
1

Proxy: A Pointer-Semantics-Based

Polymorphism Library

Document number: P3086R0

Date: 2024-01-16

Project: Programming Language C++

Audience: LEWGI, LEWG

Authors: Mingxin Wang

Reply-to: Mingxin Wang <mingxwa@microsoft.com>

Table of Contents
1 Introduction .. 2

2 Motivation and Scope .. 3

2.1 Implementation status .. 4

2.2 An example of system design .. 4

2.2.1 Architecting with inheritance-based polymorphism ... 4

2.2.2 Architecting with the "proxy" ... 5

2.3 Requirements change 1: More polymorphic expressions .. 6

2.3.1 Inheritance-based polymorphism .. 7

2.3.2 The "proxy" ... 7

2.3.3 Comparison ... 7

2.4 Requirements change 2: Simple factory .. 8

2.4.1 Inheritance-based polymorphism .. 8

2.4.2 The "proxy" ... 9

2.4.3 Comparison ... 10

2.5 Conclusion ... 10

3 Impact on the Standard .. 11

4 Considerations and Design Decisions .. 12

4.1 Pointer semantics ... 12

4.1.1 Motivation ... 12

4.1.2 Constraints .. 13

4.1.3 Implementation ... 14

2

4.2 Language vs. Library ... 17

4.3 The "proxy" .. 17

4.3.2 Copy/move constructions and assignments .. 18

4.3.3 Construction from a value ... 18

4.3.4 Reflection .. 18

4.4 Compared to other solutions .. 19

4.4.1 The "dyno" library .. 19

4.4.2 The "DGPVC" library ... 21

5 Technical Specifications .. 22

5.1 Feature test macro .. 22

5.2 Header <proxy> synopsis .. 22

5.3 Constraints ... 23

5.4 Proxy .. 25

5.4.1 Class template proxy .. 25

5.4.2 Creation ... 31

5.4.3 Specialized algorithms .. 32

6 Acknowledgements .. 32

7 Summary .. 32

8 Appendix .. 32

8.1 Helper macros .. 32

1 Introduction

This is a proposal for a reduced initial set of features to support general non-intrusive polymorphism in

C++. Specifically, we are mostly proposing a subset of features suggested in P0957R9 with some

significant improvements per user feedback:

- Class template proxy, representing type-erased pointers at runtime.

- Enum class constraint_level and struct proxiable_ptr_constraints, representing

compile-time constraints of a pointer to model a proxy. 3 prototypes of

proxiable_ptr_constraints are also proposed.

- Concepts basic_facade, facade and proxiable.

- Factory function template make_proxy.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf

3

For decades, object-based virtual table has been a de facto implementation of runtime polymorphism in

many (compiled) programming languages including C++. There are many drawbacks in this mechanism,

including life management (because each object may have different size and ownership), reflection

(because it is hard to balance between usability and memory allocation) and intrusiveness. To

workaround these drawbacks, some languages like Java or C# choose to sacrifice performance by

introducing GC to facilitate lifetime management, and JIT-compile the source code at runtime to

generate full metadata. We improved the theory and made it possible to implement generic non-intrusive

polymorphism based on pointer semantics.

Comparing to P0957R9, the major changes are listed as follows:

1. The facilities to help defining dispatches and facades are removed. We are seeking easier

ways to define these constructs by introducing new syntactic sugar, but this is not in the scope of

this paper.

2. Per user feedback, struct proxiable_ptr_constraints is proposed as an abstraction of

constraints to pointers, making it easier to learn and use. 3 prototypes are proposed, while only 1 is

proposed in P0957R9 due to syntax limitation. The requirements of facade are also revised.

3. Per user feedback, multiple overloads are supported in one dispatch definition.

4. Per user feedback, proxy::invoke() has made const.

5. proxy::operator() is added when only one dispatch presents.

6. Added concept basic_facade and facade.

The rest of the paper is organized as follows: section 3 illustrates the motivation and scope of the

proposed library; section 4 summarizes the impact on the standard; section 5 includes the pivotal

decisions in the design; section 6 illustrates the technical specifications; the last sections summarize the

paper.

2 Motivation and Scope

Polymorphism in OOP theory is an effective way to decouple components within a single

programming language and allows deployment of stable ABI, therefore it is widely supported in modern

programming languages including C++ and is vital in large-scale programming to decouple components

and increase extendibility. Currently, there are two types of mechanisms for polymorphism in the

standard: inheritance with virtual functions and polymorphic wrappers. Because the existing

polymorphic wrappers in the standard, such as std::function, std::any,

std::pmr::polymorphic_allocator, etc., have limited extendibility with regard to a variety of

polymorphic requirements, inheritance-based polymorphism is usually inevitable in large systems

nowadays.

The "proxy" is designed to help users build extendable and efficient polymorphic programs. To make

implementations efficient in C++, it is helpful to collect requirements and generate high-quality code at

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf

4

compile-time as possible. The basic goal of the "proxy" is to eliminate the usability and performance

limitations in traditional OOP and FP.

This following section illustrates the implementation status of the proposed library, the limitations in

inheritance-based polymorphism with concrete system design requirements and how the proposed

library could help.

2.1 Implementation status

As a proof of concept, we have implemented the technical specifications as a single-header template

library, meeting the latest standard. The implementation, including unit tests, could be found in our

GitHub repo. As we tested, the implementation compiles with the latest releases of gcc, clang and

MSVC, as the language standard is set to C++20 or later.

Because this paper does not aim to provide any syntactic sugar to define constructs for polymorphism,

5 macros are provided for exposition: PRO_DEF_MEMBER_DISPATCH,

PRO_DEF_FREE_DISPATCH, PRO_DEF_COMBINED_DISPATCH, PRO_DEF_FACADE and

PRO_MAKE_DISPATCH_PACK. The definition of the macros could be found in Appendix 8.1. There

are some other experimental facilities in the codebase and will not be discussed in this paper.

2.2 An example of system design

Before discussing the limitations in inheritance-based polymorphism, it would be helpful to show the

basic usage of the proposed library in concrete system design requirements compared to others. Here are

the original requirements:

There are 3 "drawable" entities in a system: rectangle, circle, and point. Specifically.

- Rectangles have width, height, transparency, and area, and

- Circles have radius, transparency, and area, and

- Points do not have any property; their area is always zero.

A library function DoSomethingWithDrawable shall be defined with some algorithm. It should

not be a function template to avoid code bloat and increase testability. It may "draw" any of the 3

"drawable" entities in its implementation.

2.2.1 Architecting with inheritance-based polymorphism

With the keywork virtual, a base class could be defined:

class IDrawable {

 public:

 virtual void Draw() const = 0;

};

3 "drawable" entities could be defined as 3 derived classes:

https://github.com/microsoft/proxy/tree/2.1.0
https://github.com/microsoft/proxy/tree/2.1.0

5

class Rectangle : public IDrawable {

 public:

 void Draw() const override;

 void SetWidth(double width);

 void SetHeight(double height);

 void SetTransparency(double);

 double Area() const;

};

class Circle : public IDrawable {

 public:

 void Draw() const override;

 void SetRadius(double radius);

 void SetTransparency(double transparency);

 double Area() const;

};

class Point : public IDrawable {

 public:

 void Draw() const override;

 constexpr double Area() const { return 0; }

};

The function could be defined as:

void DoSomethingWithDrawable(IDrawable* p);

2.2.2 Architecting with the "proxy"

To define an abstraction of "drawable", we need to define the dispatch Draw and facade FDrawable.

Here is a sample definition:

struct Draw {

 using overload_types = std::tuple<void()>;

 template <class T>

 void operator()(T& self) requires(requires{ self.Draw(); }) {

 self.Draw();

 }

};

struct FDrawable {

 using dispatch_types = Draw;

 static constexpr auto constraints =

 std::relocatable_ptr_constraints;

 using reflection_type = void;

};

Again, this paper does not aim to provide any syntactic sugar to define structures like above for

polymorphism. 4 macros are provided for exposition: PRO_DEF_MEMBER_DISPATCH,

6

PRO_DEF_FREE_DISPATCH, PRO_DEF_FACADE and PRO_MAKE_DISPATCH_PACK. The

definition of the macros could be found in our GitHub repo and 8.1 Appendix. With the macros, the

definition above is equivalent to:

PRO_DEF_MEMBER_DISPATCH(Draw, void());

PRO_DEF_FACADE(FDrawable, Draw);

Draw and FDrawable become two empty types with metadata required to instantiate a proxy. The

required 3 types could be implemented as normal types without any virtual function or inheritance:

class Rectangle {

 public:

 void Draw() const;

 void SetWidth(double width);

 void SetHeight(double height);

 void SetTransparency(double);

 double Area() const;

};

class Circle {

 public:

 void Draw() const;

 void SetRadius(double radius);

 void SetTransparency(double transparency);

 double Area() const;

};

class Point {

 public:

 void Draw() const;

 constexpr double Area() const { return 0; }

};

With the defined facade, the function could be defined as:

void DoSomethingWithDrawable(std::proxy<FDrawable> p);

std::proxy is the major proposed class template that implements runtime polymorphism. It could

be specified by any well-formed facade type like FDrawable. It is implicitly convertible from pointer

types of specific requirements. The syntax to invoke the Draw expression is: p.invoke<Draw>(). It

is also allowed to omit the expression Draw since it is the only one defined in the facade, i.e.,

p.invoke() or simply p().

2.3 Requirements change 1: More polymorphic expressions

As the system evolves, we may need to update the code to meet new requirements. For example, what

if DoSomethingWithDrawable needs to call Area()?

7

2.3.1 Inheritance-based polymorphism

For inheritance-based polymorphism, based on the design in 2.2.1, all the base and derived classes

need to be updated:

1. Another new pure virtual function needs to be added in the base class:
class IDrawable {

 public:

 virtual void Draw() const = 0;

 virtual double Area() const = 0;

};

2. The "override" keyword shall be added in the 3 derived classes. Although it's optional, it should usually

be recommended to avoid ambiguity:
class Rectangle : IDrawable {

 public:

 ...

 double Area() const override;

};

class Circle : IDrawable {

 public:

 ...

 double Area() const override;

};

class Point : IDrawable {

 public:

 ...

 double Area() const override { return 0; }

};

2.3.2 The "proxy"

For the "proxy", based on the design in 2.2.2, only the definition of the "facade" needs to be updated,

while no change is required in the implementation of the 3 entities. Specifically, another "dispatch"

should be defined and added to the definition of the "facade":

PRO_DEF_MEMBER_DISPATCH(Area, double());

PRO_DEF_FACADE(FDrawable, PRO_MAKE_DISPATCH_PACK(Draw, Area));

2.3.3 Comparison

When more polymorphic expressions are required in a well-designed system, inheritance-based

polymorphism always changes the semantics of all the base and derived classes, while the "proxy" has

less impact on the existing code.

8

We can also use other types in the standard library polymorphically with the "proxy" if needed. For

example, if we want to abstract a mapping data structure from indices to strings for localization, we may

define the following facade:

PRO_DEF_MEMBER_DISPATCH(at, std::string(int));

PRO_DEF_FACADE(FResourceDictionary, at);

It could proxy any potential mapping data structure, including but not limited to std::map<int,

std::string>, std::unordered_map<int, std::string>,

std::vector<std::string>, etc.

2.4 Requirements change 2: Simple factory

What if a simple factory function of "drawable" is needed? For instance, parsing the command line to

create a "drawable" instance.

2.4.1 Inheritance-based polymorphism

For inheritance-based polymorphism, based on the design in 2.3.1, the new factory function could be

designed as follows:

IDrawable* MakeDrawableFromCommand(const std::string& s);

However, the semantics of the return type is ambiguous because it is a raw pointer type and does not

indicate the lifetime of the object. For instance, it could be allocated via operator new, from a

memory pool or even a global object. To make it the semantics cleaner, an experienced engineer may

use smart pointers and change the return type to std::unique_ptr<IDrawable>:

std::unique_ptr<IDrawable> MakeDrawableFromCommand(const std::string&

s);

Although the code compiles, unfortunately, it introduces a bug: the destructor of

std::unique_ptr<IDrawable> will call the destructor of IDrawable, but won't call the

destructor of its derived classes and may result in resource leak. It is necessary to add a virtual destructor

with empty implementation to IDrawable to avoid such leak:

class IDrawable {

 public:

 virtual void Draw() const = 0;

 virtual double Area() const = 0;

 virtual ~IDrawable() {}

};

9

Some types like Point are stateless and theoretically don't need to be created every time when

needed. Is it possible to optimize the performance in this case? Because

std::unique_ptr<IDrawable> is not copyable, this may require further API change, for

example, using std::shared_ptr instead:

std::shared_ptr<IDrawable> MakeDrawableFromCommand(const std::string&

s);

If we decided to change one API from std::unique_ptr to std::shared_ptr, other APIs

needs to be changed to stay compatible as well, every polymorphic type needs to inherit

std::enable_shared_from_this, which may be significantly expensive in a large system.

2.4.2 The "proxy"

For the "proxy", based on the design in 2.3.2, we can define the factory function directly without

further concern:

std::proxy<FDrawable> MakeDrawableFromCommand(const std::string& s);

In the implementation, std::proxy<FDrawable> could be instantiated from all kinds of pointers

with potentially different lifetime management strategy. For example, Rectangle may be created

every time when requested from a memory pool, while the value of Point could be cached throughout

the lifetime of the program:

std::proxy<FDrawable> MakeDrawableFromCommand(const std::string& s) {

 std::vector<std::string> parsed = ParseCommand(s);

 if (!parsed.empty()) {

 if (parsed[0u] == "Rectangle") {

 if (parsed.size() == 3u) {

 static std::pmr::unsynchronized_pool_resource mem_pool;

 std::pmr::polymorphic_allocator<> alloc{&mem_pool};

 auto deleter = [alloc](Rectangle* ptr) mutable

 { alloc.delete_object<Rectangle>(ptr); };

 Rectangle* instance = alloc.new_object<Rectangle>();

 std::unique_ptr<Rectangle, decltype(deleter)> p{

 instance, deleter};

 p->SetWidth(std::stod(parsed[1u]));

 p->SetHeight(std::stod(parsed[2u]));

 return p; // Implicit conversion happens

 }

 } else if (parsed[0u] == "Circle") {

 if (parsed.size() == 2u) {

 Circle circle;

 circle.SetRadius(std::stod(parsed[1u]));

10

 return std::make_proxy<FDrawable>(circle); // SBO may apply

 }

 } else if (parsed[0u] == "Point") {

 if (parsed.size() == 1u) {

 static Point instance; // Global singleton

 return &instance;

 }

 }

 }

 throw std::runtime_error{"Invalid command"};

}

No change to the existing code is needed.

2.4.3 Comparison

Lifetime management with inheritance-based polymorphism is error-prone and inflexible, while the

"proxy" allows easy customization of any lifetime management strategy, including but not limited to

raw pointers and various smart pointers with potentially pooled memory management.

Specifically, SBO (Small Buffer Optimization, aka., SOO, Small Object Optimization) is a common

technique to avoid unnecessary memory allocation. However, for inheritance-based polymorphism,

there is little facilities in the standard that support SBO; for other standard polymorphic wrappers,

implementations may support SBO, but there is no standard way to configure so far. For example, if the

size of std::any is n, it is theoretically impossible to store the concrete value whose size is larger

than n without external storage.

2.5 Conclusion

Prior research into future polymorphic usage is usually required when designing polymorphic types

with inheritance. However, if the design research is inadequate in earlier phase, the semantics of the

components may become overly complex when there are too many virtual functions, or the extendibility

of the system may be insufficient when polymorphic types are coupled too closely. Anyway, the

engineering cost may dramatically increase due to imperfect architecting. On the other hand, along with

the evolution of the requirements, polymorphic usage may change, additional effort is usually necessary

to keep the definition of polymorphic types consistent with their usage, staying good maintainability of

the system. Moreover, some libraries (including the standard library) may not have proper polymorphic

semantics even if they, by definition, satisfy the same specific constraints. In such scenarios, users have

no alternative but to design and maintain extra middleware themselves to add polymorphism support to

existing implementations.

Overall, inheritance-based polymorphism has limitations both in architecting and performance. As

Sean Parent commented on NDC 2017: The requirements of a polymorphic type, by definition, comes

https://www.youtube.com/watch?v=QGcVXgEVMJg

11

from its use, and there are no polymorphic types, only polymorphic use of similar types. Inheritance is

the base class of evil.

3 Impact on the Standard

For existing polymorphic wrappers in the standard, including std::function,

std::move_only_function, std::polymorphic_allocator and std::any, proxy can

facilitate implelemtation with high quality. For new libraries in the standard, inventing new polymorphic

wrappers is no longer necessary since proxy is ready for general polymorphism requirements.

The following example utilizes function template std::invoke to implement similar function

wrapper as std::function and std::move_only_function while supporting multiple

overloads.

// Abstraction (poly is short for polymorphism)

namespace poly {

template <class... Overloads>

PRO_DEF_FREE_DISPATCH(Call, std::invoke, Overloads...);

template <class... Overloads>

PRO_DEF_FACADE(MovableCallable, Call<Overloads...>);

template <class... Overloads>

PRO_DEF_FACADE(CopyableCallable, Call<Overloads...>,

 std::copyable_ptr_constraints);

} // namespace poly

// MyFunction has similar functionality as std::function,

// but supports multiple overloads

// MyMoveOnlyFunction has similar functionality as

// std::move_only_function but supports multiple overloads

template <class... Overloads>

using MyFunction = std::proxy<poly::MovableCallable<Overloads...>>;

template <class... Overloads>

using MyMoveOnlyFunction =

 std::proxy<poly::CopyableCallable<Overloads...>>;

int main() {

 auto f = [](auto&&... v) {

 printf("f() called. Args: ");

 ((std::cout << v << ":" << typeid(decltype(v)).name() << ",

"), ...);

 puts("");

 };

 MyFunction<void(int)> p0{&f};

 p0(123); // Prints "f() called. Args: 123:i," (assuming GCC)

12

 MyMoveOnlyFunction<void(), void(int), void(double)> p1{&f};

 p1(); // Prints "f() called. Args:"

 p1(456); // Prints "f() called. Args: 456:i,"

 p1(1.2); // Prints "f() called. Args: 1.2:d,"

 return 0;

}

4 Considerations and Design Decisions

Comaring to P0957R9, the major changes in the decisions are:

1. It is no longer recommended to define dispatches and facades with direct inheritance.

2. Simplified semantics of dispatches and facades.

3. Supported multiple overloads of a dispatch.

Specific considerations and design decisions have been made in the following aspects.

4.1 Pointer semantics

We decided to design the "proxy" based on pointer semantics for both usability and performance

considerations. To allow balancing between extensibility and performance in specific cases, 3

abstractions of constraints are proposed with preferred defaults.

4.1.1 Motivation

Currently, the standard polymorphic wrapper types, including std::function and std::any, are

based-on value semantics. Polymorphic wrappers based on value semantics have certain limitations in

lifetime management compared to pointer semantics. Designing the "proxy" library based on pointer

semantics decouples the responsibility of lifetime management from the "proxy", which provides more

flexibility and helps consistency in API design without reducing runtime performance.

For example, in cases where allocator customization is required for performance considerations,

std::function and std::any are not supported. Back to C++14, std::function used to have

several constructors that take an allocator argument, but these constructors were removed per discussion

in P0302R1 (Removing Allocator Support in std::function), because "the semantics are unclear, and

there are technical issues with storing an allocator in a type-erased context and then recovering that

allocator later for any allocations needed during copy assignment". Similarly, std::any, introduced in

C++17, does not allows customization in allocator at all. With the proposed "proxy" library, it becomes

easy to implement such requirements with customized pointers, even in hybrid lifetime management

scenarios, as demonstrated earlier in 2.4.2.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html

13

4.1.2 Constraints

The first constraint to all pointer types to be eligible for proxy is the capability to be dereferenced

from a const lvalue reference. Specifically, if a pointer p is a fancy pointer, std::to_address(p)

shall be well-formed.

To allow implementation balance between extendibility and performance, a set of constraints to a

pointer is introduced, including maximum size, maximum alignment, copyability, relocatability and

destructibility. The term "relocatability" was introduced in P1144R9, "equivalent to a move and a

destroy". This paper uses the term "relocatability" but does not depend on the technical specifications of

P1144R9.

Constraints Defaults

Maximum size No less than the size of two pointers

Maximum alignment No less than the alignment of a pointer

Copyability None

Relocatability Nothrow

Destructibility Nothrow

Table 1 – Default constraints of relocatable pointer types

Constraints Defaults

Maximum size No less than the size of two pointers

Maximum alignment No less than the alignment of a pointer

Copyability Nontrivial

Relocatability Nothrow

Destructibility Nothrow

Table 2 – Default constraints of copyable pointer types

Constraints Defaults

Maximum size No less than the size of a pointer

Maximum alignment No less than the alignment of a pointer

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r9.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r9.html

14

Copyability Trivial

Relocatability Trivial

Destructibility Trivial

Table 3 – Default constraints of trivial pointer types

While the size and alignment could be described with std::size_t, there is no direct primitive in

the standard to describe the constraint level of copyability, relocatability or destructibility. Thus, 4 levels

of constraints, matching the standard wording, are defined in this paper: none, nontrivial, nothrow and

trivial. The proposed 3 sets of defaults are listed in Table 1, Table 2 and Table 3 to try to meet the

requirements of various implementations of (smart) pointers. For relocatable- and copyable-pointer-

constraints It is encouraged for implementation to set the default maximum size and maximum

alignment greater than or equal to the implementation of raw pointers, std::unique_ptr with

default deleters, std::unique_ptr with any one-pointer-size of deleters (for pooling) and

std::shared_ptr of any type.

4.1.3 Implementation

Inheritance-based polymorphism or standard polymorphic wrappers are all based on value semantics.

For inheritance, although polymorphism is expressed with pointer or reference of a base type, the

VTABLE is bound to the value itself. For other standard polymorphic wrappers, like std::function

or std::any, the lifetime of the stored values are bound to these polymorphic wrappers without

allocator customization. These limitations make it difficult to implement requirements like 2.4 without

extra considerations in the code design or performance decrement.

Figure 1 – Expected memory layout of inheritance-based polymorphism

15

Figure 2 – Expected memory layout of std::proxy

Because of pointer semantics, the expected memory layout of std::proxy is also different from

traditional inheritance. For instance, Figure 1 and Figure 2 shows their expected memory layout,

respectively. The expected memory layout is similar with the implementation of

std::move_only_function in libstdc++, where the pointer of the actual object is dereferenced inside the

virtual dispatch via _S_access.

 The "proxy" Inheritance-based polymorphism

Abstraction PRO_DEF_MEMBER_DISPATCH(Draw, void());

PRO_DEF_MEMBER_DISPATCH(Area, double());

PRO_DEF_FACADE(FDrawable, PRO_MAKE_DISPATCH_PACK(Draw, Area));

struct IDrawable {

 virtual void Draw() const = 0;

 virtual double Area() const = 0;

 virtual ~IDrawable() {}

};

Implementation class Rectangle {

 public:

 void Draw() const {

 printf("{Rectangle: width = %f, height = %f}", width_,

height_);

 }

 double Area() const { return width_ * height_; }

 private:

 double width_;

 double height_;

};

class Rectangle : public IDrawable {

 public:

 void Draw() const override {

 printf("{Rectangle: width = %f, height = %f}", width_,

height_);

 }

 double Area() const override

 { return width_ * height_; }

 private:

 double width_;

 double height_;

};

Invocation void DoSomethingWithDrawable(std::proxy<FDrawable> p) {

 p.invoke<op::Draw>();

}

void DoSomethingWithDrawable(std::unique_ptr<IDrawable> p) {

 p->Draw();

}

Table 4 – Sample code to compile

Processor

architecture

Compiler family Version Compiler flags

x86-64 (AMD64) clang 13.0.0 -std=c++20 -O3

ARM64 gcc 11.2 -std=c++20 -O3

RISC-V RV64 clang 13.0.0 -std=c++20 -O3

Table 5 – Sample compiler configurations

To evaluate the quality of code generation, we tried to compile the "Drawable" example from section

2.3 with various compilers and compare the generated assembly between the sample implementation of

the "proxy" and traditional inheritance-based polymorphism. Specifically, the sample code to compile is

listed in Table 4, the sample compiler configurations for different processor architectures are listed in

Table 5.

https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00584_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00584_source.html

16

 The "proxy" Inheritance-based polymorphism

Library

side

mov rax, qword ptr [rdi]

add rdi, 8

jmp qword ptr [rax + 24]

mov rdi, qword ptr [rdi]

mov rax, qword ptr [rdi]

jmp qword ptr [rax]

Client

side

mov rax, qword ptr [rdi +

8]

movsd xmm0, qword ptr [rax]

movsd xmm1, qword ptr [rax +

8]

mov edi, offset .L.str.18

mov al, 2

jmp printf

movsd xmm0, qword ptr [rdi +

8]

movsd xmm1, qword ptr [rdi +

16]

mov edi, offset .L.str

mov al, 2

jmp printf

Table 6 – Generated code from clang 13.0.0 (x86-64)

 The "proxy" Inheritance-based polymorphism

Library

side

ldr x1, [x0], 8

ldr x1, [x1, 24]

mov x16, x1

br x16

ldr x0, [x0]

ldr x1, [x0]

ldr x1, [x1]

mov x16, x1

br x16

Client

side

mov x1, x0

adrp x0, .LC3

add x0, x0, :lo12:.LC3

ldr d0, [x1]

b printf

mov x1, x0

adrp x2, .LC0

add x0, x2, :lo12:.LC0

ldp d0, d1, [x1, 8]

b printf

Table 7 – Generated code from gcc 11.2 (ARM64)

 The "proxy" Inheritance-based polymorphism

Library

side

ld a1, 0(a0)

ld a5, 24(a1)

addi a0, a0, 8

jr a5

ld a0, 0(a0)

ld a1, 0(a0)

ld a5, 0(a1)

jr a5

Client

side

ld a0, 8(a0)

ld a2, 8(a0)

ld a1, 0(a0)

lui a0, %hi(.L.str.18)

addi a0, a0, %lo(.L.str.18)

tail printf

ld a2, 16(a0)

ld a1, 8(a0)

lui a0, %hi(.L.str)

addi a0, a0, %lo(.L.str)

tail printf

Table 8 – Generated code from clang 13.0.0 (RISC-V RV64)

Trying to compile the two pieces of sample code with 3 different compilers, the generated assembly

are shown in Table 6, Table 7 and Table 8. From the instructions we can see:

1. Invocations from std::proxy could be properly inlined, except for the virtual dispatch on the

client side, similar to inheritance-based polymorphism.

17

2. Because std::proxy is based on pointer semantics, the "dereference" operation may happen

inside the virtual dispatch, which generates different instructions.

3. With "clang 13.0.0 (x86-64)" and " clang 13.0.0 (RISC-V RV64)", std::proxy generates one more

instruction than inheritance-based polymorphism, while the situation is reversed with "gcc 11.2

(ARM64)". This may infer that std::proxy could have similar runtime performance in invocation

with inheritance-based polymorphism on the 3 processor architectures.

4.2 Language vs. Library

During review of P0957 series, one of the most asked questions is that why proxy is not a language

feature, like Java or Rust. Our answer is divided into two parts:

1. We believe a programming language needs more than an abstraction of "interface" (like Java) or

"trait" (like Rust) for general runtime polymorphism while allowing best-in-class code

generation for modern processors. It has become clear about what is required to model a good

abstraction of runtime polymorphism (proposed in this paper), but the syntax is not finalized (not

in the scope of this paper). As a short-term solution in our PoC implementation, some macros are

defined to facilitate definition of abstractions (see Appendix 8.1).

2. When it comes to the runtime binding to be manipulated in an application, we believe the class

template in C++ is good enough to standardize the behavior, and therefore no language feature

should be expected for this part.

4.3 The "proxy"

To provide a unified API to improve ease of use and reduce learning costs, the design of the "proxy"

consults the "proxy" and "facade" design pattern from "Design Patterns: Abstraction and Reuse of

Object-Oriented Design".

4.3.1 Facade: Abstraction of Runtime Polymorphism

Although we are not proposing a syntax to define something like "interface", corresponding concepts

are proposed. To describe the requirements of runtime polymorphism based on pointer semantics, the

term "facade" is introduced. The runtime polymorphic requirements defined by facade are divided into

three parts:

1. Dispatches: How to dispatch function calls to concrete objects. Each dispatch should specify the

function signature and the body template.

2. Constraints: Specific constraints of applicable pointer types, as a compile-time value.

3. Reflection: Optionally, any compile-time metadata carried to runtime.

These requirements can be easily expressed with the type system of C++. A facade type models a

compile-time tag to specify a proxy.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
https://link.springer.com/chapter/10.1007/3-540-47910-4_21
https://link.springer.com/chapter/10.1007/3-540-47910-4_21

18

4.3.2 Copy/move constructions and assignments

To ensure the quality of code generation, the semantics of copy/move constructions and assignments

are aligned with the constraints of pointers illustrated in 4.1.2. For example,

std::proxy<FDrawable>, demonstrated in 2.3.2, is not copy-constructible, because the default

copyability constraint to a pointer is "None". However, users can specify different constraint level if

needed, e.g.,

PRO_DEF_FACADE(MyFacade, /* Any dispatch */,

 std::copyable_ptr_constraints);

This requires the pointer at least to be copyable, regardless of whether it is nothrow or trivial. In the

meantime, std::proxy<MyFacade> becomes copyable with both copy constructor and copy

assignment.

4.3.3 Construction from a value

To simplify construction from a value, like other standard polymorphic wrapper types, the function

template overloads std::make_proxy are proposed. With std::make_proxy, SBO may

implicitly apply, depending on the implementation. The proposed syntax of std::make_proxy is

similar to the constructor of std::any.

4.3.4 Reflection

Reflection is an essential requirement in type erasure, and the proposed class template std::proxy

welcomes general-purpose static (compile-time) reflection other than std::type_info.

As, std::type_info is usually not adequate to carry enough useful information of a type to

inspect at runtime. In other languages like C# or Java, users are allowed to acquire detailed metadata of

a type-erased type at runtime with simple APIs, but this is not true for std::function, std::any

or inheritance-based polymorphism in C++. Although these reflection facilities add certain runtime

overhead to these languages, they do help users write simple code in certain scenarios. In C++, as the

reflection specifications keeps evolving, there will be more static reflection facilities in the standard with

more specific type information deduced at compile-time than std::type_info. It becomes possible

for general-purpose reflection to become zero-overhead in C++ polymorphism.

As a result, we decided to make std::proxy support general-purpose static reflection. Here is an

example to reflect the given types to MyReflectionInfo:

class MyReflectionInfo {

 public:

 template <class P>

19

 constexpr explicit MyReflectionInfo(std::in_place_type_t<P>) :

type_(typeid(P)) {}

 const char* GetName() const noexcept { return type_.name(); }

 private:

 const std::type_info& type_;

};

PRO_DEF_FACADE(MyFacade, /* Any dispatch */,

 std::relocatable_ptr_constraints, MyReflectionInfo);

Users may call MyReflectionInfo::GetName() to get the implementation-defined name of a

type at runtime:

std::proxy<MyFacade> p;

puts(p.reflect().GetName());

4.4 Compared to other solutions

This section summarizes the design of several other C++ libraries and typical programming languages

in polymorphism. They all have certain limitations in usability or performance, which are resolved in the

proposed "proxy" library.

4.4.1 The "dyno" library

The "dyno" is an open-source C++ library that also aims to "solve the problem of runtime

polymorphism better than vanilla C++ does". Here is a sample usage copied from its documentation:

using namespace dyno::literals;

// Define the interface of something that can be drawn

struct Drawable : decltype(dyno::requires_(

 "draw"_s = dyno::method<void (std::ostream&) const>

)) { };

// Define how concrete types can fulfill that interface

template <typename T>

auto const dyno::default_concept_map<Drawable, T> =

dyno::make_concept_map(

 "draw"_s = [](T const& self, std::ostream& out) { self.draw(out); }

);

// Define an object that can hold anything that can be drawn.

struct drawable {

 template <typename T>

 drawable(T x) : poly_{x} { }

https://github.com/ldionne/dyno/tree/56ced251f5751ef4e3fe66d4f28ccbc75b902d70

20

 void draw(std::ostream& out) const

 { poly_.virtual_("draw"_s)(out); }

private:

 dyno::poly<Drawable> poly_;

};

The "dyno" library also provides some macros to simplify the definition above, which will not be

discussed in this paper. As illustrated in its documentation, the "goodies" we get from the "dyno" library

are:

Non-intrusive

An interface can be fulfilled by a type without requiring any modification to that type. Heck, a type can

even fulfill the same interface in different ways! With Dyno, you can kiss ridiculous class hierarchies

goodbye.

100% based on value semantics

Polymorphic objects can be passed as-is, with their natural value semantics. You need to copy your

polymorphic objects? Sure, just make sure they have a copy constructor. You want to make sure they

don't get copied? Sure, mark it as deleted. With Dyno, silly clone() methods and the proliferation of

pointers in APIs are things of the past.

Not coupled with any specific storage strategy

The way a polymorphic object is stored is really an implementation detail, and it should not interfere

with the way you use that object. Dyno gives you complete control over the way your objects are stored.

You have a lot of small polymorphic objects? Sure, let's store them in a local buffer and avoid any

allocation. Or maybe it makes sense for you to store things on the heap? Sure, go ahead.

Flexible dispatch mechanism to achieve best possible performance

Storing a pointer to a vtable is just one of many different implementation strategies for performing

dynamic dispatch. Dyno gives you complete control over how dynamic dispatch happens, and can in fact

beat vtables in some cases. If you have a function that's called in a hot loop, you can for example store it

directly in the object and skip the vtable indirection. You can also use application-specific knowledge

the compiler could never have to optimize some dynamic calls — library-level devirtualization.

For "non-intrusive", the design direction also applies to the proposed "proxy" library.

For "100% based on value semantics", the design direction is different from the proposed "proxy"

library, while the "proxy" is based on pointer semantics, as discussed in 4.1.1, value semantics has

certain limitations in lifetime management.

For "Not coupled with any specific storage strategy", I don't think the statement is accurate for the

"dyno" library. Looking at the definition of the class template "dyno::poly":

https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/poly.hpp#L62-L67

21

template <

 typename Concept,

 typename Storage = dyno::remote_storage,

 typename VTablePolicy =

dyno::vtable<dyno::remote<dyno::everything>>

>

struct poly;

Since the Storage is defined on the template, even we can specify different storage strategies at

compile-time, one instantiation of poly is always bound to a specific storage strategy. Such limitations

make it difficult to have different lifetime management strategies at runtime without additional

overhead. The "simple factory" mentioned in 2.4 is a good example of such requirements. As mentioned

earlier, the proposed "proxy" library allows different lifetime management strategies of one instantiation

of proxy and thus does not have such limitations.

Taking a closer look at the implementation of "dyno::sbo_storage", which is designed to eliminate

heap allocation, we can see a runtime conditional logic when getting the pointer of the underlying

object, which is a "hot" expression each time a polymorphic expression is performed:

return static_cast<T*>(uses_heap() ? ptr_ : &sb_);

Such overhead could be eliminated in the proposed "proxy" library, as discussed in 4.1.3.

For "Flexible dispatch mechanism to achieve best possible performance", I don't think de-virtualization

is a major requirement of runtime polymorphism.

4.4.2 The "DGPVC" library

Although the Concepts can define "how should concrete implementations look like", not all the

information that could be represented by a concept is suitable for polymorphism. For example, we could

declare an inner type of a type in a concept definition, like:

template <class T>

concept bool Foo() {

 return requires {

 typename T::bar;

 };

}

But it is unnecessary to make this piece of information polymorphic because this expression makes no

sense at runtime. Some feedback suggests that it is acceptable to restrict the definition of a concept from

anything not suitable for polymorphism, including but not limited to inner types, friend functions,

constructors, etc. This solution does not seem to be compatible with the C++ type system because:

1. There is no such mechanism to verify whether a definition of a concept is suitable for polymorphism,

and

https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/storage.hpp#L236-L244

22

2. There is no such mechanism to specify a type by a concept, like

some_class_template<SomeConcept>, because a concept is not a type.

The "Dynamic Generic Programming with Virtual Concepts" (DGPVC) is a solution that adopts this.

However, on the one hand, it introduces some syntax, mixing the "concepts" with the "virtual qualifier",

which makes the types ambiguous. From the code snippets included in the paper, we can tell that

"virtual concept" is an "auto-generated" type. Compared to introducing new syntax, I prefer to make it a

"magic class template", which at least "looks like a type" and much easier to understand. On the other

hand, there seems not to be enough description about how to implement the entire solution introduced in

the paper, and it remains hard for us to imagine how are we supposed to implement for the expressions

that cannot be declared virtual, e.g., friend functions that take values of the concrete type as parameters.

5 Technical Specifications

5.1 Feature test macro

In [version.syn], add:

#define __cpp_lib_proxy YYYYMML // also in <proxy>

The placeholder value shall be adjusted to denote this proposal's date of adoption.

5.2 Header <proxy> synopsis

namespace std {

 enum class constraint_level { none, nontrivial, nothrow, trivial };

 struct proxiable_ptr_constraints {

 std::size_t max_size;

 std::size_t max_align;

 constraint_level copyability;

 constraint_level relocatability;

 constraint_level destructibility;

 };

 constexpr proxiable_ptr_constraints relocatable_ptr_constraints{

 .max_size = at least sizeof(void*) * 2u,

 .max_align = at least alignof(void*),

 .copyability = constraint_level::none,

 .relocatability = constraint_level::nothrow,

 .destructibility = constraint_level::nothrow,

 };

 constexpr proxiable_ptr_constraints copyable_ptr_constraints{

 .max_size = at least sizeof(void*) * 2u,

 .max_align = at least alignof(void*),

 .copyability = constraint_level::nontrivial,

 .relocatability = constraint_level::nothrow,

https://github.com/andyprowl/virtual-concepts/blob/ed3a5690c353b6998abcd3368a9b448f1bb2aa19/draft/Dynamic%20Generic%20Programming%20with%20Virtual%20Concepts.pdf

23

 .destructibility = constraint_level::nothrow,

 };

 constexpr proxiable_ptr_constraints trivial_ptr_constraints{

 .max_size = at least sizeof(void*),

 .max_align = at least alignof(void*),

 .copyability = constraint_level::trivial,

 .relocatability = constraint_level::trivial,

 .destructibility = constraint_level::trivial,

 };

 template <class F>

 concept basic_facade = see below;

 template <class F>

 concept facade = see below;

 template <class P, class F>

 concept proxiable = see below;

 template <basic_facade F>

 class proxy;

 template <class F, class T, class... Args>

 proxy<F> make_proxy(Args&&... args);

 template <class F, class T, class U, class... Args>

 proxy<F> make_proxy(initializer_list<U> il, Args&&... args);

 template <class F, class T>

 proxy<F> make_proxy(T&& value);

 template <class F>

 void swap(proxy<F>& a, proxy<F>& b) noexcept(see below);

}

5.3 Constraints

template <class F>

 concept basic_facade = see below;

A type F satisfies concept basic_facade when:

- typename F::dispatch_types is an instantiation of std::tuple, and

- F::constraints is a compile-time constant of type proxiable_ptr_constraints,

and

- F::constraints.max_align is a power of 2, and

- F::constraints.max_size is a multiple of F::constraints.max_align, and

- typename F::reflection_type is either void or a trivially copyable type.

24

template <class F>

 concept facade = see below;

A type F satisfies concept basic_facade when:

- F satisfies concept basic_facade, and

- For each tuple element D of typename F::dispatch_types,

o D is trivially default constructible, and

o typename D::overload_types is an instantiation of std::tuple of at least 1

function type with distinct argument type combinations.

template <class P, class F>

 concept proxiable = see below;

Types P and F satisfies concept proxiable when (p denotes a value of const P):

- F satisfies concept facade, and

- P is a pointer type, or std::to_address(p) is well-formed,

- sizeof(P) <= F::constraints.max_size, and

- alignof(P) <= F::constraints.max_align, and

- The copyability of P satisfies F::constraints.copyability, and

- The relocatability of P satisfies F::constraints.relocatability, and

- The destructibility of P satisfies F::constraints.destructibility, and

- For each tuple element D of tuple element of typename F::dispatch_types, for each

tuple element O of typename D::overload_types (Args... denotes the argument

types of O, args... denotes values of Args...), D{}(*DEDUCE_ADDRESS(p),

std::forward<Args>(args)...) is well-formed, where DEDUCE_ADDRESS is defined

as:

template <class P>

auto DEDUCE_ADDRESS(const P& p) {

 if constexpr (std::is_pointer_v<P>) {

 return p;

 } else {

 return std::to_address(p);

 }

}

- typename F::reflection_type is either void or constructible from

std::in_place_type_t<P> at compile-time.

25

5.4 Proxy

5.4.1 Class template proxy

5.4.1.1 General

namespace std {

 template <basic_facade F>

 class proxy {

 public:

 proxy() noexcept;

 proxy(nullptr_t) noexcept;

 proxy(const proxy& rhs) noexcept(see below) requires(see below);

 proxy(proxy&& rhs) noexcept(see below) requires(see below);

 template <class P>

 proxy(P&& ptr) noexcept(see below) requires(see below);

 template <class P, class... Args>

 explicit proxy(in_place_type_t<P>, Args&&... args)

 noexcept(see below) requires(see below);

 template <class P, class U, class... Args>

 explicit proxy(in_place_type_t<P>, initializer_list<U> il, Args&&... args)

 noexcept(see below) requires(see below);

 proxy& operator=(nullptr_t) noexcept(see below) requires(see below);

 proxy& operator=(const proxy& rhs) noexcept(see below) requires(see below);

 proxy& operator=(proxy&& rhs) noexcept(see below) requires(see below);

 template <class P>

 proxy& operator=(P&& ptr) noexcept(see below) requires(see below);

 ~proxy() noexcept(see below) requires(see below);

 bool has_value() const noexcept;

 see below reflect() const noexcept requires(see below);

 void reset() noexcept(see below) requires(see below);

 void swap(proxy& rhs) noexcept(see below) requires(see below);

 template <class P, class... Args>

 P& emplace(Args&&... args) noexcept(see below) requires(see below);

 template <class P, class U, class... Args>

 P& emplace(initializer_list<U> il, Args&&... args)

 noexcept(see below) requires(see below);

 template <class D = see below, class... Args>

 see below invoke(Args&&... args) const requires(see below);

 template <class... Args>

 see below operator()(Args&&... args) const requires(see below);

 };

}

Any instance of proxy<F> at any given time either proxies a pointer or does not proxy a pointer.

When an instance of proxy<F> proxies a pointer, it means that an object of some pointer type P,

referred to as the proxy's contained value, where proxiable<P, F> is true, is allocated within the

storage of the proxy object. Implementations are not permitted to use additional storage, such as

dynamic memory, to allocate its contained value. The contained value shall be allocated in a region of

the proxy<F> storage suitably aligned for the type P.

26

The following constants are defined for exposition only:

Name Value

template <class P, class... Args>

HasNothrowPolyConstructor<P, Args...>

conditional_t<proxiable<P, F>,

is_nothrow_constructible<P, Args...>,

false_type>::value

template <class P, class... Args>

HasPolyConstructor<P, Args...>

conditional_t<proxiable<P, F>,

is_constructible<P, Args...>,

false_type>::value

HasTrivialCopyConstructor F::constraints.copyability ==

constraint_level::trivial

HasNothrowCopyConstructor F::constraints.copyability >=

constraint_level::nothrow

HasCopyConstructor F::constraints.copyability >=

constraint_level::nontrivial

HasNothrowMoveConstructor F::constraints.relocatability >=

constraint_level::nothrow

HasMoveConstructor F::constraints.relocatability >=

constraint_level::nontrivial

HasTrivialDestructor F::constraints.destructibility ==

constraint_level::trivial

HasNothrowDestructor F::constraints.destructibility >=

constraint_level::nothrow

HasDestructor F::constraints.destructibility >=

constraint_level::nontrivial

template <class P, class... Args>

HasNothrowPolyAssignment

HasNothrowPolyConstructor<P, Args...> &&

HasNothrowDestructor

template <class P, class... Args>

HasPolyAssignment

HasPolyConstructor<P, Args...> &&

HasDestructor

HasTrivialCopyAssignment HasTrivialCopyConstructor &&

HasTrivialDestructor

HasNothrowCopyAssignment HasNothrowCopyConstructor &&

HasNothrowDestructor

HasCopyAssignment HasNothrowCopyAssignment ||

(HasCopyConstructor && HasMoveConstructor

&& HasDestructor)

HasNothrowMoveAssignment HasNothrowMoveConstructor &&

HasNothrowDestructor

HasMoveAssignment HasMoveConstructor && HasDestructor

5.4.1.2 Construction and destruction

proxy() noexcept;

proxy(nullptr_t) noexcept;

Postconditions: *this does not contain a value.

Remarks: No contained value is initialized.

proxy(const proxy& rhs) noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasCopyConstructor.

27

Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise,

equivalent to proxy(in_place_type<P>, rhs.cast<P>()) where P is the type of the

contained value of rhs.

Postconditions: has_value() == rhs.has_value().

Throws: Any exception thrown by the selected constructor of P.

Remarks: The expression inside noexcept is equivalent to HasNothrowCopyConstructor.

Specifically,

- if the constraints are not satisfied, the constructor is deleted, or

- if HasTrivialCopyConstructor is true, the constructor is trivial.

proxy(proxy&& rhs) noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasMoveConstructor.

Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise,

equivalent to (proxy(in_place_type<P>, std::move(rhs.cast<P>())),

rhs.reset()), where P is the type of the contained value of rhs.

Postconditions: rhs does not contain a value.

Throws: Any exception thrown by the selected constructor of P.

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor.

If the constraints are not satisfied, the constructor is deleted.

template <class P>

 proxy(P&& ptr) noexcept(see below) requires(see below);

Let VP be decay_t<P>.

Constraints: The expression inside requires is equivalent to HasPolyConstructor<VP,

P>.

Effects: Initializes the contained value as if direct-initializing an object of type VP with

std::forward<P>(ptr).

Postconditions: *this contains a value of type VP.

Throws: Any exception thrown by the selected constructor of VP.

Remarks: The expression inside noexcept is equivalent to

HasNothrowPolyConstructor<VP, P>.

template <class P, class... Args>

 explicit proxy(in_place_type_t<P>, Args&&... args)

 noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasPolyConstructor<P,

Args...>.

Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the

arguments std::forward<Args>(args)....

Postconditions: *this contains a value of type P.

Throws: Any exception thrown by the selected constructor of P.

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyConstructor

<P, Args...>.

28

template <class P, class U, class... Args>

 explicit proxy(in_place_type_t<P>, initializer_list<U> il,

 Args&&... args)

 noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasPolyConstructor<P,

initializer_list<U>&, Args...>.

Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the

arguments il, std::forward<Args>(args)....

Postconditions: *this contains a value of type P.

Throws: Any exception thrown by the selected constructor of P.

Remarks: The expression inside noexcept is equivalent to

HasNothrowPolyConstructor<P, initializer_list<U>&, Args...>.

~proxy() noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasDestructor.

Effects: As if by reset().

Throws: Any exception thrown by the destructor of the contained value.

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor.

Specifically,

- if the constraints are not satisfied, the destructor is deleted, or

- if HasTrivialDestructor is true, the destructor is trivial.

5.4.1.3 Assignment

proxy& operator=(nullptr_t) noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasDestructor.

Effects: If has_value() is true, destroys the contained value.

Postconditions: *this does not contain a value.

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor.

proxy& operator=(const proxy& rhs) noexcept(see below) requires(see

below);

Constraints: The expression inside requires is equivalent to HasCopyAssignment.

Effects: As if by proxy(rhs).swap(*this). No effects if an exception is thrown.

Returns: *this.

Throws: Any exception thrown during copy construction, relocation, or destruction of the contained

value.

Remarks: The expression inside noexcept is equivalent to HasNothrowCopyAssignment.

Specifically,

- if the constraints are not satisfied, the assignment operator is deleted, or

- if HasTrivialCopyAssignment is true, the assignment operator is trivial.

proxy& operator=(proxy&& rhs) noexcept(see below) requires(see

below);

Constraints: The expression inside requires is equivalent to HasMoveAssignment.

Effects: As if by proxy(std::move(rhs)).swap(*this).

29

Returns: *this.

Throws: Any exception thrown during relocation, destruction, or swap of the contained value.

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveAssignment. If

the constraints are not satisfied, the assignment operator is deleted.

template <class P>

 proxy& operator=(P&& ptr) noexcept(see below) requires(see below);

Let VP be decay_t<P>.

Constraints: The expression inside requires is equivalent to HasPolyAssignment<VP, P>.

Effects: As if by proxy(std::forward<P>(p)).swap(*this).

Returns: *this.

Throws: Any exception thrown during construction, destruction, or swap of the contained value.

Remarks: The expression inside noexcept is equivalent to

HasNothrowPolyAssignment<VP, P>.

template <class P, class... Args>

 P& emplace(Args&&... args) noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P,

Args...>.

Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-

initializing an object of type P with the arguments std::std::forward<Args>(args)....

Postconditions: *this contains a value of type P.

Returns: A reference to the new contained value.

Throws: Any exception thrown during the destruction of the previous contained value or by the

selected constructor of P.

Remarks: The expression inside noexcept is equivalent to

HasNothrowPolyAssignment<P, Args...>. If an exception is thrown during the call to

P's constructor, *this does not contain a value, and the previous contained value (if any) has been

destroyed.

template <class P, class U, class... Args>

 P& emplace(initializer_list<U> il, Args&&... args)

 noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P,

initializer_list<U>&, Args...>.

Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-

initializing an object of type P with the arguments il,

std::std::forward<Args>(args)....

Postconditions: *this contains a value of type P.

Returns: A reference to the new contained value.

Throws: Any exception thrown during the destruction of the previous contained value or by the

selected constructor of P.

Remarks: The expression inside noexcept is equivalent to

HasNothrowPolyAssignment<P, initializer_list<U>&, Args...>. If an

30

exception is thrown during the call to P's constructor, *this does not contain a value, and the

previous contained value (if any) has been destroyed.

5.4.1.4 Swap

void swap(proxy& rhs) noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasMoveConstructor.

Effects: See the table below:

 *this contains a value *this does not contain a value

rhs contains a

value

Swap the contained values of

*this and rhs with a temporary

storage. If an exception is thrown,

each of *this and rhs is in a

valid state with unspecified value.

Equivalent to (*this =

std::move(rhs)); post

condition is that *this contains a

value and rhs does not contain a

value.

rhs does not

contain a value

Equivalent to (rhs =

std::move(*this)); post

condition is that *this does not

contain a value and rhs contains a

value.

no effect

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor.

5.4.1.5 Observers

bool has_value() const noexcept;

Returns: true if and only if *this contains a value.

see below reflect() const noexcept requires(see below);

Constraints: The expression inside requires is equivalent to !is_void_v<typename

F::reflection_type>.

Return type: const typename F::reflection_type&.

Returns: A const reference of typename F::reflection_type constructed from

in_place_type_t<P> and has static storage duration, where P is the type of the contained

value.

Remarks: If *this does not contain a value, the behavior is undefined.

5.4.1.6 Modifiers

void reset() noexcept(see below) requires(see below);

Constraints: The expression inside requires is equivalent to HasDestructor.

Effects: If *this contains a value, destroys the contained value; otherwise, no effect.

Postconditions: *this does not contain a value.

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. If an

exception is thrown during the call to P's destructor, *this is in a valid state with unspecified

value.

5.4.1.7 Invocation

template <class D = see below, class... Args>

 see below invoke(Args&&... args) const requires(see below);

31

Constraints: The expression inside requires is equivalent to that F meets the Facade requirements,

and D is a valid dispatch defined by F, and Args... matches one overload of D.

Preconditions: *this contains a value.

Effects: Equivalent to return D{}(*DEDUCE_ADDRESS(p),

static_cast<_Args>(args)...), where p is the contained value, _Args... are the

argument types defined by the matched overload of D.

Throws: Any exception thrown from the equivalent expression.

Remarks: The default type of D applies if and only if F defines exactly one dispatch. If *this does

not contain a value, the behavior is undefined.

template <class... Args>

 see below operator()(Args&&... args) const requires(see below);

Constraints: The expression inside requires is equivalent to that F meets the Facade requirements,

and only one dispatch D defined by typename F::dispatch_types, and Args... matches

one overload of D.

Preconditions: *this contains a value.

Effects: Equivalent to return invoke(std::forward<Args>(args)...).

Throws: Any exception thrown from the equivalent expression.

Remarks: If *this does not contain a value, the behavior is undefined.

5.4.2 Creation

template <class F, class T, class... Args>

 proxy<F> make_proxy(Args&&... args);

Effects: Creates an instance of proxy<F> with an unspecified pointer type of T, where the value of

T is direct-non-list-initialized with the arguments std::forward<Args>(args)....

Remarks: Implementations are not permitted to use additional storage, such as dynamic memory, to

allocate the value of T if the following conditions apply:

- sizeof(T) <= F::constraints.max_size is true, and

- alignof(T) <= F::constraints.max_alignment is true, and

- T meets the copyability requirements defined by F::constraints.copyability, and

- T meets the relocatability requirements defined by

F::constraints.relocatability, and

- T meets the destructibility requirements defined by

F::constraints.destructibility.

template <class F, class T, class U, class... Args>

 proxy<F> make_proxy(initializer_list<U> il, Args&&... args);

Effects: Equivalent to return make_proxy<F, T>(il,

std::forward<Args>(args)...).

template <class F, class T>

 proxy<F> make_proxy(T&& value);

Effects: Equivalent to return make_proxy<F,

decay_t<T>>(std::forward<T>(value)).

32

5.4.3 Specialized algorithms

template <class F>

 void swap(proxy<F>& a, proxy<F>& b) noexcept(see below);

Effects: Equivalent to a.swap(b).

Remarks: The expression inside noexcept is equivalent to (noexcept(a.swap(b))).

6 Acknowledgements

Mingxin would like to thank: Tian Liao (Microsoft) for the insights into the library design and open

source. Roger Orr for pointing out the potential ODR violation in the proposed syntax in revision 5. Wei

Chen (Jilin University), Herb Sutter, Chandler Carruth, Daveed Vandevoorde, Bjarne Stroustrup, JF

Bastien, Bengt Gustafsson and Chuang Li (Microsoft) for their valuable feedback on earlier revisions of

this paper.

7 Summary

The "proxy" library is an extendable and efficient solution for polymorphism. We believe this feature

will largely improve the usability of the C++ programming language, especially in large-scale

programming.

8 Appendix

8.1 Helper macros

#define PRO_DEF_MEMBER_DISPATCH(NAME, ...) see below

#define PRO_DEF_FREE_DISPATCH(NAME, FUNC, ...) see below

#define PRO_DEF_COMBINED_DISPATCH(NAME, ...) see below

#define PRO_MAKE_DISPATCH_PACK(...) see below

#define PRO_DEF_FACADE(NAME, ...) see below

The helper macros are intended to facalitate definition of dispatch and facade types. Considering the

standard keeps evolving, these macros not proposed to merge to the standard for now. The

implementation of the helper macros could be found in our GitHub repo.

#define PRO_DEF_MEMBER_DISPATCH(NAME, ...) see below

Syntax: PRO_DEF_MEMBER_DISPATCH(NAME, OVERLOADS...)

Constraints: NAME shall not be defined in the context, and is a valid name of member function.

OVERLOADS shall not be empty. Each type in OVERLOADS shall be a valid function type.

https://github.com/microsoft/proxy/blob/2.1.1/proxy.h#L583-L671

33

Effect: Define a type named NAME, which contains:

- an inner type alias overload_types defined as std::tuple<OVERLOADS...>, and

- various overloads of operator() maching each function type in OVERLOADS; for each O in

OVERLOADS, where the return type is R and argument types are Args..., a SFINAE-friendly

member function template operator() is defined to forward invocation to the member

function NAME with a given value, equivalent to:

template <class T>

decltype(auto) operator()(T& self, Args&&... args)

 requires(requires{self.NAME(std::forward<Args>(args)...);})

 { return self.NAME(std::forward<Args>(args)...); }

#define PRO_DEF_FREE_DISPATCH(NAME, FUNC, ...) see below

Syntax: PRO_DEF_FREE_DISPATCH(NAME, FUNC, OVERLOADS...)

Constraints: NAME shall not be defined in the context, and is FUNC a valid name in the context.

OVERLOADS shall not be empty. Each type in OVERLOADS shall be a valid function type.

Effect: Define a type named NAME, which contains:

- an inner type alias overload_types defined as std::tuple<OVERLOADS...>, and

- various overloads of operator() maching each function type in OVERLOADS; for each O in

OVERLOADS, where the return type is R and argument types are Args..., a SFINAE-friendly

member function template operator() is defined to forward invocation to FUNC with a given

value, equivalent to:

template <class T>

decltype(auto) operator()(T& self, Args&&... args)

 requires(requires{FUNC(self, std::forward<Args>(args)...);})

 { return FUNC(self, std::forward<Args>(args)...); }

#define PRO_DEF_COMBINED_DISPATCH(NAME, ...) see below

Syntax: PRO_DEF_COMBINED_DISPATCH(NAME, DISPATCHES...)

Constraints: NAME shall not be defined in the context. DISPATCHES shall not be empty. Each

type in DISPATCHES shall be a valid dispatch type.

Effect: Define a type named NAME, which contains:

- an inner type alias overload_types defined as the aggregate of every overload_types

of each type D that has this type alias defined in DISPATCHES, and

- various overloads of operator() that forward the calls to each dispatch type D in

DISPATCHES.

34

#define PRO_MAKE_DISPATCH_PACK(...) see below

Syntax: PRO_MAKE_DISPATCH_PACK(DISPATCHES...)

Effect: Equivalent to std::tuple<DISPATCHES...>.

#define PRO_DEF_FACADE(NAME, ...) see below

Syntax:

PRO_DEF_FACADE(

 NAME,

 [optional] DISPATCH_PACK = std::tuple<>,

 [optional] CONSTRAINTS = std:: relocatable_ptr_constraints,

 [optional] REFLECTION_TYPE = void)

Constraints: NAME shall not be defined in the context. DISPATCH_PACK shall be a dispatch

pack, which could be a dispatch type or a tuple of various dispatch packs. CONSTRAINTS shall

be a value of std::proxiable_ptr_constraints. REFLECTION_TYPE shall be void

or a trivially copyable type that constructible from std::in_place_type_t<P> at compile-

time.

Effect: Define a type named NAME, which contains:

- an inner type alias dispatch_types defined as the flatterned tuple of DISPATCH_PACK,

and

- a compile-time constant constraints defined as the value of CONSTRAINTS, and

- an inner type alias reflection_type defined as REFLECTION_TYPE.

