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1 Changes
1.1 R1

— Add implementation experience
— Incorporate pre-meeting feedback from Eric Niebler

1.2 R0
— First revision

2 Introduction
[P2300R7] lays the groundwork for writing structured concurrent programs in C++ but it leaves three important
scenarios under- or unaddressed:

1. progressively structuring an existing, unstructured concurrent program;
2. starting a dynamic number of parallel tasks without “losing track” of them; and
3. opting in to eager execution of sender-shaped work when appropriate.

This paper describes the utilities needed to address the above scenarios within the following constraints:

— No detached work by default; as specified in [P2300R7], the start_detached and ensure_started algo-
rithms invite users to start concurrent work with no built-in way to know when that work has finished.

— Such so-called “detached work” is undesirable; without a way to know when detached work is done,
it is difficult know when it is safe to destroy any resources referred to by the work. Ad hoc solutions
to this shutdown problem add unnecessary complexity that can be avoided by ensuring all concurrent
work is “attached”.
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— [P2300R7]’s introduction of structured concurrency to C++ will make async programming with C++
much easier but experienced C++ programmers typically believe that async C++ is “just hard” and
that starting async work means starting detached work (even if they are not thinking about the
distinction between attached and detached work) so adapting to a post-[P2300R7] world will require
unlearning many deprecated patterns. It is thus useful as a teaching aid to remove the unnecessary
temptation of falling back on old habits.

— No dependencies besides [P2300R7]; it will be important for the success of [P2300R7] that existing code
bases can migrate from unstructured concurrency to structured concurrency in an incremental way so tools
for progressively structuring code should not take on risk in the form of unnecessary dependencies.

The proposed solution comes in five parts:

— sender auto nest(sender auto&& snd, auto&& scope);
— template <class Scope, class Sender> concept async_scope;
— void spawn(sender auto&& snd, async_scope auto&& scope, auto&& env);
— sender auto spawn_future(sender auto&& snd, async_scope auto&& scope, auto&& env); and
— struct counting_scope.

2.1 Implementation experience
The general concept of an async scope to manage work has been deployed broadly at Meta. Code written with
Folly’s coroutine library, [folly::coro], uses [folly::coro::AsyncScope] to safely launch awaitables. Most
code written with Unifex, an implementation of an earlier version of the Sender/Receiver model proposed in
[P2300R7], uses [unifex::v1::async_scope], although experience with the v1 design led to the creation of
[unifex::v2::async_scope], which has a smaller interface and a cleaner definition of responsibility.

As an early adopter of Unifex, [rsys] (Meta’s cross-platform voip client library) became the entry point for
structured concurrency in mobile code at Meta. We originally built rsys with an unstructured asynchrony model
built around posting callbacks to threads in order to optimize for binary size. However, this came at the expense
of developer velocity due to the increasing cost of debugging deadlocks and crashes resulting from race conditions.

We decided to adopt Unifex and refactor towards a more structured architecture to address these problems
systematically. Converting an unstructured production codebase to a structured one is such a large project that
it needs to be done in phases. As we began to convert callbacks to senders/tasks, we quickly realized that we
needed a safe place to start structured asynchronous work in an unstructured environment. We addressed this
need with unifex::v1::async_scope paired with an executor to address a recurring pattern:
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Before After

// Abstraction for thread that has the ability
// to execute units of work.
class Executor {
public:
virtual void add(Func function) noexcept = 0;

};

// Example class
class Foo {
std::shared_ptr<Executor> exec_;

public:
void doSomething() {

auto asyncWork = [&]() {
// do something

};
exec_->add(asyncWork);

}
};

// Utility class for executing async work on an
// async_scope and on the provided executor
class ExecutorAsyncScopePair {
unifex::v1::async_scope scope_;
ExecutorScheduler exec_

public:
void add(Func func) {
scope_.detached_spawn_call_on(
exec_, func);

}

auto cleanup() {
return scope_.cleanup();

}
};

// Example class
class Foo {
std::shared_ptr<ExecutorAsyncScopePair> exec_;

public:
~Foo() {
sync_wait(exec_->cleanup());

}

void doSomething() {
auto asyncWork = [&]() {
// do something

};

exec_->add(asyncWork);
}

};

This broadly worked but we discovered that the above design coupled with the v1 API allowed for too many
redundancies and conflated too many responsibilities (scoping async work, associating work with a stop source,
and transferring scoped work to a new scheduler).

We learned that making each component own a distinct responsibility will minimize the confusion and increase
the structured concurrency adoption rate. The above example was an intuitive use of async_scope because the
concept of a “scoped executor” was familiar to many engineers and is a popular async pattern in other program-
ming languages. However, the above design abstracted away some of the APIs in async_scope that explicitly
asked for a scheduler, which would have helped challenge the assumption engineers made about async_scope
being an instance of a “scoped executor”.

Cancellation was an unfamiliar topic for engineers within the context of asynchronous programming. The
v1::async_scope provided both cleanup() and complete() to give engineers the freedom to decide between
canceling work or waiting for work to finish. The different nuances on when this should happen and how it
happens ended up being an obstacle that engineers didn’t want to deal with.
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Over time, we also found redundancies in the way v1::async_scope and other algorithms were implemented
and identified other use cases that could benefit from a different kind of async scope. This motivated us to create
v2::async_scope which only has one responsibility (scope), and nest which helped us improve maintainability
and flexibility of Unifex.

The unstructured nature of cleanup()/complete() in a partially structured codebase introduced deadlocks
when engineers nested the cleanup()/complete() sender in the scope being joined. This risk of deadlock
remains with v2::async_scope::join() however, we do think this risk can be managed and is worth the
tradeoff in exchange for a more coherent architecture that has fewer crashes. For example, we have experienced
a significant reduction in these types of deadlocks once engineers understood that join() is a destructor-like
operation that needs to be run only by the scope’s owner. Since there is no language support to manage async
lifetimes automatically, this insight was key in preventing these types of deadlocks. Although this breakthrough
was a result of strong guidance from experts, we believe that the simpler design of v2::async_scope would
make this a little easier.

We strongly believe that async_scope was necessary for making structured concurrency possible within rsys,
and we believe that the improvements we made with v2::async_scope will make the adoption of P2300 more
accessible.

3 Motivation
3.1 Motivating example
Let us assume the following code:
namespace ex = std::execution;

struct work_context;
struct work_item;
void do_work(work_context&, work_item*);
std::vector<work_item*> get_work_items();

int main() {
static_thread_pool my_pool{8};
work_context ctx; // create a global context for the application

std::vector<work_item*> items = get_work_items();
for (auto item : items) {

// Spawn some work dynamically
ex::sender auto snd = ex::transfer_just(my_pool.get_scheduler(), item) |

ex::then([&](work_item* item) { do_work(ctx, item); });
ex::start_detached(std::move(snd));

}
// `ctx` and `my_pool` are destroyed

}

In this example we are creating parallel work based on the given input vector. All the work will be spawned on
the local static_thread_pool object, and will use a shared work_context object.

Because the number of work items is dynamic, one is forced to use start_detached() from [P2300R7] (or
something equivalent) to dynamically spawn work. [P2300R7] doesn’t provide any facilities to spawn dynamic
work and return a sender (i.e., something like when_all but with a dynamic number of input senders).

Using start_detached() here follows the fire-and-forget style, meaning that we have no control over, or aware-
ness of, the completion of the async work that is being spawned.

At the end of the function, we are destroying the work_context and the static_thread_pool. But at that
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point, we don’t know whether all the spawned async work has completed. If any of the async work is incomplete,
this might lead to crashes.

[P2300R7] doesn’t give us out-of-the-box facilities to use in solving these types of problems.

This paper proposes the counting_scope facility that would help us avoid the invalid behavior. With
counting_scope, one might write safe code this way:
namespace ex = std::execution;

struct work_context;
struct work_item;
void do_work(work_context&, work_item*);
std::vector<work_item*> get_work_items();

int main() {
static_thread_pool my_pool{8};
work_context ctx; // create a global context for the application
ex::counting_scope scope; // create this *after* the resources it protects

std::vector<work_item*> items = get_work_items();
for (auto item : items) {

// Spawn some work dynamically
ex::sender auto snd = ex::transfer_just(my_pool.get_scheduler(), item) |

ex::then([&](work_item* item) { do_work(ctx, item); });

// start `snd` as before, but associate the spawned work with `scope` so that it can
// be awaited before destroying the resources referenced by the work (i.e. `my_pool`
// and `ctx`)
ex::spawn(std::move(snd), scope); // NEW!

}

// wait for all nested work to finish
this_thread::sync_wait(scope.join()); // NEW!

// `ctx` and `my_pool` are destroyed *after* they are no longer referenced
}

Simplifying the above into something that fits in a Tony Table to highlight the differences gives us:
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Before After

namespace ex = std::execution;

struct context;
ex::sender auto work(const context&);

int main() {
context ctx;

ex::sender auto snd = work(ctx);

// fire and forget
ex::start_detached(std::move(snd));

// `ctx` is destroyed, perhaps before
// `snd` is done

}

namespace ex = std::execution;

struct context;
ex::sender auto work(const context&);

int main() {
context ctx;
ex::counting_scope scope;

ex::sender auto snd = work(ctx);

// fire, but don't forget
ex::spawn(std::move(snd), scope);

// wait for all work nested within scope
// to finish
this_thread::sync_wait(scope.join());

// `ctx` is destroyed once nothing
// references it

}

Please see below for more examples.

3.2 counting_scope is step forward towards Structured Concurrency
Structured Programming [Dahl72] transformed the software world by making it easier to reason about the code,
and build large software from simpler constructs. We want to achieve the same effect on concurrent programming
by ensuring that we structure our concurrent code. [P2300R7] makes a big step in that direction, but, by itself,
it doesn’t fully realize the principles of Structured Programming. More specifically, it doesn’t always ensure that
we can apply the single entry, single exit point principle.

The start_detached sender algorithm fails this principle by behaving like a GOTO instruction. By calling
start_detached we essentially continue in two places: in the same function, and on different thread that
executes the given work. Moreover, the lifetime of the work started by start_detached cannot be bound to the
local context. This will prevent local reasoning, which will make the program harder to understand.

To properly structure our concurrency, we need an abstraction that ensures that all async work that is spawned
has a defined, observable, and controllable lifetime. This is the goal of counting_scope.

4 Examples of use
4.1 Spawning work from within a task
Use a counting_scope in combination with a system_context from [P2079R2] to spawn work from within a
task and join it later:
namespace ex = std::execution;

int main() {
ex::system_context ctx;
int result = 0;
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ex::counting_scope scope;

ex::scheduler auto sch = ctx.scheduler();

ex::sender auto val = ex::on(sch, ex::just() | ex::then([&result, sch, &scope]() {
int val = 13;

auto print_sender = ex::just() | ex::then([val] {
std::cout << "Hello world! Have an int with value: " << val << "\n";

});

// spawn the print sender on sch to make sure it completes before shutdown
ex::spawn(scope, ex::on(sch, std::move(print_sender)));

return val;
})) | ex::then([&result](auto val) { result = val });

ex::spawn(scope, std::move(val));

this_thread::sync_wait(scope.join());

std::cout << "Result: " << result << "\n";
}

// The counting scope ensured that all work is safely joined, so result contains 13

4.2 Starting work nested within a framework
In this example we use the counting_scope within a class to start work when the object receives a message and
to wait for that work to complete before closing.
namespace ex = std::execution;

struct my_window {
class close_message {};

ex::sender auto some_work(int message);

ex::sender auto some_work(close_message message);

void onMessage(int i) {
++count;
ex::spawn(scope, ex::on(sch, some_work(i)));

}

void onClickClose() {
++count;
ex::spawn(scope, ex::on(sch, some_work(close_message{})));

}

ex::system_scheduler sch;
ex::counting_scope& scope;
int count{0};

};
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int main() {
// keep track of all spawned work
ex::counting_scope scope;
ex::system_context ctx;
my_window window{ctx.get_scheduler(), scope};
// wait for all work nested within scope to finish
this_thread::sync_wait(scope.join());
// all resources are now safe to destroy
return window.count;

}

4.3 Starting parallel work
In this example we use the counting_scope within lexical scope to construct an algorithm that performs parallel
work. This uses the let_value_with [letvwthunifex] algorithm implemented in [libunifex] which simplifies in-
place construction of a non-moveable object in the let_value_with algorithm’s operation-state object. Here
foo launches 100 tasks that concurrently run on some scheduler provided to foo, through its connected receiver,
and then the tasks are asynchronously joined. This structure emulates how we might build a parallel algorithm
where each some_work might be operating on a fragment of data.
namespace ex = std::execution;

ex::sender auto some_work(int work_index);

ex::sender auto foo(ex::scheduler auto sch) {
return unifex::let_value_with([]() noexcept { return ex::counting_scope{}; },

[sch](ex::counting_scope& scope) {
return ex::schedule(sch) | ex::then([] {

std::cout << "Before tasks launch\n";
}) | ex::then([sch, &scope] {

// Create parallel work
for (int i = 0; i < 100; ++i)

ex::spawn(scope, ex::on(sch, some_work(i)));
}) | ex::let_value([&scope]() noexcept {

// Join the work with the help of the scope
return scope.join();

});
}) |

ex::then([] { std::cout << "After tasks complete\n"; });
}

4.4 Listener loop in an HTTP server
This example shows how one can write the listener loop in an HTTP server, with the help of coroutines. The
HTTP server will continuously accept new connection and start work to handle the requests coming on the new
connections. While the listening activity is bound in the scope of the loop, the lifetime of handling requests
may exceed the scope of the loop. We use counting_scope to limit the lifetime of the request handling without
blocking the acceptance of new requests.
namespace ex = std::execution;

task<size_t> listener(int port, io_context& ctx, static_thread_pool& pool) {
size_t count{0};
listening_socket listen_sock{port};
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ex::counting_scope work_scope;

while (!ctx.is_stopped()) {
// Accept a new connection
connection conn = co_await async_accept(ctx, listen_sock);
count++;

// Create work to handle the connection in the scope of `work_scope`
conn_data data{std::move(conn), ctx, pool};
ex::sender auto snd = ex::just(std::move(data)) |

ex::let_value([](auto& data) {
return handle_connection(data);

});
ex::spawn(scope, std::move(snd));

}

// Continue only after all requests are handled
co_await work_scope.join();

// At this point, all the request handling is complete
co_return count;

}

[libunifex] has a very similar example HTTP server at [io_uring HTTP server] that compiles and runs on
Linux-based machines with io_uring support.

5 Async Scope, usage guide
An async scope is a type that implements a “bookkeeping policy” for senders that have been nest()ed within
the scope. Depending on the policy, different guarantees can be provided in terms of the lifetimes of the scope
and any nested senders. The counting_scope described in this paper defines a policy that has proven useful
while progressively adding structure to existing, unstructured code at Meta, but other useful policies are possible.
By defining spawn() and spawn_future() in terms of the more fundamental nest(), and leaving the definition
of nest() to the scope, this paper’s design leaves the set of policies open to extension by user code or future
standards.

An async scope’s implementation of nest():

— must allow an arbitrary sender to be nested within the scope without eagerly starting the sender;
— must not return a sender that adds new value or error completions to the completions of the sender being

nested;
— may fail to nest a new sender by returning an “unnested” sender that completes with set_stopped when

run without running the sender that failed to nest;
— may fail to nest a new sender by eagerly throwing an exception during the call to nest(); and
— is expected to be “cheap” like other sender adaptor objects.

More on these items can be found below in the sections below.

5.1 Definitions

namespace { // exposition-only

template <class Env>
struct spawn-env; // exposition-only
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template <class Env>
struct spawn-receiver { // exposition-only

void set_value() noexcept;
void set_stopped() noexcept;

spawn-env<Env> get_env() const noexcept;
};

template <class Env>
struct future-env; // exposition-only

template <valid-completion-signatures Sigs>
struct future-sender; // exposition-only

template <sender Sender, class Env>
using future-sender-t = // exposition-only

future-sender<completion_signatures_of_t<Sender, future-env<Env>>>;

}

template <sender Sender>
auto nest(Sender&& snd, auto&& scope)

noexcept(noexcept(scope.nest(std::forward<Sender>(snd)))
-> decltype(scope.nest(std::forward<Sender>(snd)));

template <class Scope, class Sender>
concept async_scope =

sender<Sender> &&
requires(Scope&& scope, Sender&& snd) {

{ nest(std::forward<Sender>(snd), std::forward<Scope>(scope)) } -> sender;
};

template <sender Sender, async_scope<Sender> Scope, class Env = empty_env>
requires sender_to<Sender, spawn-receiver<Env>>

void spawn(Sender&& snd, Scope&& scope, Env env = {});

template <sender Sender, async_scope<Sender> Scope, class Env = empty_env>
future-sender-t<Sender, Env> spawn_future(Sender&& snd, Scope&& scope, Env env = {});

struct counting_scope {
counting_scope() noexcept;
~counting_scope();

// counting_scope is immovable and uncopyable
counting_scope(const counting_scope&) = delete;
counting_scope(counting_scope&&) = delete;
counting_scope& operator=(const counting_scope&) = delete;
counting_scope& operator=(counting_scope&&) = delete;

template <sender S>
struct nest-sender; // exposition-only

template <sender S>
[[nodiscard]] nest-sender<std::remove_cvref_t<S>> nest(S&& s) & noexcept(
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std::is_nothrow_constructible_v<std::remove_cvref_t<S>, S>);

struct join-sender; // exposition-only

[[nodiscard]] join-sender join() noexcept;

// observers in the spirit of std::weak_ptr<T>::expired() and
// std::shared_ptr<T>::use_count(); the values must be correct
// when computed but may be stale by the time they can be observed

[[nodiscard]] bool joined() const noexcept;

[[nodiscard]] bool join_started() const noexcept;

[[nodiscard]] size_t use_count() const noexcept;
};

5.2 execution::nest

template <sender Sender>
auto nest(Sender&& snd, auto&& scope) noexcept(noexcept(scope.nest(std::forward<Sender>(snd)))

-> decltype(scope.nest(std::forward<Sender>(snd)));

Attempts to associate the given sender with the given scope in a scope-defined way. When successful, the return
value is an “associated sender” with the same behaviour and possible completions as the input sender, plus the
additional, scope-specific behaviours that are necessary to implement the scope’s bookkeeping policy. When
the attempt fails, nest() may either eagerly throw an exception, or return a “unassociated sender” that, when
started, unconditionally completes with set_stopped().

A call to nest() does not start the given sender and is not expected to incur allocations.

When nest() returns an associated sender:

— connecting and starting the associated sender connects and starts the given sender;
— the associated sender is multi-shot if the input sender is multi-shot and single-shot otherwise; and
— the associated sender has exactly the same completions as the input sender.

When nest() returns an unassociated sender:

— the input sender is discarded and will never be connected or started;
— the unassociated sender is multi-shot; and
— the unassociated sender must only complete with set_stopped().

5.3 execution::async_scope

template <class Scope, class Sender>
concept async_scope =
// only senders can be nested within scopes
sender<Sender> &&
// a scope is anything that can nest senders within itself
requires(Scope&& scope, Sender&& snd) {

{ nest(std::forward<Sender>(snd), std::forward<Scope>(scope)) } -> sender;
};

As described above, an async scope is a type that implements a bookkeeping policy for senders. The nest()
algorithm is the means by which senders are submitted as the subjects of such a policy so any type that permits
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senders to be nest()ed with it satisfies the async_scope concept.

5.4 execution::spawn()

namespace { // exposition-only

template <class Env>
struct spawn-env; // exposition-only

template <class Env>
struct spawn-receiver { // exposition-only

void set_value() noexcept;
void set_stopped() noexcept;

spawn-env<Env> get_env() const noexcept;
};

}

template <sender Sender, async_scope<Sender> Scope, class Env = empty_env>
requires sender_to<Sender, spawn-receiver<Env>>

void spawn(Sender&& snd, Scope&& scope, Env env = {});

Invokes nest(std::forward<Sender>(snd), std::forward<Scope>(scope)) to associate the given sender
with the given scope and then eagerly starts the resulting sender.

Starting the nested sender involves a dynamic allocation of the sender’s operation-state. The following
algorithm determines which Allocator to use for this allocation:

— If get_allocator(env) is valid and returns an Allocator then choose that Allocator.
— Otherwise, if get_allocator(get_env(snd)) is valid and returns an Allocator then choose that Allocator.
— Otherwise, choose std::allocator<>.

The operation-state is constructed by connecting the nested sender to a spawn-receiver. The
operation-state is destroyed and deallocated after the spawned sender completes.

A spawn-receiver, sr, responds to get_env(sr) with an instance of a spawn-env<Env>, senv. The result of
get_allocator(senv) is a copy of the Allocator used to allocate the operation-state. For all other queries,
Q, the result of Q(senv) is Q(env).

This is similar to start_detached() from [P2300R7], but the scope may observe and participate in the lifecycle
of the work described by the sender. The counting_scope described in this paper uses this opportunity to
keep a count of nested senders that haven’t finished, and to prevent new work from being started once the
counting_scope’s join-sender has been started.

The given sender must complete with void or stopped and may not complete with an error; the user must
explicitly handle the errors that might appear as part of the sender-expression passed to spawn().

User expectations will be that spawn() is asynchronous and so, to uphold the principle of least sur-
prise, spawn() should only be given non-blocking senders. Using spawn() with a sender generated by
on(sched, blocking-sender) is a very useful pattern in this context.

NOTE: A query for non-blocking start will allow spawn() to be constrained to require non-blocking start.

Usage example:
...
for (int i = 0; i < 100; i++)

spawn(on(sched, some_work(i)), scope);
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5.5 execution::spawn_future()

namespace { // exposition-only

template <class Env>
struct future-env; // exposition-only

template <valid-completion-signatures Sigs>
struct future-sender; // exposition-only

template <sender Sender, class Env>
using future-sender-t = // exposition-only

future-sender<completion_signatures_of_t<Sender, future-env<Env>>>;

}

template <sender Sender, async_scope<Sender> Scope, class Env = empty_env>
future-sender-t<Sender, Env> spawn_future(Sender&& snd, Scope&& scope, Env env = {});

Invokes nest(std::forward<Sender>(snd), std::forward<Scope>(scope)) to associate the given sender
with the given scope, eagerly starts the resulting sender, and returns a future-sender that provides access to
the result of the given sender.

Similar to spawn(), starting the nested sender involves a dynamic allocation of some state. spawn_future()
chooses an Allocator for this allocation in the same way spawn() does: use the result of get_allocator(env) if
that is a valid expression, otherwise use the result of get_allocator(get_env(snd)) if that is a valid expression,
otherwise use a std::allocator<>.

Unlike spawn(), the dynamically allocated state contains more than just an operation-state for the nested
sender; the state must also contain storage for the result of the nested sender, however it eventually completes,
and synchronization facilities for resolving the race between the nested sender’s production of its result and the
returned sender’s consumption or abandonment of that result.

Also unlike spawn(), spawn_future() returns a future-sender rather than void. The returned sender, fs,
is a handle to the spawned work that can be used to consume or abandon the result of that work. When
fs is connected and started, it waits for the spawned sender to complete and then completes itself with the
spawned sender’s result. If fs is destroyed before being connected, or if fs is connected but then the resulting
operation-state is destroyed before being started, then a stop request is sent to the spawned sender in an
effort to short-circuit the computation of a result that will not be observed. If fs receives a stop request from its
receiver before the spawned sender completes, the stop request is forwarded to the spawned sender and then fs
completes; if the spawned sender happens to complete between fs forwarding the stop request and completing
itself then fs may complete with the result of the spawned sender as if the stop request was never received
but, otherwise, fs completes with stopped and the result of the spawned sender is ignored. The completion
signatures of fs include set_stopped() and all the completion signatures of the spawned sender.

The receiver, fr, that is connected to the nested sender responds to get_env(fr) with an instance of
future-env<Env>, fenv. The result of get_allocator(fenv) is a copy of the Allocator used to allocate the
dynamically allocated state. The result of get_stop_token(fenv) is a stop token that will be “triggered”
(i.e. signal that stop is requested) by the returned future-sender when it is dropped or receives a stop request
itself. For all other queries, Q, the result of Q(fenv) is Q(env).

This is similar to ensure_started() from [P2300R7], but the scope may observe and participate in the lifecycle
of the work described by the sender. The counting_scope described in this paper uses this opportunity to
keep a count of nested senders that haven’t finished, and to prevent new work from being started once the
counting_scope’s join-sender has been started.

Unlike spawn(), the sender given to spawn_future() is not constrained on a given shape. It may send different
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types of values, and it can complete with errors.

NOTE: there is a race between the completion of the given sender and the start of the returned sender. The
spawned sender and the returned future-sender use the synchronization facilities in the dynamically allocated
state to resolve this race.

Cancelling the returned sender requests cancellation of the given sender, snd, but does not affect any other
senders.

Usage example:
...
sender auto snd = spawn_future(on(sched, key_work()), scope) | then(continue_fun);
for (int i = 0; i < 10; i++)

spawn(on(sched, other_work(i)), scope);
return when_all(scope.join(), std::move(snd));

5.6 execution::counting_scope

struct counting_scope {
counting_scope() noexcept;
~counting_scope();

counting_scope(const counting_scope&) = delete;
counting_scope(counting_scope&&) = delete;
counting_scope& operator=(const counting_scope&) = delete;
counting_scope& operator=(counting_scope&&) = delete;

template <sender S>
struct nest-sender; // exposition-only

template <sender S>
[[nodiscard]] nest-sender<std::remove_cvref_t<S>> nest(S&& s) & noexcept(

std::is_nothrow_constructible_v<std::remove_cvref_t<S>, S>);

struct join-sender; // exposition-only

[[nodiscard]] join-sender join() noexcept;

// observers in the spirit of std::weak_ptr<T>::expired() and
// std::shared_ptr<T>::use_count(); the values must be correct
// when computed but may be stale by the time they can be observed

[[nodiscard]] bool joined() const noexcept;

[[nodiscard]] bool join_started() const noexcept;

[[nodiscard]] size_t use_count() const noexcept;
};

A counting_scope goes through three states during its lifetime:

1. open
2. closed/joining
3. joined

Instances start in the open state after being constructed. Connecting and starting a join-sender returned from
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join() transitions the scope to the closed/joining state. Merely calling join() or connecting the join-sender
does not change the scope’s state—the operation-state must be started to close the scope. The scope tran-
sitions from the closed/joining state to the joined state when the join-sender completes. A scope must be in
the joined state when its destructor starts; otherwise, the destructor invokes std::terminate().

While a scope is open, calls to nest(snd, scope) will succeed (unless an exception is thrown by snd’s copy- or
move-constructor while constructing the nest-sender). Each time a call to nest(snd, scope) succeeds, two
things happen:

1. the scope’s count of outstanding senders is incremented before nest() returns, and
2. the given sender, snd, is wrapped in a nest-sender and returned.

When a call to nest() succeeds, the returned nest-sender is an associated sender that acts like an RAII
handle: the scope’s internal count is incremented when the sender is created and decremented when the sender
is “done with the scope”, which happens when the sender is destroyed, its operation-state is destroyed, or its
operation-state is completed. Moving a nest-sender transfers responsibility for decrementing the count from
the old instance to the new one. Copying a nest-sender is permitted if the sender it’s wrapping is copyable,
but the copy may “fail” since copying requires incrementing the scope’s count, which is only allowed when the
scope is open; if copying fails, the new sender is an unassociated sender that behaves as if it were the result of
a failed call to nest().

While a scope is closed or joined, calls to nest(snd, scope) will always fail by discarding the given sender and
returning an unassociated nest-sender. Failed calls to nest() do not change the scope’s count. Unassociated
nest-senders do not have a reference to the scope they came from and always complete with stopped when
connected and started. Copying or moving an unassociated sender produces another unassociated sender.

The state transitions of a counting_scope mean that it can be used to protect asynchronous work from use-
after-free errors. Given a resource, res, and a counting_scope, scope, obeying the following policy is enough
to ensure that there are no attempts to use res after its lifetime ends:

— all senders that refer to res are nested within scope; and
— scope is destroyed (and therefore joined) before res is destroyed.

Under the standard assumption that the arguments to nest() are and remain valid while evaluating nest(), it is
always safe to invoke any supported operation on the returned nest-sender. Furthermore, if all senders returned
from nest() are eventually started or discarded then the join() operation always eventually finishes because the
number of outstanding senders nested within the corresponding scope is monotonically decreasing. Conversely,
the join() operation will never terminate if there are any associated nest-senders that never become “done
with the scope” (i.e. that remain either unconnected or unstarted until after the join() is expected to complete).
For example:
void deadlock() {

namespace ex = std::execution;

ex::counting_scope scope;

ex::sender auto s = ex::nest(ex::just(), scope);

// never completes because s's continued existence keeps the scope open
std::this_thread::sync_wait(scope.join());

}

The risk of deadlock is explicitly preferred in this design over the risk of use-after-free errors because
counting_scope is an async scope that is biased towards being used to progressively add structure to
generally-unstructured code. We’ve found that the central problem in progressively structuring unstructured
code is determining appropriate bounds for each asynchronous task when those bounds are not clear; it is easier
to figure out where to synchronously join() a scope than it is to ensure that all spawn()ed work is properly
scoped within any particular object’s lifetime. So, although it is generally easier to diagnose use-after-free errors

16



than it is to diagnose deadlocks, we’ve found that it’s easier to avoid deadlocks with this design than it is to
avoid use-after-free errors with other designs.

A counting_scope is uncopyable and immovable so its copy and move operators are explicitly deleted.
counting_scope could be made movable but it would cost an allocation so this is not proposed.

5.6.1 counting_scope::counting_scope()

counting_scope::counting_scope() noexcept;

Initializes a counting_scope in the open state with no outstanding senders.

5.6.2 counting_scope::~counting_scope()

counting_scope::~counting_scope();

Checks that the counting_scope is in the joined state and invokes std::terminate() if not.

5.6.3 counting_scope::nest()

template <sender S>
struct nest-sender; // exposition-only

template <sender S>
[[nodiscard]] nest-sender<std::remove_cvref_t<S>> nest(S&& s) & noexcept(

std::is_nothrow_constructible_v<std::remove_cvref_t<S>, S>);

Atomically increments the scope’s count of outstanding senders if and only if the scope is in the open state and
then returns a nest-sender.

If the atomic increment succeeded then the return value will be an associated nest-sender that contains a
reference to this (the associated scope) and a copy of the input sender, s, that is copy- or move-constructed
from s. If this copy or move throws then, before the exception is allowed to escape to the caller, the atomic
increment needs to be undone with a decrement to provide the strong exception guarantee.

If the atomic increment failed then the return value will be an unassociated nest-sender and no exceptions are
possible. In this case, the return value does not store a reference to this and the given sender, s, is discarded.

An associated nest-sender is a kind of RAII handle to the scope; it is responsible for decrementing the scope’s
count of outstanding senders in its destructor unless that responsibility is first given to some other object.
Move-construction and move-assignment transfer the decrement responsibility to the destination instance. Con-
necting an instance to a receiver transfers the decrement responsibility to the resulting operation-state, which
must meet the responsibility when the operation completes or is destroyed, whichever comes first (note: if the
operation-state is started, then the decrement should happen after invoking a completion method on its
receiver to ensure that any reference produced by the nested sender is not dangling at the time of invocation).
Whenever the balancing decrement happens (including if it happens as a side effect of allowing an exception to es-
cape from nest()), it’s possible that the scope has transitioned to the closed/joining state since the nest-sender
was constructed, which means that there is a join-sender waiting to complete so, if the decrement brings the
count of outstanding senders to zero then the waiting join-sender needs to be notified that the scope is now
joined and the sender can complete.

A call to nest() does not start the given sender. A call to nest() is not expected to incur allocations other
than whatever might be required to move or copy s.

Similar to spawn_future(), nest() doesn’t constrain the input sender to any specific shape. Any type of sender
is accepted.

As nest() does not immediately start the given work, it is ok to pass in blocking senders.
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nest() is lvalue-ref qualified as it would be inappropriate to nest senders in a temporary—the temporary’s
destructor would unconditionally invoke std::terminate() as there would be no way to move it into the joined
state.

Usage example:
...
sender auto snd = s.nest(key_work());
for (int i = 0; i < 10; i++)

spawn(on(sched, other_work(i)), scope);
return on(sched, std::move(snd));

5.6.4 counting_scope::join()

struct join-sender; // exposition-only

[[nodiscard]] join-sender join() noexcept;

Returns a join-sender. When the join-sender is connected to a receiver, r, it produces an operation-state,
o. When o is started, the scope moves from the open state to the closed/joining state. o completes with
set_value() when the scope moves from the closed/joining state to the closed state, which happens when the
scope’s count of outstanding senders drops to zero. o may complete synchronously if it happens to observe that
the count of outstanding senders is already zero when started; otherwise, o completes on the execution context
it was started on by asking its receiver, r, for a scheduler, sch, with get_scheduler(get_env(r)) and then
starting the sender returned from schedule(sch). This requirement to complete on the receiver’s scheduler
restricts which receivers a join-sender may be connected to in exchange for determinism; the alternative would
have the join-sender completing on the execution context of whichever nested operation happens to be the
last one to complete.

5.6.5 counting_scope::joined()

[[nodiscard]] bool joined() const noexcept;

Returns true if the scope is in the joined state (i.e. a join-sender returned from join() has been connected
and started, and the count of outstanding senders has dropped to zero).

joined() returning true implies that join_started() will also return true and use_count() will return 0.

joined() must not introduce data races but need not synchronize with anything.

Note: if joined() returns true then it will never again return false however, it’s possible for a return of false
to be stale by the time it is observed since another thread of execution may be racing to complete a waiting
join-sender.

5.6.6 counting_scope::join_started()

[[nodiscard]] bool join_started() const noexcept;

Returns true if the scope is in the closed/joining state or the joined state (i.e. returns true if a join-sender
has been connected and started) and false otherwise.

join_started() must not introduce data races but need not synchronize with anything.

Note: if join_started() returns true then it will never again return false however, it’s possible for a return
of false to be stale by the time it is observed since another thread of execution may be racing to start a
join-sender.
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5.6.7 counting_scope::use_count()

[[nodiscard]] size_t use_count() const noexcept;

Returns the number of senders that have been associated with this scope that have not yet completed.

use_count() must not introduce data races but need not synchronize with anything.

Note: it is likely that the return value is stale by the time it’s observed since another thread of execution may
be racing to nest a new sender or complete an old one.

6 Design considerations
6.1 Shape of the given sender
6.1.1 Constraints on set_value()

It makes sense for spawn_future() and nest() to accept senders with any type of completion signatures. The
caller gets back a sender that can be chained with other senders, and it doesn’t make sense to restrict the shape
of this sender.

The same reasoning doesn’t necessarily follow for spawn() as it returns void and the result of the spawned
sender is dropped. There are two main alternatives:

— do not constrain the shape of the input sender (i.e., dropping the results of the computation)
— constrain the shape of the input sender

The current proposal goes with the second alternative. The main reason is to make it more difficult and explicit
to silently drop result. The caller can always transform the input sender before passing it to spawn() to drop
the values manually.

Chosen: spawn() accepts only senders that advertise set_value() (without any parameters) in the com-
pletion signatures.

6.1.2 Handling errors in spawn()

The current proposal does not accept senders that can complete with error given to spawn(). This will prevent
accidental error scenarios that will terminate the application. The user must deal with all possible errors before
passing the sender to counting_scope. i.e., error handling must be explicit.

Another alternative considered was to call std::terminate() when the sender completes with error.

Another alternative is to silently drop the errors when receiving them. This is considered bad practice, as it will
often lead to first spotting bugs in production.

Chosen: spawn() accepts only senders that do not call set_error(). Explicit error handling is preferred
over stopping the application, and over silently ignoring the error.

6.1.3 Handling stop signals in spawn()

Similar to the error case, we have the alternative of allowing or forbidding set_stopped() as a completion signal.
Because the goal of counting_scope is to track the lifetime of the work started through it, it shouldn’t matter
whether that the work completed with success or by being stopped. As it is assumed that sending the stop signal
is the result of an explicit choice, it makes sense to allow senders that can terminate with set_stopped().

The alternative would require transforming the sender before passing it to spawn, something like
s.spawn(std::move(snd) | let_stopped(just)). This is considered boilerplate and not helpful, as
the stopped scenarios should be implicit, and not require handling.

Chosen: spawn() accepts senders that complete with set_stopped().

19



6.1.4 No shape restrictions for the senders passed to spawn_future() and nest()

Similarly to spawn(), we can constrain spawn_future() and nest() to accept only a limited set of senders.
But, because we can attach continuations for these senders, we would be limiting the functionality that can be
expressed. For example, the continuation can handle different types of values and errors.

Chosen: spawn_future() and nest() accept senders with any completion signatures.

6.2 P2300’s start_detached()
The spawn() method in this paper can be used as a replacement for start_detached proposed in [P2300R7].
Essentially it does the same thing, but it also provides the given scope the opportunity to apply its bookkeeping
policy to the given sender, which, in the case of counting_scope, ensures the program can wait for spawned
work to complete before destroying any resources references by that work.

6.3 P2300’s ensure_started()
The spawn_future() method in this paper can be used as a replacement for ensure_started proposed in
[P2300R7]. Essentially it does the same thing, but it also provides the given scope the opportunity to apply its
bookkeeping policy to the given sender, which, in the case of counting_scope, ensures the program can wait
for spawned work to complete before destroying any resources references by that work.

6.4 Supporting the pipe operator
This paper doesn’t support the pipe operator to be used in conjunction with spawn() and spawn_future().
One might think that it is useful to write code like the following:
std::move(snd1) | spawn(s); // returns void
sender auto snd3 = std::move(snd2) | spawn_future(s) | then(...);

In [P2300R7] sender consumers do not have support for the pipe operator. As spawn() works similarly to
start_detached() from [P2300R7], which is a sender consumer, if we follow the same rationale, it makes sense
not to support the pipe operator for spawn().

On the other hand, spawn_future() is not a sender consumer, thus we might have considered adding pipe
operator to it.

On the third hand, Unifex supports the pipe operator for both of its equivalent algorithms (unifex::spawn_detached()
and unifex::spawn_future()) and Unifex users have not been confused by this choice.

To keep consistency with spawn() this paper doesn’t support pipe operator for spawn_future().

7 Naming
As is often true, naming is a difficult task.

7.1 nest()
This provides a way to build a sender that is associated with a “scope”, which is a type that implements and
enforces some bookkeeping policy regarding the senders nested within it. nest() does not allocate state, call
connect, or call start. nest() is the basis operation for async scopes. spawn() and spawn_future() use nest()
to associate a given sender with a given scope, and then they allocate, connect, and start the given sender.

It would be good for the name to indicate that it is a simple operation (insert, add, embed, extend might
communicate allocation, which nest() does not do).

alternatives: wrap(), attach()
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7.2 async_scope
This is a concept that is satisfied by types that support nesting senders within themselves. It is primarily
useful for constraining the arguments to spawn() and spawn_future() to give useful error messages for invalid
invocations.

Since concepts don’t support existential quantifiers and thus can’t express “type T is an async_scope if there
exists a sender, s, for which t.nest(s) is valid”, the async_scope concept must be parameterized on both
the type of the scope and the type of some particular sender and thus describes whether this scope type is
an async_scope in combination with this sender type. Given this limitation, perhaps the name should convey
something about the fact that it is checking the relationship between two types rather than checking something
about the scope’s type alone. Nothing satisfying comes to mind.

alternatives: don’t name it and leave it as exposition-only

7.3 spawn()
This provides a way to start a sender that produces void and to associate the resulting async work with an
async scope that can implement a bookkeeping policy that may help ensure the async work is complete before
destroying any resources it is using. This allocates, connects, and starts the given sender.

It would be good for the name to indicate that it is an expensive operation.

alternatives: connect_and_start(), spawn_detached(), fire_and_remember()

7.4 spawn_future()
This provides a way to start work and later ask for the result. This will allocate, connect, start, and resolve the
race (using synchronization primitives) between the completion of the given sender and the start of the returned
sender. Since the type of the receiver supplied to the result sender is not known when the given sender starts,
the receiver will be type-erased when it is connected.

It would be good for the name to be ugly, to indicate that it is a more expensive operation than spawn().

alternatives: spawn_with_result()

7.5 counting_scope
A counting_scope represents the root of a set of nested lifetimes.

One mental model for this is a semaphore. It tracks a count of lifetimes and fires an event when the count
reaches 0.

Another mental model for this is block syntax. {} represents the root of a set of lifetimes of locals and temporaries
and nested blocks.

Another mental model for this is a container. This is the least accurate model. This container is a value that
does not contain values. This container contains a set of active senders (an active sender is not a value, it is an
operation).

alternatives: async_scope

7.5.1 counting_scope::join()

This method returns a sender that, when started, prevents new senders from being nested within the scope
and then waits for the scope’s count of outstanding senders to drop to zero before completing. It is somewhat
analogous to std::thread::join() but does not block.

join() must be invoked, and the returned sender must be connected, started, and completed, before the scope
may be destroyed so it may be useful to convey some of this importance in the name, although std::thread
has similar requirements for its join().
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join() is the biggest wart in this design; the need to manually manage the end of a scope’s lifetime stands out
as less-than-ideal in C++, and there is some real risk that users will write deadlocks with join() so perhaps
join() should have a name that conveys danger.

alternatives: complete(), close()

7.5.2 counting_scope::joined()

This method starts returning true once the join-sender completes and it means “join() was called and its work
has finished”. The name should be the past participle of whichever verb is chosen for join() (e.g. completed()
or closed()).

The result of joined() may be stale before it can be observed, like std::weak_ptr<>::expired(), so users
may find the name more obvious if it communicated this staleness.

alternatives: completed(), closed()

7.5.3 counting_scope::join_started()

This method starts returning true once the join-sender has been started and it means that the scope will no
longer permit new senders to be associated with it via calls to nest(). The name was chosen for its directness:
join_started() is true when the join() operation has started.

Like join(), the result may be stale before it can be observed.

alternatives: joining(), closing(), completing()

7.5.4 counting_scope::use_count()

This method returns the scope’s count of outstanding senders (i.e. the number of senders that have been associ-
ated with the scope via calls to nest() and that haven’t been discarded or completed, yet).

Like join() and join_started(), the result may be stale before it can be observed. Unlike those two methods,
there isn’t a simple rule like “once it hits zero it stays there” since new work may always be added to the scope
so long as the join-sender hasn’t been started.

The name was chosen by analogy with std::shared_ptr<>::use_count(); both represent reference counts that
may be immediately stale and for which the 1 -> 0 transition is significant.

alternatives: outstanding_senders()
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