Document number: P3044R0

Date: 2023-01-16

Project: Programming Language C++

Audience: LEWG

Reply-to: Michael Florian Hava' <mfh.cpp@gmail.com>

sub-string_view from string

Abstract

This paper proposes a way to retrieve a sub-string_view from a string directly.

Tony Table

Before Proposed
string s{"Hello cruel world!"}; string s{"Hello cruel world!"};
auto sub = string_view{s}.substr(5); auto sub = s.subview(5);

//sub == "cruel world!" //sub == "cruel world!"
auto subsub = sub.substr(e, 6); auto subsub = sub.subview(@, 6);
//subsub == "cruel" //subsub == "cruel"

Revisions

RO: Initial version

Motivation

Whilst the concept of a non-owning reference into a string has been established decades ago?,
the idea only got introduced into the standard library with the adoption of string_view into C+
+17. The integration of which into string can only be classified as being limited to the role of a
sink-only type - several member functions support inputs in the form of string_view, yet none
return a string_view.

Given the "reduced" interface of strings, there is exactly one member function that would most
likely return a string_view if we were to design this part of the standard library just now:
substr(..) const & - from the authors experience, said member function is never invoked in a
context requiring an immediate copy.

Design Space

As changing the return type of substr is not possible for obvious compatibility reasons, we
instead propose a new member function subview as accessor to sub-views of a string
(following established naming practice like span: :subspan and string::substr), replicating the
interface and design of substr in all but return type and reference qualifications:

1 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

2 e.g. https://help.perforce.com/sourcepro/11/htmli/toolsref/rwecsubstring.html dates back to the 1990s.

3 Compared to "kitchen-sink" designs in other environments.

1

https://help.perforce.com/sourcepro/11/html/toolsref/rwcsubstring.html
mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

template<typename charT, typename traits = char_traits<charT>, typename Allocator = allocator<charT>>
struct basic_string {

constexpr basic_string substr(size_type = @, size_type n = npos) const &;
constexpr basic_string substr(size_type = 0, size_type n = npos) &&;
constexpr basic_string_view<charT, traits> subview(size_type = 0, size_type = npos) const;

¥

In order to improve generically handling both string and string_view, we further propose to
add string_view: :subview as an alternate spelling of string_view: : substr:

template<typename charT, typename traits = char_traits<charT>>
struct basic_string_view {

constexpr basic_string_view substr(size_type = 0, size_type = npos) const;
constexpr basic_string_view subview(size_type = 0, size_type n = npos) const;

¥

Future extension: subspan from contiguous containers?

A related functionality to this paper is imaginable: Adding subspan to contiguous containers
(array, inplace_vector, string, string_view, vector). This is potentially more contentious as
it would add a dependency to span/ to all these currently independent classes/headers,
whereas the proposed subview does not.

Proposed Poll: LEWG is interested in a paper on subspan for contiguous containers.

Impact on the Standard

This proposal is a pure library addition. Existing standard library classes are modified in a non-
ABI-breaking way.

Implementation Experience
The proposed design has been implemented at: https://github.com/MFHava/STL/tree/P3044.

Proposed Wording
Wording is relative to [N4964]. Additions are presented like , removals like this and drafting
notes like this.

[version.syn]

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

[string.view]
22.2.? Class template basic_string_view [string.view.template]
2?2.2.2.? General [string.view.template.general]

namespace std {
template<class charT, class traits = char_traits<charT>>
class basic_string_view {
public:
// [string.view.ops], string operations
constexpr basic_string_view substr(size_type pos = @, size_type n = npos) const;

constexpr int compare(basic_string_view s) const noexcept;

b
}

??.2.2.? String operations [string.view.ops]

https://github.com/MFHava/STL/tree/P3044
http://wg21.link/N4964

constexpr basic_string_view substr(size_type pos = @, size_type n = npos) const;

7 Let rlen be the smaller of n and size() - pos.

[basic.string]

??2.2.? Class template basic_string [basic.string]

2?2.2.2.? General [basic.string.general]

namespace std {
template<class charT, class traits = char_traits<charT>, class Allocator = allocator<charT>>
class basic_string {
public:

// [string.ops], string operations

constexpr basic_string substr(size_type pos = 0, size_type n npos) const &;

constexpr basic_string substr(size_type pos = @, size_type n = npos) &&;
template<class T>
constexpr int compare(const T& t) const noexcept(see below);
+
+
?2.2.2.2.? basic_string: :substr [string.substr]

constexpr basic_string substr(size_type pos = @, size_type n = npos) &&;

2 Effects: Equivalent to: return basic_string(std::move(xthis), pos, n);

?2.2.2.2.? basic_string: : compare [string.compare]

Acknowledgements

Thanks to RISC Software GmbH for supporting this work. Thanks to Jeff Garland for bringing this
issue to my attention.

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

