexpr void pop_back();
Effects: An erase operation that erases the last element of a deque invalidates only the past-the-end iterator
and all iterators and references to the erased elements
. An erase operation that erases the first
element of a deque but not the last element invalidates only iterators
and references to the erased elements
. An erase operation
that erases neither the first element nor the last element of a deque invalidates the past-the-end
iterator and all iterators and references to all the elements of the deque
. [
Note 1:
pop_front and
pop_back are erase operations
. β
end note]
Throws: Nothing unless an exception is thrown by the assignment operator of
T. Complexity: The number of calls to the destructor of
T is the same as the
number of elements erased, but the number of calls to the assignment operator of
T is
no more than the lesser of the number of elements before the erased elements and the number of elements after the erased elements
. template<class T, class Allocator, class U = T>
constexpr typename deque<T, Allocator>::size_type
erase(deque<T, Allocator>& c, const U& value);
Effects: Equivalent to:
auto it = remove(c.begin(), c.end(), value);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;
template<class T, class Allocator, class Predicate>
constexpr typename deque<T, Allocator>::size_type
erase_if(deque<T, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto it = remove_if(c.begin(), c.end(), pred);
auto r = distance(it, c.end());
c.erase(it, c.end());
return r;
A
forward_list is a container that supports forward iterators and allows
constant time insert and erase operations anywhere within the sequence, with storage
management handled automatically
. Fast random access to list elements is not supported
. [
Note 1:
It is intended that
forward_list have zero space or time overhead
relative to a hand-written C-style singly linked list
. Features that would conflict with
that goal have been omitted
. β
end note]
A
forward_list meets all of the requirements
of a container (
[container.reqmts]),
except that the
size() member function is not provided and
operator== has linear complexity,
A
forward_list also meets all of the requirements
for an allocator-aware container (
[container.alloc.reqmts])
. In addition, a
forward_list
provides the
assign member functions and
several of the optional sequence container requirements (
[sequence.reqmts])
. Descriptions are provided here only for operations on
forward_list that are not described in that table or for operations where there
is additional semantic information
.
[
Note 2:
Modifying any list requires access to the element preceding the first element
of interest, but in a
forward_list there is no constant-time way to access a
preceding element
. For this reason,
erase_after and
splice_after
take fully-open ranges, not semi-open ranges
. β
end note]
namespace std {
template<class T, class Allocator = allocator<T>>
class forward_list {
public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
constexpr forward_list() : forward_list(Allocator()) { }
constexpr explicit forward_list(const Allocator&);
constexpr explicit forward_list(size_type n, const Allocator& = Allocator());
constexpr forward_list(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>
constexpr forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>
constexpr forward_list(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr forward_list(const forward_list& x);
constexpr forward_list(forward_list&& x);
constexpr forward_list(const forward_list& x, const type_identity_t<Allocator>&);
constexpr forward_list(forward_list&& x, const type_identity_t<Allocator>&);
constexpr forward_list(initializer_list<T>, const Allocator& = Allocator());
constexpr ~forward_list();
constexpr forward_list& operator=(const forward_list& x);
constexpr forward_list& operator=(forward_list&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr forward_list& operator=(initializer_list<T>);
template<class InputIterator>
constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const T& t);
constexpr void assign(initializer_list<T>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator before_begin() noexcept;
constexpr const_iterator before_begin() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cbefore_begin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr reference front();
constexpr const_reference front() const;
template<class... Args> constexpr reference emplace_front(Args&&... args);
constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
template<container-compatible-range<T> R>
constexpr void prepend_range(R&& rg);
constexpr void pop_front();
template<class... Args> constexpr iterator emplace_after(const_iterator position, Args&&... args);
constexpr iterator insert_after(const_iterator position, const T& x);
constexpr iterator insert_after(const_iterator position, T&& x);
constexpr iterator insert_after(const_iterator position, size_type n, const T& x);
template<class InputIterator>
constexpr iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
constexpr iterator insert_after(const_iterator position, initializer_list<T> il);
template<container-compatible-range<T> R>
constexpr iterator insert_range_after(const_iterator position, R&& rg);
constexpr iterator erase_after(const_iterator position);
constexpr iterator erase_after(const_iterator position, const_iterator last);
constexpr void swap(forward_list&)
noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr void resize(size_type sz);
constexpr void resize(size_type sz, const value_type& c);
constexpr void clear() noexcept;
constexpr void splice_after(const_iterator position, forward_list& x);
constexpr void splice_after(const_iterator position, forward_list&& x);
constexpr void splice_after(const_iterator position, forward_list& x, const_iterator i);
constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator i);
constexpr void splice_after(const_iterator position, forward_list& x,
const_iterator first, const_iterator last);
constexpr void splice_after(const_iterator position, forward_list&& x,
const_iterator first, const_iterator last);
constexpr size_type remove(const T& value);
template<class Predicate> constexpr size_type remove_if(Predicate pred);
constexpr size_type unique();
template<class BinaryPredicate> constexpr size_type unique(BinaryPredicate binary_pred);
constexpr void merge(forward_list& x);
constexpr void merge(forward_list&& x);
template<class Compare> constexpr void merge(forward_list& x, Compare comp);
template<class Compare> constexpr void merge(forward_list&& x, Compare comp);
constexpr void sort();
template<class Compare> constexpr void sort(Compare comp);
constexpr void reverse() noexcept;
};
template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
forward_list(InputIterator, InputIterator, Allocator = Allocator())
-> forward_list<iter-value-type<InputIterator>, Allocator>;
template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
forward_list(from_range_t, R&&, Allocator = Allocator())
-> forward_list<ranges::range_value_t<R>, Allocator>;
}
T shall be complete before any member of the resulting specialization
of
forward_list is referenced
. constexpr explicit forward_list(const Allocator&);
Effects: Constructs an empty
forward_list object using the specified allocator
. constexpr explicit forward_list(size_type n, const Allocator& = Allocator());
Preconditions:
T is
Cpp17DefaultInsertable into
forward_list. Effects: Constructs a
forward_list object with
n
default-inserted elements using the specified allocator
. constexpr forward_list(size_type n, const T& value, const Allocator& = Allocator());
Preconditions:
T is
Cpp17CopyInsertable into
forward_list. Effects: Constructs a
forward_list object with
n copies of
value using the specified allocator
. template<class InputIterator>
constexpr forward_list(InputIterator first, InputIterator last, const Allocator& = Allocator());
Effects: Constructs a
forward_list object equal to the range [
first, last)
. Complexity: Linear in
distance(first, last). Effects: Constructs a
forward_list object
with the elements of the range
rg. Complexity: Linear in
ranges::distance(rg). constexpr iterator before_begin() noexcept;
constexpr const_iterator before_begin() const noexcept;
constexpr const_iterator cbefore_begin() const noexcept;
Effects:
cbefore_begin() is equivalent to
const_cast<forward_list const&>(*this).before_begin(). Returns: A non-dereferenceable iterator that, when incremented, is equal to the iterator
returned by
begin(). Remarks:
before_begin() == end() shall equal
false. constexpr reference front();
constexpr const_reference front() const;
None of the overloads of
insert_after shall affect the validity of iterators and
references, and
erase_after shall invalidate only iterators and references to
the erased elements
. If an exception is thrown during
insert_after there shall
be no effect
. Inserting
n elements into a
forward_list is linear in
n, and the number of calls to the copy or move constructor of
T is
exactly equal to
n. Erasing
n elements from a
forward_list is
linear in
n and the number of calls to the destructor of type
T is
exactly equal to
n.template<class... Args> constexpr reference emplace_front(Args&&... args);
Effects: Inserts an object of type
value_type constructed with
value_type(std::forward<Args>(args)...) at the beginning of the list
. constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
Effects: Inserts a copy of
x at the beginning of the list
. Effects: Inserts a copy of each element of
rg at the beginning of the list
. [
Note 1:
The order of elements is not reversed
. β
end note]
constexpr void pop_front();
Effects: As if by
erase_after(before_begin()). constexpr iterator insert_after(const_iterator position, const T& x);
Preconditions:
T is
Cpp17CopyInsertable into
forward_list. position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. Effects: Inserts a copy of
x after
position. Returns: An iterator pointing to the copy of
x. constexpr iterator insert_after(const_iterator position, T&& x);
Preconditions:
T is
Cpp17MoveInsertable into
forward_list. position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. Effects: Inserts a copy of
x after
position. Returns: An iterator pointing to the copy of
x. constexpr iterator insert_after(const_iterator position, size_type n, const T& x);
Preconditions:
T is
Cpp17CopyInsertable into
forward_list. position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. Effects: Inserts
n copies of
x after
position. Returns: An iterator pointing to the last inserted copy of
x, or
position if
n == 0 is
true. template<class InputIterator>
constexpr iterator insert_after(const_iterator position, InputIterator first, InputIterator last);
Preconditions:
T is
Cpp17EmplaceConstructible into
forward_list
from
*first. position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. Neither
first nor
last are iterators in
*this.Effects: Inserts copies of elements in [
first, last) after
position. Returns: An iterator pointing to the last inserted element, or
position if
first == last is
true. Preconditions:
T is
Cpp17EmplaceConstructible into
forward_list
from
*ranges::begin(rg). position is
before_begin() or
is a dereferenceable iterator in the range [
begin(), end())
. rg and
*this do not overlap
. Effects: Inserts copies of elements in the range
rg after
position. Returns: An iterator pointing to the last inserted element,
or
position if
rg is empty
. constexpr iterator insert_after(const_iterator position, initializer_list<T> il);
Effects: Equivalent to: return insert_after(position, il.begin(), il.end());
template<class... Args>
constexpr iterator emplace_after(const_iterator position, Args&&... args);
Preconditions:
T is
Cpp17EmplaceConstructible into
forward_list
from
std::forward<Args>(args).... position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. Effects: Inserts an object of type
value_type direct-non-list-initialized with
std::forward<Args>(args)... after
position. Returns: An iterator pointing to the new object
. constexpr iterator erase_after(const_iterator position);
Preconditions: The iterator following
position is dereferenceable
. Effects: Erases the element pointed to by the iterator following
position. Returns: An iterator pointing to the element following the one that was
erased, or
end() if no such element exists
. constexpr iterator erase_after(const_iterator position, const_iterator last);
Preconditions: All iterators in the range (
position, last) are dereferenceable
. Effects: Erases the elements in the range (
position, last)
. constexpr void resize(size_type sz);
Preconditions:
T is
Cpp17DefaultInsertable into
forward_list. Effects: If
sz < distance(begin(), end()), erases the last
distance(begin(),
end()) - sz elements from the list
. Otherwise, inserts
sz - distance(begin(), end()) default-inserted
elements at the end of the list
.constexpr void resize(size_type sz, const value_type& c);
Preconditions:
T is
Cpp17CopyInsertable into
forward_list. Effects: If
sz < distance(begin(), end()), erases the last
distance(begin(),
end()) - sz elements from the list
. Otherwise, inserts
sz - distance(begin(), end())
copies of
c at the end of the list
.constexpr void clear() noexcept;
Effects: Erases all elements in the range [
begin(), end())
. Remarks: Does not invalidate past-the-end iterators
. In this subclause,
arguments for a template parameter
named
Predicate or
BinaryPredicate
shall meet the corresponding requirements in
[algorithms.requirements]. The semantics of
i + n,
where
i is an iterator into the list and
n is an integer,
are the same as those of
next(i, n). The expression
i - n,
where
i is an iterator into the list and
n is an integer,
means an iterator
j such that
j + n == i is
true. For
merge and
sort,
the definitions and requirements in
[alg.sorting] apply
.constexpr void splice_after(const_iterator position, forward_list& x);
constexpr void splice_after(const_iterator position, forward_list&& x);
Preconditions:
position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. get_allocator() == x.get_allocator() is
true. addressof(x) != this is
true. Effects: Inserts the contents of
x after
position, and
x becomes empty
. Pointers and references to the moved
elements of
x now refer to those same elements but as members of
*this. Iterators referring to the moved elements will continue to refer to their elements, but
they now behave as iterators into
*this, not into
x.Complexity: O(distance(x.begin(), x.end()))
constexpr void splice_after(const_iterator position, forward_list& x, const_iterator i);
constexpr void splice_after(const_iterator position, forward_list&& x, const_iterator i);
Preconditions:
position is
before_begin() or is a dereferenceable
iterator in the range [
begin(), end())
. The iterator following
i is a dereferenceable iterator in
x. get_allocator() == x.get_allocator() is
true. Effects: Inserts the element following
i into
*this, following
position, and removes it from
x. The result is unchanged if
position == i or
position == ++i. Pointers
and references to
*++i continue to refer to the same element but as a member of
*this. Iterators to
*++i continue to refer to
the same element, but now behave as iterators into
*this, not into
x.constexpr void splice_after(const_iterator position, forward_list& x,
const_iterator first, const_iterator last);
constexpr void splice_after(const_iterator position, forward_list&& x,
const_iterator first, const_iterator last);
Preconditions:
position is
before_begin() or is a
dereferenceable iterator in the range [
begin(), end())
. (
first, last) is a
valid range in
x, and all iterators in the range (
first, last) are
dereferenceable
. position is not an iterator in the range (
first, last)
. get_allocator() == x.get_allocator() is
true. Effects: Inserts elements in the range (
first, last) after
position and
removes the elements from
x. Pointers and references to the moved elements of
x now refer to those same elements but as members of
*this. Iterators
referring to the moved elements will continue to refer to their elements, but they now
behave as iterators into
*this, not into
x.Complexity: O(distance(first, last))
constexpr size_type remove(const T& value);
template<class Predicate> constexpr size_type remove_if(Predicate pred);
Effects: Erases all the elements in the list referred to by a list iterator
i for
which the following conditions hold:
*i == value (for
remove()),
pred(*i) is
true (for
remove_if())
. Invalidates only the iterators and references to the erased elements
.Returns: The number of elements erased
. Throws: Nothing unless an exception is thrown by the equality comparison or the
predicate
. Complexity: Exactly
distance(begin(), end()) applications of the corresponding
predicate
. constexpr size_type unique();
template<class BinaryPredicate> constexpr size_type unique(BinaryPredicate binary_pred);
Let
binary_pred be
equal_to<>{} for the first overload
.Preconditions:
binary_pred is an equivalence relation
. Effects: Erases all but the first element from every consecutive
group of equivalent elements
. That is, for a nonempty list, erases all elements referred to
by the iterator
i in the range [
begin() + 1, end())
for which
binary_pred(*i, *(i - 1)) is
true. Invalidates only the iterators and references to the erased elements
.Returns: The number of elements erased
. Throws: Nothing unless an exception is thrown by the predicate
. Complexity: If
empty() is
false,
exactly
distance(begin(), end()) - 1 applications of
the corresponding predicate,
otherwise no applications of the predicate
. constexpr void merge(forward_list& x);
constexpr void merge(forward_list&& x);
template<class Compare> constexpr void merge(forward_list& x, Compare comp);
template<class Compare> constexpr void merge(forward_list&& x, Compare comp);
Let
comp be
less<> for the first two overloads
.Preconditions:
*this and
x are both sorted
with respect to the comparator
comp, and
get_allocator() == x.get_allocator() is
true. Effects: If
addressof(x) == this, there are no effects
. Otherwise, merges
the two sorted ranges [
begin(), end()) and [
x.begin(), x.end())
. The result is a range
that is sorted with respect to the comparator
comp. Pointers and references to the moved elements of
x now refer to those same elements
but as members of
*this. Iterators referring to the moved elements will continue to
refer to their elements, but they now behave as iterators into
*this, not into
x.Complexity: At most
distance(begin(),
end()) + distance(x.begin(), x.end()) - 1 comparisons
if
addressof(x) != this; otherwise, no comparisons are performed
. If
addressof(x) != this,
x is empty after the merge
. No elements are copied by this operation
. If an exception is thrown other than by a comparison, there are no effects
. constexpr void sort();
template<class Compare> constexpr void sort(Compare comp);
Effects: Sorts the list according to the
operator< or the
comp function object
. If an exception is thrown, the order of the elements in
*this is unspecified
. Does not affect the validity of iterators and references
.Complexity: Approximately
NlogN comparisons, where
N is
distance(begin(), end()). constexpr void reverse() noexcept;
Effects: Reverses the order of the elements in the list
. Does not affect the validity of iterators and references
.template<class T, class Allocator, class U = T>
constexpr typename forward_list<T, Allocator>::size_type
erase(forward_list<T, Allocator>& c, const U& value);
Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });
template<class T, class Allocator, class Predicate>
constexpr typename forward_list<T, Allocator>::size_type
erase_if(forward_list<T, Allocator>& c, Predicate pred);
Effects: Equivalent to: return c.remove_if(pred);
A
list
is a sequence container that supports
bidirectional iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled
automatically
. Unlike
vectors and
deques,
fast random access to list elements is not supported, but many
algorithms only need sequential access anyway
. The exceptions are the
operator[]
and
at
member functions, which are not provided
.
Descriptions are provided here only for operations on
list
that are not described in one of these tables
or for operations where there is additional semantic information
.
namespace std {
template<class T, class Allocator = allocator<T>>
class list {
public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr list() : list(Allocator()) { }
constexpr explicit list(const Allocator&);
constexpr explicit list(size_type n, const Allocator& = Allocator());
constexpr list(size_type n, const T& value, const Allocator& = Allocator());
template<class InputIterator>
constexpr list(InputIterator first, InputIterator last, const Allocator& = Allocator());
template<container-compatible-range<T> R>
constexpr list(from_range_t, R&& rg, const Allocator& = Allocator());
constexpr list(const list& x);
constexpr list(list&& x);
constexpr list(const list&, const type_identity_t<Allocator>&);
constexpr list(list&&, const type_identity_t<Allocator>&);
constexpr list(initializer_list<T>, const Allocator& = Allocator());
constexpr ~list();
constexpr list& operator=(const list& x);
constexpr list& operator=(list&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr list& operator=(initializer_list<T>);
template<class InputIterator>
constexpr void assign(InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr void assign_range(R&& rg);
constexpr void assign(size_type n, const T& t);
constexpr void assign(initializer_list<T>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr void resize(size_type sz);
constexpr void resize(size_type sz, const T& c);
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;
template<class... Args> constexpr reference emplace_front(Args&&... args);
template<class... Args> constexpr reference emplace_back(Args&&... args);
constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
template<container-compatible-range<T> R>
constexpr void prepend_range(R&& rg);
constexpr void pop_front();
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>
constexpr void append_range(R&& rg);
constexpr void pop_back();
template<class... Args> iterator emplace(const_iterator position, Args&&... args);
constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>
constexpr iterator insert(const_iterator position, InputIterator first, InputIterator last);
template<container-compatible-range<T> R>
constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T> il);
constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator position, const_iterator last);
constexpr void swap(list&) noexcept(allocator_traits<Allocator>::is_always_equal::value);
constexpr void clear() noexcept;
constexpr void splice(const_iterator position, list& x);
constexpr void splice(const_iterator position, list&& x);
constexpr void splice(const_iterator position, list& x, const_iterator i);
constexpr void splice(const_iterator position, list&& x, const_iterator i);
constexpr void splice(const_iterator position, list& x, const_iterator first, const_iterator last);
constexpr void splice(const_iterator position, list&& x, const_iterator first, const_iterator last);
constexpr size_type remove(const T& value);
template<class Predicate> constexpr size_type remove_if(Predicate pred);
constexpr size_type unique();
template<class BinaryPredicate>
constexpr size_type unique(BinaryPredicate binary_pred);
constexpr void merge(list& x);
constexpr void merge(list&& x);
template<class Compare> constexpr void merge(list& x, Compare comp);
template<class Compare> constexpr void merge(list&& x, Compare comp);
constexpr void sort();
template<class Compare> constexpr void sort(Compare comp);
constexpr void reverse() noexcept;
};
template<class InputIterator, class Allocator = allocator<iter-value-type<InputIterator>>>
list(InputIterator, InputIterator, Allocator = Allocator())
-> list<iter-value-type<InputIterator>, Allocator>;
template<ranges::input_range R, class Allocator = allocator<ranges::range_value_t<R>>>
list(from_range_t, R&&, Allocator = Allocator())
-> list<ranges::range_value_t<R>, Allocator>;
}
T shall be complete before any member of the resulting specialization
of
list is referenced
. constexpr explicit list(const Allocator&);
Effects: Constructs an empty list, using the specified allocator
. constexpr explicit list(size_type n, const Allocator& = Allocator());
Preconditions:
T is
Cpp17DefaultInsertable into
list. Effects: Constructs a
list with
n default-inserted elements using the specified allocator
. constexpr list(size_type n, const T& value, const Allocator& = Allocator());
Preconditions:
T is
Cpp17CopyInsertable into
list. Effects: Constructs a
list
with
n
copies of
value,
using the specified allocator
. template<class InputIterator>
constexpr list(InputIterator first, InputIterator last, const Allocator& = Allocator());
Effects: Constructs a
list
equal to the range
[
first, last)
. Complexity: Linear in
distance(first, last). Effects: Constructs a
list object with the elements of the range
rg. Complexity: Linear in
ranges::distance(rg). constexpr void resize(size_type sz);
Preconditions:
T is
Cpp17DefaultInsertable into
list. Effects: If
size() < sz,
appends
sz - size() default-inserted elements to the
sequence
. If sz <= size(), equivalent to:
list<T>::iterator it = begin();
advance(it, sz);
erase(it, end());
constexpr void resize(size_type sz, const T& c);
Preconditions:
T is
Cpp17CopyInsertable into
list. Effects: As if by:
if (sz > size())
insert(end(), sz-size(), c);
else if (sz < size()) {
iterator i = begin();
advance(i, sz);
erase(i, end());
}
else
;
constexpr iterator insert(const_iterator position, const T& x);
constexpr iterator insert(const_iterator position, T&& x);
constexpr iterator insert(const_iterator position, size_type n, const T& x);
template<class InputIterator>
constexpr iterator insert(const_iterator position, InputIterator first,
InputIterator last);
template<container-compatible-range<T> R>
constexpr iterator insert_range(const_iterator position, R&& rg);
constexpr iterator insert(const_iterator position, initializer_list<T>);
template<class... Args> constexpr reference emplace_front(Args&&... args);
template<class... Args> constexpr reference emplace_back(Args&&... args);
template<class... Args> constexpr iterator emplace(const_iterator position, Args&&... args);
constexpr void push_front(const T& x);
constexpr void push_front(T&& x);
template<container-compatible-range<T> R>
constexpr void prepend_range(R&& rg);
constexpr void push_back(const T& x);
constexpr void push_back(T&& x);
template<container-compatible-range<T> R>
constexpr void append_range(R&& rg);
Complexity: Insertion of a single element into a list takes constant time and
exactly one call to a constructor of
T. Insertion of multiple elements into a list is linear in the
number of elements inserted, and the number of calls to the copy
constructor or move constructor of
T is exactly equal
to the number of elements inserted
.Remarks: Does not affect the validity of iterators and references
. If an exception is thrown there are no effects
.constexpr iterator erase(const_iterator position);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void pop_front();
constexpr void pop_back();
constexpr void clear() noexcept;
Effects: Invalidates only the iterators and references to the erased elements
. Complexity: Erasing a single element is a constant time operation with a single call to the destructor of
T. Erasing a range in a list is linear time in the
size of the range and the number of calls to the destructor of type
T
is exactly equal to the size of the range
.Since lists allow fast insertion and erasing from the middle of a list, certain
operations are provided specifically for them
.
In this subclause,
arguments for a template parameter
named
Predicate or
BinaryPredicate
shall meet the corresponding requirements in
[algorithms.requirements]. The semantics of
i + n and
i - n,
where
i is an iterator into the list and
n is an integer,
are the same as those of
next(i, n) and
prev(i, n),
respectively
. For
merge and
sort,
the definitions and requirements in
[alg.sorting] apply
.list provides three splice operations that destructively move elements from one list to
another
. The behavior of splice operations is undefined if
get_allocator() !=
x.get_allocator().constexpr void splice(const_iterator position, list& x);
constexpr void splice(const_iterator position, list&& x);
Preconditions:
addressof(x) != this is
true. Effects: Inserts the contents of
x
before
position
and
x
becomes empty
. Pointers and references to the moved elements of
x
now refer to those same elements but as members of
*this. Iterators referring to the moved elements will continue to refer to their
elements, but they now behave as iterators into
*this,
not into
x.Complexity: Constant time
. constexpr void splice(const_iterator position, list& x, const_iterator i);
constexpr void splice(const_iterator position, list&& x, const_iterator i);
Preconditions:
i is a valid dereferenceable iterator of
x. Effects: Inserts an element pointed to by
i
from list
x
before
position and removes the element from
x. The result is unchanged if
position == i
or
position == ++i. Pointers and references to
*i
continue to refer to this same element but as a member of
*this. Iterators
to
*i
(including
i
itself) continue to refer to the same element, but now behave as iterators into
*this,
not into
x.Complexity: Constant time
. constexpr void splice(const_iterator position, list& x, const_iterator first,
const_iterator last);
constexpr void splice(const_iterator position, list&& x, const_iterator first,
const_iterator last);
Preconditions:
[first, last) is a valid range in
x. position is not an iterator in the range [
first, last)
. Effects: Inserts elements in the range
[
first, last)
before
position
and removes the elements from
x. Pointers and references to the moved elements of
x
now refer to those same elements but as members of
*this. Iterators referring to the moved elements will continue to refer to their
elements, but they now behave as iterators into
*this,
not into
x.Complexity: Constant time if
addressof(x) == this;
otherwise, linear time
. constexpr size_type remove(const T& value);
template<class Predicate> constexpr size_type remove_if(Predicate pred);
Effects: Erases all the elements in the list referred to by a list iterator
i for which the
following conditions hold:
*i == value,
pred(*i) != false. Invalidates only the iterators and references to the erased elements
.Returns: The number of elements erased
. Throws: Nothing unless an exception is thrown by
*i == value
or
pred(*i) != false. Complexity: Exactly
size()
applications of the corresponding predicate
. constexpr size_type unique();
template<class BinaryPredicate> constexpr size_type unique(BinaryPredicate binary_pred);
Let
binary_pred be
equal_to<>{} for the first overload
.Preconditions:
binary_pred is an equivalence relation
. Effects: Erases all but the first element from every
consecutive group of equivalent elements
. That is, for a nonempty list, erases all elements referred to
by the iterator
i in the range [
begin() + 1, end())
for which
binary_pred(*i, *(i - 1)) is
true. Invalidates only the iterators and references to the erased elements
.Returns: The number of elements erased
. Throws: Nothing unless an exception is thrown by the predicate
. Complexity: If
empty() is
false,
exactly
size() - 1 applications of the corresponding predicate,
otherwise no applications of the predicate
. constexpr void merge(list& x);
constexpr void merge(list&& x);
template<class Compare> constexpr void merge(list& x, Compare comp);
template<class Compare> constexpr void merge(list&& x, Compare comp);
Let
comp be
less<> for the first two overloads
.Preconditions:
*this and
x are both sorted
with respect to the comparator
comp, and
get_allocator() == x.get_allocator() is
true. Effects: If
addressof(x) == this, there are no effects
. Otherwise, merges
the two sorted ranges [
begin(), end()) and [
x.begin(), x.end())
. The result is a range
that is sorted with respect to the comparator
comp. Pointers and references to the moved elements of
x now refer to those same elements
but as members of
*this. Iterators referring to the moved elements will continue to
refer to their elements, but they now behave as iterators into
*this, not into
x.Complexity: At most
size() + x.size() - 1 comparisons
if
addressof(x) != this;
otherwise, no comparisons are performed
. If
addressof(x) != this,
x is empty after the merge
. No elements are copied by this operation
. If an exception is thrown other than by a comparison there are no effects
. constexpr void reverse() noexcept;
Effects: Reverses the order of the elements in the list
. Does not affect the validity of iterators and references
.constexpr void sort();
template<class Compare> constexpr void sort(Compare comp);
Effects: Sorts the list according to the
operator< or a
Compare function object
. If an exception is thrown,
the order of the elements in
*this is unspecified
. Does not affect the validity of iterators and references
.Complexity: Approximately
NlogN
comparisons, where
N == size(). template<class T, class Allocator, class U = T>
constexpr typename list<T, Allocator>::size_type
erase(list<T, Allocator>& c, const U& value);
Effects: Equivalent to: return erase_if(c, [&](auto& elem) { return elem == value; });
template<class T, class Allocator, class Predicate>
constexpr typename list<T, Allocator>::size_type
erase_if(list<T, Allocator>& c, Predicate pred);
Effects: Equivalent to: return c.remove_if(pred);
The header
defines the class templates
map and
multimap;
the header
defines the class templates
set and
multiset.The following exposition-only alias templates may appear in deduction guides for associative containers:
template<class InputIterator>
using iter-value-type =
typename iterator_traits<InputIterator>::value_type;
template<class InputIterator>
using iter-key-type = remove_const_t<
tuple_element_t<0, iter-value-type<InputIterator>>>;
template<class InputIterator>
using iter-mapped-type =
tuple_element_t<1, iter-value-type<InputIterator>>;
template<class InputIterator>
using iter-to-alloc-type = pair<
add_const_t<tuple_element_t<0, iter-value-type<InputIterator>>>,
tuple_element_t<1, iter-value-type<InputIterator>>>;
template<ranges::input_range Range>
using range-key-type =
remove_const_t<typename ranges::range_value_t<Range>::first_type>;
template<ranges::input_range Range>
using range-mapped-type = typename ranges::range_value_t<Range>::second_type;
template<ranges::input_range Range>
using range-to-alloc-type =
pair<add_const_t<typename ranges::range_value_t<Range>::first_type>,
typename ranges::range_value_t<Range>::second_type>;
A
map is an associative container that
supports unique keys (i.e., contains at most one of each key value) and
provides for fast retrieval of values of another type
T based
on the keys
. The
map class supports bidirectional iterators
. This means that a
map
supports the
a_uniq
operations in
[associative.reqmts]
but not the
a_eq
operations
. For a
map<Key,T>
the
key_type
is
Key
and the
value_type
is
pair<const Key,T>. Descriptions are provided here only for operations on
map
that are not described in one of those tables
or for operations where there is additional semantic information
.
namespace std {
template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
class map {
public:
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;
class value_compare {
friend class map;
protected:
Compare comp;
constexpr value_compare(Compare c) : comp(c) {}
public:
constexpr bool operator()(const value_type& x, const value_type& y) const {
return comp(x.first, y.first);
}
};
constexpr map() : map(Compare()) { }
constexpr explicit map(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>
constexpr map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
template<container-compatible-range<value_type> R>
constexpr map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
constexpr map(const map& x);
constexpr map(map&& x);
explicit map(const Allocator&);
constexpr map(const map&, const type_identity_t<Allocator>&);
constexpr map(map&&, const type_identity_t<Allocator>&);
constexpr map(initializer_list<value_type>,
const Compare& = Compare(),
const Allocator& = Allocator());
template<class InputIterator>
constexpr map(InputIterator first, InputIterator last, const Allocator& a)
: map(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>
constexpr map(from_range_t, R&& rg, const Allocator& a))
: map(from_range, std::forward<R>(rg), Compare(), a) { }
constexpr map(initializer_list<value_type> il, const Allocator& a)
: map(il, Compare(), a) { }
constexpr ~map();
constexpr map& operator=(const map& x);
constexpr map& operator=(map&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);
constexpr map& operator=(initializer_list<value_type>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
constexpr mapped_type& operator[](const key_type& x);
constexpr mapped_type& operator[](key_type&& x);
template<class K> constexpr mapped_type& operator[](K&& x);
constexpr mapped_type& at(const key_type& x);
constexpr const mapped_type& at(const key_type& x) const;
template<class K> constexpr mapped_type& at(const K& x);
template<class K> constexpr const mapped_type& at(const K& x) const;
template<class... Args> constexpr pair<iterator, bool> emplace(Args&&... args);
template<class... Args> constexpr iterator emplace_hint(const_iterator position, Args&&... args);
pair<iterator, bool> constexpr insert(const value_type& x);
pair<iterator, bool> constexpr insert(value_type&& x);
template<class P> constexpr pair<iterator, bool> insert(P&& x);
constexpr iterator insert(const_iterator position, const value_type& x);
constexpr iterator insert(const_iterator position, value_type&& x);
template<class P>
constexpr iterator insert(const_iterator position, P&&);
template<class InputIterator>
constexpr void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>
constexpr void insert_range(R&& rg);
constexpr void insert(initializer_list<value_type>);
constexpr node_type extract(const_iterator position);
constexpr node_type extract(const key_type& x);
template<class K> constexpr node_type extract(K&& x);
constexpr insert_return_type insert(node_type&& nh);
constexpr iterator insert(const_iterator hint, node_type&& nh);
template<class... Args>
constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class K, class... Args>
constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
template<class M>
constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class K, class M>
constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
constexpr iterator erase(iterator position);
constexpr iterator erase(const_iterator position);
constexpr size_type erase(const key_type& x);
template<class K> constexpr size_type erase(K&& x);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(map&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);
constexpr void clear() noexcept;
template<class C2>
constexpr void merge(map<Key, T, C2, Allocator>& source);
template<class C2>
constexpr void merge(map<Key, T, C2, Allocator>&& source);
template<class C2>
constexpr void merge(multimap<Key, T, C2, Allocator>& source);
template<class C2>
constexpr void merge(multimap<Key, T, C2, Allocator>&& source);
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
constexpr iterator find(const key_type& x);
constexpr const_iterator find(const key_type& x) const;
template<class K> constexpr iterator find(const K& x);
template<class K> constexpr const_iterator find(const K& x) const;
constexpr size_type count(const key_type& x) const;
template<class K> constexpr size_type count(const K& x) const;
constexpr bool contains(const key_type& x) const;
template<class K> constexpr bool contains(const K& x) const;
constexpr iterator lower_bound(const key_type& x);
constexpr const_iterator lower_bound(const key_type& x) const;
template<class K> constexpr iterator lower_bound(const K& x);
template<class K> constexpr const_iterator lower_bound(const K& x) const;
constexpr iterator upper_bound(const key_type& x);
constexpr const_iterator upper_bound(const key_type& x) const;
template<class K> constexpr iterator upper_bound(const K& x);
template<class K> constexpr const_iterator upper_bound(const K& x) const;
constexpr pair<iterator, iterator> equal_range(const key_type& x);
constexpr pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>
constexpr pair<iterator, iterator> equal_range(const K& x);
template<class K>
constexpr pair<const_iterator, const_iterator> equal_range(const K& x) const;
};
template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>
map(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Compare, Allocator>;
template<ranges::input_range R, class Compare = less<range-key-type<R>,
class Allocator = allocator<range-to-alloc-type<R>>>
map(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> map<range-key-type<R>, range-mapped-type<R>, Compare, Allocator>;
template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
map(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> map<Key, T, Compare, Allocator>;
template<class InputIterator, class Allocator>
map(InputIterator, InputIterator, Allocator)
-> map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
less<iter-key-type<InputIterator>>, Allocator>;
template<ranges::input_range R, class Allocator>
map(from_range_t, R&&, Allocator)
-> map<range-key-type<R>, range-mapped-type<R>, less<range-key-type<R>>, Allocator>;
template<class Key, class T, class Allocator>
map(initializer_list<pair<Key, T>>, Allocator) -> map<Key, T, less<Key>, Allocator>;
}
constexpr explicit map(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty
map
using the specified comparison object and allocator
. template<class InputIterator>
constexpr map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
map
using the specified comparison object and allocator,
and inserts elements from the range
[
first, last)
. Complexity: Linear in
N if the range
[
first, last)
is already sorted with respect to
comp
and otherwise
NlogN, where
N
is
last - first. template<container-compatible-range<value_type> R>
constexpr map(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
map
using the specified comparison object and allocator,
and inserts elements from the range
rg. Complexity: Linear in
N if
rg is already sorted with respect to
comp and
otherwise
NlogN, where
N is
ranges::distance(rg). constexpr mapped_type& operator[](const key_type& x);
Effects: Equivalent to: return try_emplace(x).first->second;
constexpr mapped_type& operator[](key_type&& x);
Effects: Equivalent to: return try_emplace(std::move(x)).first->second;
template<class K> constexpr mapped_type& operator[](K&& x);
Constraints: The
qualified-id Compare::is_transparent
is valid and denotes a type
. Effects: Equivalent to: return try_emplace(std::forward<K>(x)).first->second;
constexpr mapped_type& at(const key_type& x);
constexpr const mapped_type& at(const key_type& x) const;
Returns: A reference to the
mapped_type corresponding to
x in
*this. Throws: An exception object of type
out_of_range if
no such element is present
. template<class K> constexpr mapped_type& at(const K& x);
template<class K> constexpr const mapped_type& at(const K& x) const;
Constraints: The
qualified-id Compare::is_transparent
is valid and denotes a type
. Preconditions: The expression
find(x) is well-formed and has well-defined behavior
. Returns: A reference to
find(x)->second. Throws: An exception object of type
out_of_range if
find(x) == end() is
true. template<class P>
constexpr pair<iterator, bool> insert(P&& x);
template<class P>
constexpr iterator insert(const_iterator position, P&& x);
Constraints:
is_constructible_v<value_type, P&&> is
true. Effects: The first form is equivalent to
return emplace(std::forward<P>(x)). The second form is
equivalent to
return emplace_hint(position, std::forward<P>(x)).template<class... Args>
constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
Preconditions:
value_type is
Cpp17EmplaceConstructible into
map
from
piecewise_construct,
forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...). Effects: If the map already contains an element
whose key is equivalent to
k,
there is no effect
. Otherwise inserts an object of type
value_type
constructed with
piecewise_construct,
forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class... Args>
constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
Preconditions:
value_type is
Cpp17EmplaceConstructible into
map
from
piecewise_construct,
forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...). Effects: If the map already contains an element
whose key is equivalent to
k,
there is no effect
. Otherwise inserts an object of type
value_type
constructed with
piecewise_construct,
forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class K, class... Args>
constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args);
template<class K, class... Args>
constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
Constraints: The
qualified-id Compare::is_transparent
is valid and denotes a type
. For the first overload,
is_convertible_v<K&&, const_iterator> and
is_convertible_v<K&&, iterator>
are both
false.Preconditions:
value_type is
Cpp17EmplaceConstructible into
map from
piecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>(args)...). Effects: If the map already contains an element whose key is equivalent to
k,
there is no effect
. Otherwise, let
r be
equal_range(k). Constructs an object
u of type
value_type with
piecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>(args)...). If
equal_range(u.first) == r is
false,
the behavior is undefined
. Returns: For the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint, respectively
. template<class M>
constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible into
map
from
k,
std::forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>(obj) to
e.second. Otherwise inserts an object of type
value_type
constructed with
k,
std::forward<M>(obj).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class M>
constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible into
map
from
std::move(k),
std::forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>(obj) to
e.second. Otherwise inserts an object of type
value_type
constructed with
std::move(k),
std::forward<M>(obj).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class K, class M>
constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
template<class K, class M>
constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
Constraints: The
qualified-id Compare::is_transparent
is valid and denotes a type
. Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible into
map from
std::forward<K>(k), std::
forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>
(obj) to
e.second. Otherwise, let
r be
equal_range(k). Constructs an object
u of type
value_type
with
std::forward<K>(k), std::forward<M>(obj). If
equal_range(u.first) == r is
false,
the behavior is undefined
. Returns: For the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint, respectively
. template<class Key, class T, class Compare, class Allocator, class Predicate>
constexpr typename map<Key, T, Compare, Allocator>::size_type
erase_if(map<Key, T, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
A
multimap
is an associative container that supports equivalent keys (i.e., possibly containing multiple copies of
the same key value) and provides for fast retrieval of values of another type
T
based on the keys
. The
multimap
class
supports bidirectional iterators
. This means that a
multimap
supports the
a_eq
operations in
[associative.reqmts]
but not the
a_uniq
operations
. For a
multimap<Key,T>
the
key_type
is
Key
and the
value_type
is
pair<const Key,T>. Descriptions are provided here only for operations on
multimap
that are not described in one of those tables
or for operations where there is additional semantic information
.
namespace std {
template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
class multimap {
public:
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using key_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
class value_compare {
friend class multimap;
protected:
Compare comp;
constexpr value_compare(Compare c) : comp(c) { }
public:
constexpr bool operator()(const value_type& x, const value_type& y) const {
return comp(x.first, y.first);
}
};
constexpr multimap() : multimap(Compare()) { }
constexpr explicit multimap(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>
constexpr multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());
template<container-compatible-range<value_type> R>
constexpr multimap(from_range_t, R&& rg,
const Compare& comp = Compare(), const Allocator& = Allocator());
constexpr multimap(const multimap& x);
constexpr multimap(multimap&& x);
constexpr explicit multimap(const Allocator&);
constexpr multimap(const multimap&, const type_identity_t<Allocator>&);
constexpr multimap(multimap&&, const type_identity_t<Allocator>&);
constexpr multimap(initializer_list<value_type>,
const Compare& = Compare(),
const Allocator& = Allocator());
template<class InputIterator>
constexpr multimap(InputIterator first, InputIterator last, const Allocator& a)
: multimap(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>
constexpr multimap(from_range_t, R&& rg, const Allocator& a))
: multimap(from_range, std::forward<R>(rg), Compare(), a) { }
constexpr multimap(initializer_list<value_type> il, const Allocator& a)
: multimap(il, Compare(), a) { }
constexpr ~multimap();
constexpr multimap& operator=(const multimap& x);
constexpr multimap& operator=(multimap&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);
constexpr multimap& operator=(initializer_list<value_type>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
template<class... Args> constexpr iterator emplace(Args&&... args);
template<class... Args> constexpr iterator emplace_hint(const_iterator position, Args&&... args);
constexpr iterator insert(const value_type& x);
constexpr iterator insert(value_type&& x);
template<class P> constexpr iterator insert(P&& x);
constexpr iterator insert(const_iterator position, const value_type& x);
constexpr iterator insert(const_iterator position, value_type&& x);
template<class P> constexpr iterator insert(const_iterator position, P&& x);
template<class InputIterator>
constexpr void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>
constexpr void insert_range(R&& rg);
constexpr void insert(initializer_list<value_type>);
constexpr node_type extract(const_iterator position);
constexpr node_type extract(const key_type& x);
template<class K> constexpr node_type extract(K&& x);
constexpr iterator insert(node_type&& nh);
constexpr iterator insert(const_iterator hint, node_type&& nh);
constexpr iterator erase(iterator position);
constexpr iterator erase(const_iterator position);
constexpr size_type erase(const key_type& x);
template<class K> constexpr size_type erase(K&& x);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(multimap&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);
constexpr void clear() noexcept;
template<class C2>
constexpr void merge(multimap<Key, T, C2, Allocator>& source);
template<class C2>
constexpr void merge(multimap<Key, T, C2, Allocator>&& source);
template<class C2>
constexpr void merge(map<Key, T, C2, Allocator>& source);
template<class C2>
constexpr void merge(map<Key, T, C2, Allocator>&& source);
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
constexpr iterator find(const key_type& x);
constexpr const_iterator find(const key_type& x) const;
template<class K> constexpr iterator find(const K& x);
template<class K> constexpr const_iterator find(const K& x) const;
constexpr size_type count(const key_type& x) const;
template<class K> constexpr size_type count(const K& x) const;
constexpr bool contains(const key_type& x) const;
template<class K> constexpr bool contains(const K& x) const;
constexpr iterator lower_bound(const key_type& x);
constexpr const_iterator lower_bound(const key_type& x) const;
template<class K> constexpr iterator lower_bound(const K& x);
template<class K> constexpr const_iterator lower_bound(const K& x) const;
constexpr iterator upper_bound(const key_type& x);
constexpr const_iterator upper_bound(const key_type& x) const;
template<class K> constexpr iterator upper_bound(const K& x);
template<class K> constexpr const_iterator upper_bound(const K& x) const;
constexpr pair<iterator, iterator> equal_range(const key_type& x);
constexpr pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>
constexpr pair<iterator, iterator> equal_range(const K& x);
template<class K>
constexpr pair<const_iterator, const_iterator> equal_range(const K& x) const;
};
template<class InputIterator, class Compare = less<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>
multimap(InputIterator, InputIterator, Compare = Compare(), Allocator = Allocator())
-> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
Compare, Allocator>;
template<ranges::input_range R, class Compare = less<range-key-type<R>>,
class Allocator = allocator<range-to-alloc-type<R>>>
multimap(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multimap<range-key-type<R>, range-mapped-type<R>, Compare, Allocator>;
template<class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T>>>
multimap(initializer_list<pair<Key, T>>, Compare = Compare(), Allocator = Allocator())
-> multimap<Key, T, Compare, Allocator>;
template<class InputIterator, class Allocator>
multimap(InputIterator, InputIterator, Allocator)
-> multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
less<iter-key-type<InputIterator>>, Allocator>;
template<ranges::input_range R, class Allocator>
multimap(from_range_t, R&&, Allocator)
-> multimap<range-key-type<R>, range-mapped-type<R>, less<range-key-type<R>>, Allocator>;
template<class Key, class T, class Allocator>
multimap(initializer_list<pair<Key, T>>, Allocator)
-> multimap<Key, T, less<Key>, Allocator>;
}
constexpr explicit multimap(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty
multimap
using the specified comparison object and allocator
. template<class InputIterator>
constexpr multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());
Effects: Constructs an empty
multimap
using the specified comparison object and allocator,
and inserts elements from the range
[
first, last)
. Complexity: Linear in
N if the range
[
first, last)
is already sorted with respect to
comp
and otherwise
NlogN,
where
N is
last - first. template<container-compatible-range<value_type> R>
constexpr multimap(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
multimap
using the specified comparison object and allocator, and
inserts elements from the range
rg. Complexity: Linear in
N if
rg is already sorted with respect to
comp and
otherwise
NlogN, where
N is
ranges::distance(rg). template<class P> constexpr iterator insert(P&& x);
template<class P> constexpr iterator insert(const_iterator position, P&& x);
Constraints:
is_constructible_v<value_type, P&&> is
true. Effects: The first form is equivalent to
return emplace(std::forward<P>(x)). The second form is
equivalent to
return emplace_hint(position, std::forward<P>(x)).template<class Key, class T, class Compare, class Allocator, class Predicate>
constexpr typename multimap<Key, T, Compare, Allocator>::size_type
erase_if(multimap<Key, T, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
A
set
is an associative container that supports unique keys (i.e., contains at most one of each key value) and
provides for fast retrieval of the keys themselves
. The
set class
supports bidirectional iterators
. This means that a
set
supports the
a_uniq
operations in
[associative.reqmts]
but not the
a_eq
operations
. For a
set<Key>
both the
key_type
and
value_type
are
Key. Descriptions are provided here only for operations on
set
that are not described in one of these tables
and for operations where there is additional semantic information
.
namespace std {
template<class Key, class Compare = less<Key>,
class Allocator = allocator<Key>>
class set {
public:
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;
constexpr set() : set(Compare()) { }
constexpr explicit set(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>
constexpr set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
template<container-compatible-range<value_type> R>
constexpr set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
constexpr set(const set& x);
constexpr set(set&& x);
constexpr explicit set(const Allocator&);
constexpr set(const set&, const type_identity_t<Allocator>&);
constexpr set(set&&, const type_identity_t<Allocator>&);
constexpr set(initializer_list<value_type>, const Compare& = Compare(),
const Allocator& = Allocator());
template<class InputIterator>
constexpr set(InputIterator first, InputIterator last, const Allocator& a)
: set(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>
constexpr set(from_range_t, R&& rg, const Allocator& a))
: set(from_range, std::forward<R>(rg), Compare(), a) { }
constexpr set(initializer_list<value_type> il, const Allocator& a)
: set(il, Compare(), a) { }
constexpr ~set();
constexpr set& operator=(const set& x);
constexpr set& operator=(set&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);
constexpr set& operator=(initializer_list<value_type>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
template<class... Args> constexpr pair<iterator, bool> emplace(Args&&... args);
template<class... Args> constexpr iterator emplace_hint(const_iterator position, Args&&... args);
constexpr pair<iterator,bool> insert(const value_type& x);
constexpr pair<iterator,bool> insert(value_type&& x);
template<class K> constexpr pair<iterator, bool> insert(K&& x);
constexpr iterator insert(const_iterator position, const value_type& x);
constexpr iterator insert(const_iterator position, value_type&& x);
template<class K> constexpr iterator insert(const_iterator position, K&& x);
template<class InputIterator>
constexpr void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>
constexpr void insert_range(R&& rg);
constexpr void insert(initializer_list<value_type>);
constexpr node_type extract(const_iterator position);
constexpr node_type extract(const key_type& x);
template<class K> constexpr node_type extract(K&& x);
constexpr insert_return_type insert(node_type&& nh);
constexpr iterator insert(const_iterator hint, node_type&& nh);
constexpr iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);
constexpr iterator erase(const_iterator position);
constexpr size_type erase(const key_type& x);
template<class K> constexpr size_type erase(K&& x);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(set&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);
constexpr void clear() noexcept;
template<class C2>
constexpr void merge(set<Key, C2, Allocator>& source);
template<class C2>
constexpr void merge(set<Key, C2, Allocator>&& source);
template<class C2>
constexpr void merge(multiset<Key, C2, Allocator>& source);
template<class C2>
constexpr void merge(multiset<Key, C2, Allocator>&& source);
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
constexpr iterator find(const key_type& x);
constexpr const_iterator find(const key_type& x) const;
template<class K> constexpr iterator find(const K& x);
template<class K> constexpr const_iterator find(const K& x) const;
constexpr size_type count(const key_type& x) const;
template<class K> constexpr size_type count(const K& x) const;
constexpr bool contains(const key_type& x) const;
template<class K> constexpr bool contains(const K& x) const;
constexpr iterator lower_bound(const key_type& x);
constexpr const_iterator lower_bound(const key_type& x) const;
template<class K> constexpr iterator lower_bound(const K& x);
template<class K> constexpr const_iterator lower_bound(const K& x) const;
constexpr iterator upper_bound(const key_type& x);
constexpr const_iterator upper_bound(const key_type& x) const;
template<class K> constexpr iterator upper_bound(const K& x);
template<class K> constexpr const_iterator upper_bound(const K& x) const;
constexpr pair<iterator, iterator> equal_range(const key_type& x);
constexpr pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>
constexpr pair<iterator, iterator> equal_range(const K& x);
template<class K>
constexpr pair<const_iterator, const_iterator> equal_range(const K& x) const;
};
template<class InputIterator,
class Compare = less<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>
set(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())
-> set<iter-value-type<InputIterator>, Compare, Allocator>;
template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>
set(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> set<ranges::range_value_t<R>, Compare, Allocator>;
template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
set(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())
-> set<Key, Compare, Allocator>;
template<class InputIterator, class Allocator>
set(InputIterator, InputIterator, Allocator)
-> set<iter-value-type<InputIterator>,
less<iter-value-type<InputIterator>>, Allocator>;
template<ranges::input_range R, class Allocator>
set(from_range_t, R&&, Allocator)
-> set<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;
template<class Key, class Allocator>
set(initializer_list<Key>, Allocator) -> set<Key, less<Key>, Allocator>;
}
constexpr explicit set(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty
set using the specified comparison object and allocator
. template<class InputIterator>
constexpr set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
set
using the specified comparison object and allocator,
and inserts elements from the range
[
first, last)
. Complexity: Linear in
N if the range
[
first, last)
is already sorted with respect to
comp
and otherwise
NlogN,
where
N is
last - first. template<container-compatible-range<value_type> R>
constexpr set(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
set using the specified comparison object and allocator,
and inserts elements from the range
rg. Complexity: Linear in
N if
rg is already sorted with respect to
comp and
otherwise
NlogN, where
N is
ranges::distance(rg). template<class Key, class Compare, class Allocator, class Predicate>
constexpr typename set<Key, Compare, Allocator>::size_type
erase_if(set<Key, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
template<class K> constexpr pair<iterator, bool> insert(K&& x);
template<class K> constexpr iterator insert(const_iterator hint, K&& x);
Constraints: The
qualified-id Compare::is_transparent
is valid and denotes a type
. For the second overload,
is_convertible_v<K&&, const_iterator> and
is_convertible_v<K&&, iterator> are both
false.Preconditions:
value_type is
Cpp17EmplaceConstructible into
set from
std::forward<K>(x). Effects: If the set already contains an element that is equivalent to
x,
there is no effect
. Otherwise, let
r be
equal_range(x). Constructs an object
u of type
value_type
with
std::forward<K>(x). If
equal_range(u) == r is
false, the behavior is undefined
. Returns: For the first overload,
the
bool component of the returned pair is true
if and only if the insertion took place
. The returned iterator points to the set element that is equivalent to
x.A
multiset
is an associative container that supports equivalent keys (i.e., possibly contains multiple copies of
the same key value) and provides for fast retrieval of the keys themselves
. The
multiset class
supports bidirectional iterators
. This means that a
multiset
supports the
a_eq
operations in
[associative.reqmts]
but not the
a_uniq
operations
. For a
multiset<Key>
both the
key_type
and
value_type
are
Key. Descriptions are provided here only for operations on
multiset
that are not described in one of these tables
and for operations where there is additional semantic information
.
namespace std {
template<class Key, class Compare = less<Key>,
class Allocator = allocator<Key>>
class multiset {
public:
using key_type = Key;
using key_compare = Compare;
using value_type = Key;
using value_compare = Compare;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_type = unspecified;
constexpr multiset() : multiset(Compare()) { }
constexpr explicit multiset(const Compare& comp, const Allocator& = Allocator());
template<class InputIterator>
constexpr multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
template<container-compatible-range<value_type> R>
constexpr multiset(from_range_t, R&& rg,
const Compare& comp = Compare(), const Allocator& = Allocator());
constexpr multiset(const multiset& x);
constexpr multiset(multiset&& x);
constexpr explicit multiset(const Allocator&);
constexpr multiset(const multiset&, const type_identity_t<Allocator>&);
constexpr multiset(multiset&&, const type_identity_t<Allocator>&);
constexpr multiset(initializer_list<value_type>, const Compare& = Compare(),
const Allocator& = Allocator());
template<class InputIterator>
constexpr multiset(InputIterator first, InputIterator last, const Allocator& a)
: multiset(first, last, Compare(), a) { }
template<container-compatible-range<value_type> R>
constexpr multiset(from_range_t, R&& rg, const Allocator& a))
: multiset(from_range, std::forward<R>(rg), Compare(), a) { }
constexpr multiset(initializer_list<value_type> il, const Allocator& a)
: multiset(il, Compare(), a) { }
constexpr ~multiset();
constexpr multiset& operator=(const multiset& x);
constexpr multiset& operator=(multiset&& x)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Compare>);
constexpr multiset& operator=(initializer_list<value_type>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr reverse_iterator rbegin() noexcept;
constexpr const_reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() noexcept;
constexpr const_reverse_iterator rend() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
template<class... Args> constexpr iterator emplace(Args&&... args);
template<class... Args> constexpr iterator emplace_hint(const_iterator position, Args&&... args);
constexpr iterator insert(const value_type& x);
constexpr iterator insert(value_type&& x);
constexpr iterator insert(const_iterator position, const value_type& x);
constexpr iterator insert(const_iterator position, value_type&& x);
template<class InputIterator>
constexpr void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>
constexpr void insert_range(R&& rg);
constexpr void insert(initializer_list<value_type>);
constexpr node_type extract(const_iterator position);
constexpr node_type extract(const key_type& x);
template<class K> constexpr node_type extract(K&& x);
constexpr iterator insert(node_type&& nh);
constexpr iterator insert(const_iterator hint, node_type&& nh);
constexpr iterator erase(iterator position)
requires (!same_as<iterator, const_iterator>);
constexpr iterator erase(const_iterator position);
constexpr size_type erase(const key_type& x);
template<class K> constexpr size_type erase(K&& x);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(multiset&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Compare>);
constexpr void clear() noexcept;
template<class C2>
constexpr void merge(multiset<Key, C2, Allocator>& source);
template<class C2>
constexpr void merge(multiset<Key, C2, Allocator>&& source);
template<class C2>
constexpr void merge(set<Key, C2, Allocator>& source);
template<class C2>
constexpr void merge(set<Key, C2, Allocator>&& source);
constexpr key_compare key_comp() const;
constexpr value_compare value_comp() const;
constexpr iterator find(const key_type& x);
constexpr const_iterator find(const key_type& x) const;
template<class K> constexpr iterator find(const K& x);
template<class K> constexpr const_iterator find(const K& x) const;
constexpr size_type count(const key_type& x) const;
template<class K> constexpr size_type count(const K& x) const;
constexpr bool contains(const key_type& x) const;
template<class K> constexpr bool contains(const K& x) const;
constexpr iterator lower_bound(const key_type& x);
constexpr const_iterator lower_bound(const key_type& x) const;
template<class K> constexpr iterator lower_bound(const K& x);
template<class K> constexpr const_iterator lower_bound(const K& x) const;
constexpr iterator upper_bound(const key_type& x);
constexpr const_iterator upper_bound(const key_type& x) const;
template<class K> constexpr iterator upper_bound(const K& x);
template<class K> constexpr const_iterator upper_bound(const K& x) const;
constexpr pair<iterator, iterator> equal_range(const key_type& x);
constexpr pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
template<class K>
constexpr pair<iterator, iterator> equal_range(const K& x);
template<class K>
constexpr pair<const_iterator, const_iterator> equal_range(const K& x) const;
};
template<class InputIterator,
class Compare = less<iter-value-type<InputIterator>>,
class Allocator = allocator<iter-value-type<InputIterator>>>
multiset(InputIterator, InputIterator,
Compare = Compare(), Allocator = Allocator())
-> multiset<iter-value-type<InputIterator>, Compare, Allocator>;
template<ranges::input_range R, class Compare = less<ranges::range_value_t<R>>,
class Allocator = allocator<ranges::range_value_t<R>>>
multiset(from_range_t, R&&, Compare = Compare(), Allocator = Allocator())
-> multiset<ranges::range_value_t<R>, Compare, Allocator>;
template<class Key, class Compare = less<Key>, class Allocator = allocator<Key>>
multiset(initializer_list<Key>, Compare = Compare(), Allocator = Allocator())
-> multiset<Key, Compare, Allocator>;
template<class InputIterator, class Allocator>
multiset(InputIterator, InputIterator, Allocator)
-> multiset<iter-value-type<InputIterator>,
less<iter-value-type<InputIterator>>, Allocator>;
template<ranges::input_range R, class Allocator>
multiset(from_range_t, R&&, Allocator)
-> multiset<ranges::range_value_t<R>, less<ranges::range_value_t<R>>, Allocator>;
template<class Key, class Allocator>
multiset(initializer_list<Key>, Allocator) -> multiset<Key, less<Key>, Allocator>;
}
constexpr explicit multiset(const Compare& comp, const Allocator& = Allocator());
Effects: Constructs an empty
multiset using the specified comparison object and allocator
. template<class InputIterator>
constexpr multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
multiset
using the specified comparison object and allocator,
and inserts elements from the range
[
first, last)
. Complexity: Linear in
N
if the range
[
first, last)
is already sorted with respect to
comp and otherwise
NlogN,
where
N is
last - first. template<container-compatible-range<value_type> R>
constexpr multiset(from_range_t, R&& rg, const Compare& comp = Compare(), const Allocator& = Allocator());
Effects: Constructs an empty
multiset
using the specified comparison object and allocator, and
inserts elements from the range
rg. Complexity: Linear in
N if
rg is already sorted with respect to
comp and
otherwise
NlogN, where
N is
ranges::distance(rg). template<class Key, class Compare, class Allocator, class Predicate>
constexpr typename multiset<Key, Compare, Allocator>::size_type
erase_if(multiset<Key, Compare, Allocator>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
24.5 Unordered associative containers [unord]
The header
defines the class
templates
unordered_map and
unordered_multimap;
the header
defines the class
templates
unordered_set and
unordered_multiset.The exposition-only alias templates
iter-value-type,
iter-key-type,
iter-mapped-type,
iter-to-alloc-type,
range-key-type,
range-mapped-type,
and
range-to-alloc-type
defined in
[associative.general] may appear in deduction guides for unordered containers
.An
unordered_map is an unordered associative container that
supports unique keys (an
unordered_map contains at most one of each
key value) and that associates values of another type
mapped_type with the keys
. The
unordered_map class
supports forward iterators
. It provides the operations described in the preceding requirements table for unique keys;
that is, an
unordered_map supports the
a_uniq operations in that table,
not the
a_eq operations
. For an
unordered_map<Key, T> the
key_type is
Key,
the
mapped_type is
T,
and the
value_type is
pair<const Key, T>. Subclause
[unord.map] only describes operations on
unordered_map that
are not described in one of the requirement tables, or for which there
is additional semantic information
.
namespace std {
template<class Key,
class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>
class unordered_map {
public:
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using local_iterator = implementation-defined;
using const_local_iterator = implementation-defined;
using node_type = unspecified;
using insert_return_type = insert-return-type<iterator, node_type>;
constexpr unordered_map();
constexpr explicit unordered_map(size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<class InputIterator>
constexpr unordered_map(InputIterator f, InputIterator l,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<container-compatible-range<value_type> R>
constexpr unordered_map(from_range_t, R&& rg, size_type n = see below,
const hasher& hf = hasher(), const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_map(const unordered_map&);
constexpr unordered_map(unordered_map&&);
constexpr explicit unordered_map(const Allocator&);
constexpr unordered_map(const unordered_map&, const type_identity_t<Allocator>&);
constexpr unordered_map(unordered_map&&, const type_identity_t<Allocator>&);
constexpr unordered_map(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_map(size_type n, const allocator_type& a)
: unordered_map(n, hasher(), key_equal(), a) { }
constexpr unordered_map(size_type n, const hasher& hf, const allocator_type& a)
: unordered_map(n, hf, key_equal(), a) { }
template<class InputIterator>
constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
: unordered_map(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>
constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)
: unordered_map(f, l, n, hf, key_equal(), a) { }
template<container-compatible-range<value_type> R>
constexpr unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a)
: unordered_map(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }
template<container-compatible-range<value_type> R>
constexpr unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a)
: unordered_map(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }
constexpr unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a)
: unordered_map(il, n, hasher(), key_equal(), a) { }
constexpr unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf,
const allocator_type& a)
: unordered_map(il, n, hf, key_equal(), a) { }
constexpr ~unordered_map();
constexpr unordered_map& operator=(const unordered_map&);
constexpr unordered_map& operator=(unordered_map&&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_move_assignable_v<Hash> &&
is_nothrow_move_assignable_v<Pred>);
constexpr unordered_map& operator=(initializer_list<value_type>);
constexpr allocator_type get_allocator() const noexcept;
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;
constexpr bool empty() const noexcept;
constexpr size_type size() const noexcept;
constexpr size_type max_size() const noexcept;
template<class... Args> constexpr pair<iterator, bool> emplace(Args&&... args);
template<class... Args> constexpr iterator emplace_hint(const_iterator position, Args&&... args);
constexpr pair<iterator, bool> insert(const value_type& obj);
constexpr pair<iterator, bool> insert(value_type&& obj);
template<class P> constexpr pair<iterator, bool> insert(P&& obj);
constexpr iterator insert(const_iterator hint, const value_type& obj);
constexpr iterator insert(const_iterator hint, value_type&& obj);
template<class P> constexpr iterator insert(const_iterator hint, P&& obj);
template<class InputIterator> constexpr void insert(InputIterator first, InputIterator last);
template<container-compatible-range<value_type> R>
constexpr void insert_range(R&& rg);
constexpr void insert(initializer_list<value_type>);
constexpr node_type extract(const_iterator position);
constexpr node_type extract(const key_type& x);
template<class K> constexpr node_type extract(K&& x);
constexpr insert_return_type insert(node_type&& nh);
constexpr iterator insert(const_iterator hint, node_type&& nh);
template<class... Args>
constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class K, class... Args>
constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
template<class M>
constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class K, class M>
constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
constexpr iterator erase(iterator position);
constexpr iterator erase(const_iterator position);
constexpr size_type erase(const key_type& k);
template<class K> constexpr size_type erase(K&& x);
constexpr iterator erase(const_iterator first, const_iterator last);
constexpr void swap(unordered_map&)
noexcept(allocator_traits<Allocator>::is_always_equal::value &&
is_nothrow_swappable_v<Hash> &&
is_nothrow_swappable_v<Pred>);
constexpr void clear() noexcept;
template<class H2, class P2>
constexpr void merge(unordered_map<Key, T, H2, P2, Allocator>& source);
template<class H2, class P2>
constexpr void merge(unordered_map<Key, T, H2, P2, Allocator>&& source);
template<class H2, class P2>
constexpr void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source);
template<class H2, class P2>
constexpr void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source);
constexpr hasher hash_function() const;
constexpr key_equal key_eq() const;
constexpr iterator find(const key_type& k);
constexpr const_iterator find(const key_type& k) const;
template<class K>
constexpr iterator find(const K& k);
template<class K>
constexpr const_iterator find(const K& k) const;
constexpr size_type count(const key_type& k) const;
template<class K>
constexpr size_type count(const K& k) const;
constexpr bool contains(const key_type& k) const;
template<class K>
constexpr bool contains(const K& k) const;
constexpr pair<iterator, iterator> equal_range(const key_type& k);
constexpr pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>
constexpr pair<iterator, iterator> equal_range(const K& k);
template<class K>
constexpr pair<const_iterator, const_iterator> equal_range(const K& k) const;
constexpr mapped_type& operator[](const key_type& k);
constexpr mapped_type& operator[](key_type&& k);
template<class K> constexpr mapped_type& operator[](K&& k);
constexpr mapped_type& at(const key_type& k);
constexpr const mapped_type& at(const key_type& k) const;
template<class K> constexpr mapped_type& at(const K& k);
template<class K> constexpr const mapped_type& at(const K& k) const;
constexpr size_type bucket_count() const noexcept;
constexpr size_type max_bucket_count() const noexcept;
constexpr size_type bucket_size(size_type n) const;
constexpr size_type bucket(const key_type& k) const;
template<class K> constexpr size_type bucket(const K& k) const;
constexpr local_iterator begin(size_type n);
constexpr const_local_iterator begin(size_type n) const;
constexpr local_iterator end(size_type n);
constexpr const_local_iterator end(size_type n) const;
constexpr const_local_iterator cbegin(size_type n) const;
constexpr const_local_iterator cend(size_type n) const;
constexpr float load_factor() const noexcept;
constexpr float max_load_factor() const noexcept;
constexpr void max_load_factor(float z);
constexpr void rehash(size_type n);
constexpr void reserve(size_type n);
};
template<class InputIterator,
class Hash = hash<iter-key-type<InputIterator>>,
class Pred = equal_to<iter-key-type<InputIterator>>,
class Allocator = allocator<iter-to-alloc-type<InputIterator>>>
unordered_map(InputIterator, InputIterator, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash, Pred,
Allocator>;
template<ranges::input_range R, class Hash = hash<range-key-type<R>>,
class Pred = equal_to<range-key-type<R>>,
class Allocator = allocator<range-to-alloc-type<R>>>
unordered_map(from_range_t, R&&, typename see below::size_type = see below,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_map<range-key-type<R>, range-mapped-type<R>, Hash, Pred, Allocator>;
template<class Key, class T, class Hash = hash<Key>,
class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>
unordered_map(initializer_list<pair<Key, T>>,
typename see below::size_type = see below, Hash = Hash(),
Pred = Pred(), Allocator = Allocator())
-> unordered_map<Key, T, Hash, Pred, Allocator>;
template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below::size_type, Allocator)
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;
template<class InputIterator, class Allocator>
unordered_map(InputIterator, InputIterator, Allocator)
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>,
hash<iter-key-type<InputIterator>>,
equal_to<iter-key-type<InputIterator>>, Allocator>;
template<class InputIterator, class Hash, class Allocator>
unordered_map(InputIterator, InputIterator, typename see below::size_type, Hash, Allocator)
-> unordered_map<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash,
equal_to<iter-key-type<InputIterator>>, Allocator>;
template<ranges::input_range R, class Allocator>
unordered_map(from_range_t, R&&, typename see below::size_type, Allocator)
-> unordered_map<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,
equal_to<range-key-type<R>>, Allocator>;
template<ranges::input_range R, class Allocator>
unordered_map(from_range_t, R&&, Allocator)
-> unordered_map<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>,
equal_to<range-key-type<R>>, Allocator>;
template<ranges::input_range R, class Hash, class Allocator>
unordered_map(from_range_t, R&&, typename see below::size_type, Hash, Allocator)
-> unordered_map<range-key-type<R>, range-mapped-type<R>, Hash,
equal_to<range-key-type<R>>, Allocator>;
template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below::size_type,
Allocator)
-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;
template<class Key, class T, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, Allocator)
-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>;
template<class Key, class T, class Hash, class Allocator>
unordered_map(initializer_list<pair<Key, T>>, typename see below::size_type, Hash,
Allocator)
-> unordered_map<Key, T, Hash, equal_to<Key>, Allocator>;
}
A
size_type parameter type in an
unordered_map deduction guide
refers to the
size_type member type of the type deduced by the deduction guide
.constexpr unordered_map() : unordered_map(size_type(see below)) { }
constexpr explicit unordered_map(size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
Effects: Constructs an empty
unordered_map using the
specified hash function, key equality predicate, and allocator, and
using at least
n buckets
. For the default constructor,
the number of buckets is
implementation-defined
. max_load_factor() returns
1.0. template<class InputIterator>
constexpr unordered_map(InputIterator f, InputIterator l,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<container-compatible-range<value_type> R>
constexpr unordered_map(from_range_t, R&& rg,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_map(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
Effects: Constructs an empty
unordered_map using the
specified hash function, key equality predicate, and allocator, and
using at least
n buckets
. If
n is not
provided, the number of buckets is
implementation-defined
. Then
inserts elements from the range [
f, l),
rg, or
il,
respectively
. max_load_factor() returns
1.0. Complexity: Average case linear, worst case quadratic
. constexpr mapped_type& operator[](const key_type& k);
Effects: Equivalent to: return try_emplace(k).first->second;
constexpr mapped_type& operator[](key_type&& k);
Effects: Equivalent to: return try_emplace(std::move(k)).first->second;
template<class K> constexpr mapped_type& operator[](K&& k);
Constraints: The
qualified-ids Hash::is_transparent and
Pred::is_transparent are valid and denote types
. Effects: Equivalent to: return try_emplace(std::forward<K>(k)).first->second;
constexpr mapped_type& at(const key_type& k);
constexpr const mapped_type& at(const key_type& k) const;
Returns: A reference to
x.second, where
x is the (unique) element whose key is equivalent to
k. Throws: An exception object of type
out_of_range if no such element is present
. template<class K> constexpr mapped_type& at(const K& k);
template<class K> constexpr const mapped_type& at(const K& k) const;
Constraints: The
qualified-ids Hash::is_transparent and
Pred::is_transparent are valid and denote types
. Preconditions: The expression
find(k) is well-formed and has well-defined behavior
. Returns: A reference to
find(k)->second. Throws: An exception object of type
out_of_range
if
find(k) == end() is
true. template<class P>
constexpr pair<iterator, bool> insert(P&& obj);
Constraints:
is_constructible_v<value_type, P&&> is
true. Effects: Equivalent to: return emplace(std::forward<P>(obj));
template<class P>
constexpr iterator insert(const_iterator hint, P&& obj);
Constraints:
is_constructible_v<value_type, P&&> is
true. Effects: Equivalent to:
return emplace_hint(hint, std::forward<P>(obj));
template<class... Args>
constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
Preconditions:
value_type is
Cpp17EmplaceConstructible into
unordered_map
from
piecewise_construct,
forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...). Effects: If the map already contains an element
whose key is equivalent to
k,
there is no effect
. Otherwise inserts an object of type
value_type
constructed with
piecewise_construct,
forward_as_tuple(k),
forward_as_tuple(std::forward<Args>(args)...).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class... Args>
constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
Preconditions:
value_type is
Cpp17EmplaceConstructible into
unordered_map
from
piecewise_construct,
forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...). Effects: If the map already contains an element
whose key is equivalent to
k,
there is no effect
. Otherwise inserts an object of type
value_type
constructed with
piecewise_construct,
forward_as_tuple(std::move(k)),
forward_as_tuple(std::forward<Args>(args)...).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class K, class... Args>
constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args);
template<class K, class... Args>
constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
Constraints: The
qualified-ids Hash::is_transparent and
Pred::is_transparent are valid and denote types
. For the first overload,
is_convertible_v<K&&, const_iterator> and
is_convertible_v<K&&, iterator> are both
false.Preconditions:
value_type is
Cpp17EmplaceConstructible
into
unordered_map from
piecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>
(args)...). Effects: If the map already contains an element whose key is equivalent to
k,
there is no effect
. Otherwise, let
h be
hash_function()(k). Constructs an object
u of type
value_type
with
piecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>(args)...). If
hash_function()(u.first) != h || contains(u.first) is
true,
the behavior is undefined
. Returns: For the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint, respectively
. template<class M>
constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible into
unordered_map
from
k,
std::forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>(obj) to
e.second. Otherwise inserts an object of type
value_type
constructed with
k,
std::forward<M>(obj).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class M>
constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible into
unordered_map
from
std::move(k),
std::forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>(obj) to
e.second. Otherwise inserts an object of type
value_type
constructed with
std::move(k),
std::forward<M>(obj).Returns: In the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint,
respectively
. template<class K, class M>
constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
template<class K, class M>
constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
Constraints: The
qualified-ids Hash::is_transparent and
Pred::is_transparent are valid and denote types
. Mandates:
is_assignable_v<mapped_type&, M&&> is
true. Preconditions:
value_type is
Cpp17EmplaceConstructible
into
unordered_map
from
std::forward<K>
(k), std::forward<M>(obj). Effects: If the map already contains an element
e
whose key is equivalent to
k,
assigns
std::forward<M>
(obj) to
e.second. Otherwise, let
h be
hash_function()(k). Constructs an object
u of type
value_type
with
std::forward<K>(k), std::forward<M>(obj). If
hash_function()(u.first) != h || contains(u.first) is
true,
the behavior is undefined
. Returns: For the first overload,
the
bool component of the returned pair is
true
if and only if the insertion took place
. The returned iterator points to the map element
whose key is equivalent to
k.Complexity: The same as
emplace and
emplace_hint, respectively
. template<class K, class T, class H, class P, class A, class Predicate>
constexpr typename unordered_map<K, T, H, P, A>::size_type
erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);
Effects: Equivalent to:
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
An
unordered_multimap is an unordered associative container
that supports equivalent keys (an instance of
unordered_multimap may contain
multiple copies of each key value) and that associates values of
another type
mapped_type with the keys
. The
unordered_multimap class
supports forward iterators
. It provides the operations described in the
preceding requirements table for equivalent keys; that is, an
unordered_multimap
supports the
a_eq operations in that table, not the
a_uniq operations
. For an
unordered_multimap<Key, T> the
key_type is
Key,
the
mapped_type is
T,
and the
value_type is
pair<const Key, T>. Subclause
[unord.multimap] only describes operations on
unordered_multimap
that are not described in one of the requirement tables, or for which
there is additional semantic information
.
namespace std {
template<class Key,
class T,
class Hash = hash<Key>,
class Pred = equal_to<Key>,
class Allocator = allocator<pair<const Key, T>>>
class unordered_multimap {
public:
using key_type = Key;
using mapped_type = T;
using value_type = pair<const Key, T>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = implementation-defined;
using difference_type = implementation-defined;
using iterator = implementation-defined;
using const_iterator = implementation-defined;
using local_iterator = implementation-defined;
using const_local_iterator = implementation-defined;
using node_type = unspecified;
constexpr unordered_multimap();
constexpr explicit unordered_multimap(size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<class InputIterator>
constexpr unordered_multimap(InputIterator f, InputIterator l,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<container-compatible-range<value_type> R>
constexpr unordered_multimap(from_range_t, R&& rg,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_multimap(const unordered_multimap&);
constexpr unordered_multimap(unordered_multimap&&);
constexpr explicit unordered_multimap(const Allocator&);
constexpr unordered_multimap(const unordered_multimap&, const type_identity_t<Allocator>&);
constexpr unordered_multimap(unordered_multimap&&, const type_identity_t<Allocator>&);
constexpr unordered_multimap(initializer_list<value_type> il,
size_type n = see below,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_multimap(size_type n, const allocator_type& a)
: unordered_multimap(n, hasher(), key_equal(), a) { }
constexpr unordered_multimap(size_type n, const hasher& hf, const allocator_type& a)
: unordered_multimap(n, hf, key_equal(), a) { }
template<class InputIterator>
constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a)
: unordered_multimap(f, l, n, hasher(), key_equal(), a) { }
template<class InputIterator>
constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a)