
Give std::optional Range
Support

Marco Foco <marco.foco@gmail.com>

Darius Neațu <dariusn@adobe.com>

Barry Revzin <barry.revzin@gmail.com>

David Sankel <dsankel@adobe.com>

2024-03-20 Tokyo WG21 Meeting

https://wg21.link/p3168r0

https://wg21.link/p3168r0

Background

std::optional

, Fernando Cacciola and Andrezej Krzemieński

std::optional<T> is a class template that "may or may not

store a value of type T in its storage space"

Incorporated into C++17

Frequent use in data members, function parameters, function

return types, and stack variables.

A proposal to add a utility class to represent optional objects

(N3793)

https://wg21.link/N3793
https://wg21.link/N3793

Ranges

, Eric Niebler

Concepts and algorithms

Goal: simplify algorithm composition and usage

The One Ranges Proposal (P0896R4)

https://wg21.link/P0896R4

Usage experience

Applying range and iteration algorithms to std::optional is a

recurring topic in forums

Optional types with range support are showing up in the wild

(e.g.)

Other programming languages (e.g. Rust and Scala) treat

optional as a range for algorithmic purposes

owi::optional

https://github.com/seleznevae/owi_optional

views::maybe

, Steve Downey

Includes many examples illustrating utility of optional being a

range

Proposed two facilities:

1. views::nullable. Range adapter producing view of

std::optional and std::optional-like objects.

2. views::maybe. Data type with std::optional semantics,

with interface di�erences including range support.

A view of 0 or 1 elements: views::maybe (P1255R12)

https://wg21.link/P1255R12

Interface differences 1/2
std::optional<V> both std::maybe_view<V>

Opt(nullopt) Opt()

Opt(v)

Opt(in_place, v)

o = nullopt; o = v;

o.emplace(v);

o.reset();

o.swap(o2);

Interface differences 2/2
std::optional<V> both std::maybe_view<V>

o == o2 and o <=> o2

o == v and o <=> v

*o and o->m o.transform(f) o.begin() and o.end()

o.has_value() and bool(o) o.and_then(f) o.size()

o.value_or(v) o.or_else(f) o.data()

std::hash<Opt>{}(o)

Key design principles

1. Genericity

2. Simplicity

Genericity 1/2
, Stepanov and DehnertFundamentals of Generic Programming

Generic programming recognizes that dramatic productivity

improvements must come from reuse without modi�cation, as

with the successful libraries. Breadth of use, however, must

come from the separation of underlying data types, data

structures, and algorithms, allowing users to combine

components of each sort from either the library or their own

code. Accomplishing this requires more than just simple,

abstract interfaces – it requires that a wide variety of

components share the same interface so that they can be

substituted for one another.

http://stepanovpapers.com/DeSt98.pdf

Genericity 2/2
It is vital that we go beyond the old library model of reusing

identical interfaces with pre-determined types, to one which

identi�es the minimal requirements on interfaces and allows

reuse by similar interfaces which meet those requirements but

may di�er quite widely otherwise. Sharing similar interfaces

across a wide variety of components requires careful

identi�cation and abstraction of the patterns of use in many

programs, as well as development of techniques for e�ectively

mapping one interface to another.

Simplicity

, Direction GroupDirection for ISO C++ (P2000R4)

C++ in danger of losing coherency due to

proposals based on di�ering and sometimes

mutually contradictory design philosophies and

di�ering stylistic tastes.

https://wg21.link/P2000R4

Revisiting std::maybe

std::maybe_view lacks dereference and
bool conversion

Contrary to simplicity & genericity

These are standard for optional-like objects

The interface originates in nullable C pointers

Consider a generic serializer that outputs both a

vector<optional<T>> and a vector<shared_ptr<T>>, but will

not work with a vector<maybe_view<T>.

std::maybe_view contains lacks some
accessors

transform, and_then, or_else included, but not value_or
value_or is very popular

What is the basis for these decisions?

std::maybe_view satisfies the range
concept

std::maybe_view can be used in more algorithms. Great!

But, this will confuse users with an otherwise-identical types

When would one choose std::maybe_view
over std::optional?

When "the value will have operations applied if present, and ignored

otherwise."

For return types, how can one know ahead of time what the

callers will do?

For argument types, what if the implementation changes?

Let's not force users to spend mental energy like this!

Our proposal
Instead of introducing a new type, make std::optional satisfy the

ranges::range concept where iterating over a std::optional
object will iterate over its 0 or 1 elements.

An example
// A person's attributes (e.g., eye color). All attributes are optional.
class Person {
 /* ... */
public:
 optional<string> eye_color() const;
};

vector<Person> people = ...;

// Compute eye colors of 'people'.
vector<string> eye_colors = people
 | views::transform(&Person::eye_color)
 | views::transform(views::nullable)
 | views::join
 | ranges::to<set>()
 | ranges::to<vector>();

// Compute eye colors of 'people'.
vector<string> eye_colors = people
 | views::transform(&Person::eye_color)
 // no extra wrapping necessary
 | views::join
 | ranges::to<set>()
 | ranges::to<vector>();

Every example from views::maybe gets
simpler

Design particulars (rationale
in paper)

Add [c][r]{begin|end} family of member functions

Specialize ranges::enable_view
T* as iterator

