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Abstract

In this paper, we propose a Contracts facility for C++ that has been carefully considered by
SG21 with the highest bar possible for consensus. The proposal includes syntax for specifying
three kinds of contract assertions: precondition assertions, postcondition assertions, and assertion
statements. In addition, we specify four evaluation semantics for these assertions — one non-
checking semantic, ignore, and three checking semantics, observe, enforce, and quick_enforce
— as well as the ability to specify a user-defined handler for contract violations. The features
proposed in this paper allow C++ users to leverage contract assertions in their ecosystems in
numerous ways.
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Revision History
Revision 7 (May 2024 Mailing, addressing EWG and LEWG feedback)

• Added the quick_enforce evaluation semantic

• Changed the enforce evaluation semantic from calling std::abort() back to terminating in an
implementation-defined fashion, making it consistent with quick_enforce

• Added an implementation-defined upper bound to the number of repetitions of a contract
assertion evaluation; added a recommendation to provide an option to perform a specified
number of repetitions, with no repetitions being the default

• Made it ill-formed for the predicate of a postcondition assertion to ODR-use an array parameter

• Made it ill-formed to use va_start in a contract predicate

• Made underlying type of proposed enums unspecified rather than int

• Renamed enum contract_kind to assertion_kind

• Renamed enum contract_semantic to evaluation_semantic

• Renamed checked and unchecked evaluation semantics to checking and non-checking, respec-
tively

• Added a new subsection, “Function Type Aliases”

• Added a new subsection, “Constructors and Destructors”

• Added a new subsection, “Differences Between Contract Assertions and the assert Macro”

• Expanded the “Design Principles” section

• Various minor clarifications and additional code examples

• Numerous language and grammatical edits

Revision 6 (Forwarded to EWG and LEWG for Design Review)

• Allowed attributes in general and [[maybe_unused]] specifically to appertain to the result
name

• Made ill-formed an await-expression or yield-expression appearing in the predicate of contract_assert

• Clarified that evaluating a predicate with side effects during constant evaluation may lead to
an ODR violation

• Expanded the “Design Principles” section

• Various minor clarifications and additional code examples

Revision 5 (February 2024 Mailing)

• Added proposed wording

• Made contract_assert a statement rather than an expression
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• Made pre and post on virtual functions ill-formed

• Removed function contract_violation::will_continue()

• Removed enum value detection_mode::evaluation_undefined_behavior

• Introduced the distinct terms function contract specifier for the syntactic construct and
function contract assertion for the entity it introduces

• Added rules for equivalence of two function-contract-specifier-seqs

• Allowed repeating the function-contract-specifier-seq on redeclarations

• Renamed return name to result name

• Added syntactic location for attributes appertaining to contract assertions

• Added a new subsection, “Function Template Specializations”

• Added a new subsection, “Friend Declarations Inside Templates”

• Expanded the “Design Principles” section

• Various minor clarifications

Revision 4 (January 2024 Mailing)

• Added rules for constant evaluation of contract assertions

• Made header <contracts> freestanding

• Changed enforce from terminating in an implementation-defined fashion to calling std::abort()

• Clarified that side effects in checked predicates may be elided only if the evaluation returns
normally

• Clarified that the memory for a contract_violation object is not allocated via operator new
(similar to the memory for exception objects)

• Added a new subsection, “Design Principles”

Revision 3 (December 2023 Mailing)

• Made pre and post on deleted functions ill-formed

• Allowed pre and post on lambdas

• Added rule that contract assertions cannot trigger implicit lambda captures

• Added function std::contracts::invoke_default_contract_violation_handler

• Made local entities inside contract predicates implicitly const

• Clarified the semantics of the return name in post

• Added a new section, “Overview”

• Added a new subsection, “Recursive Contract Violations”

4



Revision 2 (Post 2023-11 Kona Meeting SG21 Feedback)

• Adopted the “natural” syntax

• Made pre and post on defaulted functions and on coroutines ill-formed

Revision 1 (October 2023 Mailing)

• Added new subsections, “Contract Semantics” and “Throwing Violation Handlers”
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• Various minor additions and clarifications
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1 Introduction
Behind the attempts to add a Contracts facility to C++ is a long and storied history. The next
step for us, collectively, in that journey is for SG21 to produce a Contracts MVP (minimum viable
product) as part of the plan set forth in [P2695R0]: This paper is that MVP.

In this paper, you will find three primary sections. “Overview” introduces the general concepts
and the terminology that will be used throughout this paper and provides a view of the scope of
the proposal. “Proposed Design” describes the design of the proposed Contracts facility carefully,
clearly, and precisely. “Proposed Wording” contains the formal wording changes needed (relative to
the current draft C++ Standard) to add Contracts to the C++ language. This paper is intended to
contain enough information to clarify exactly what we intend for Contracts to do as well as the
needed wording to match that information.

This paper is explicitly not a collection of motivations for using Contracts, instructions on how
to use the facility, the history of how this design came to be, or an enumeration of alternative
designs that have been considered. To avoid an excessively long paper, we have extracted all this
information into a companion paper, [P2899R0], “Contracts for C++ — Rationale.” [P2899R0] will
contain, for each subsection of the design section of this paper, a history — as complete as possible
— for the decisions in that section. That paper will also, importantly, contain citations to the many
papers written by members of WG21 and SG21 that have contributed to making this proposal a
complete thought.

2 Overview
We will begin by providing the general concepts and the terminology that will be used throughout
this paper and, we hope, in many of the other papers discussing these topics. Then we will discuss
the basic features and scope of the proposed Contracts facility.

For a summary of motivating use cases for Contracts and the history of Contracts in C++ and
other programming languages, see [P2899R0], Section 2.

2.1 What Are Contracts?

A contract is a formal interface specification for a software component such as a function or a class.
It is a set of conditions that expresses expectations about how the component interoperates with
other components in a correct program and in accordance with a conceptual metaphor with the
conditions and obligations of legal contracts.

A contract violation occurs when a condition that is part of a contract does not hold when the
relevant program code is executed. A contract violation usually constitutes a bug in the code, which
distinguishes it from an error. Errors are often recoverable at run time, whereas contract violations
can usually be addressed only by fixing the bug in the code.

A precondition is a part of a function contract, and the responsibility for satisfying the precondition
rests with the caller of the function. Generally, preconditions are requirements placed on the
arguments passed to a function and/or the global state of the program upon entry into the function.
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A postcondition is a part of a function contract, and the responsibility for satisfying the postcondition
lies with the callee, i.e., the implementer of the function itself. Postconditions are generally conditions
that will hold true regarding the return value of the function or the state of objects modified by the
function when it completes execution normally.

An invariant is a condition on the state of an object or a set of objects that is maintained over a
certain amount of time. A class invariant is a condition that a class type maintains throughout
the lifetime of an object of that type between calls to its public member functions. There are other
kinds of invariants, such as loop invariants. Often these other invariants are expected to hold on
the entry or exit of functions or at specific points in control flow, and they are thus amenable to
checking, using the same facilities that check preconditions and postconditions.

Contracts are often specified in human language in the documentation of the software, e.g., in the
form of comments within the code or in a separate specification document; a contract specified this
way is called a plain language contract. For example, the C++ Standard defines plain language
contracts — preconditions and postconditions — for the functions in the C++ Standard Library.

Often, some provisions of a plain language contract can be checked via an algorithm — one that
either verifies compliance with that provision of the contract or identifies a violation of the contract.
A contract assertion is a syntactic construct that specifies such an algorithm in code. When used
correctly, contract assertions can significantly improve the safety and correctness of software.

A language feature that allows the programmer to specify such contract assertions is called a
Contracts facility. Programming languages such as Eiffel and D have a Contracts facility; this paper
proposes a Contracts facility for C++.

Note that not all parts of a contract can be specified via contract assertions, and of those that can,
some cannot be checked at run time without violating the complexity guarantees of the function (e.g.,
the precondition of binary search that the input range is sorted), without additional instrumentation
(e.g., a precondition that a pair of pointers denotes a valid range), or at all (e.g., a precondition
that a passed-in function, if called, will return). Therefore, we do not expect that function contract
assertions can, in general, specify the entire plain-language contract of a function; however, they
should always specify a subset of the plain-language contract.

A corollary of this gap is that contract assertions, in general, cannot be used to verify compliance
with the entire contract (i.e., to prove correctness) but only to identify violations of that specified
subset.

2.2 Proposed Features

The Contracts facility we propose will enable adding contract assertions to C++ code. We propose
three kinds of contract assertions: precondition assertions, postcondition assertions, and assertion
statements.

Precondition and postcondition assertions are placed on function declarations and collectively called
function contract assertions. Assertion statements are placed inside function bodies. The following
example contains all three kinds of contract assertions:

int f(const int x)
pre (x != 1) // a precondition assertion
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post(r : r != 2) // a postcondition assertion; r names the result object of f
{

contract_assert (x != 3); // an assertion statement
return x;

}

Each contract assertion has a predicate, which is a potentially evaluated expression that will be
contextually converted to bool to identify a contract violation. When the predicate evaluates to
true, no contract violation has been identified. When the predicate evaluates to false or when
evaluation of the predicate exits via an exception, a contract violation has been identified. Other
results that do not return control back up the stack through the evaluation of the contract assertion,
such as terminating, entering an infinite loop, or invoking longjmp, happen as they would when
evaluating any other C++ expression.

In the above code example, a contract violation will occur if f is called with a value of 1, 2, or 3:
void g()
{

f(0); // no contract violation
f(1); // violates precondition assertion of f
f(2); // violates postcondition assertion of f
f(3); // violates assertion statement within f
f(4); // no contract violation

}

Each contract assertion has a point of evaluation based on its kind and syntactic position. Precon-
dition assertions are evaluated immediately after function parameters are initialized and before
entering the function body. Postcondition assertions are evaluated immediately after local variables
in the function are destroyed when a function returns normally. Assertion statements are executed
at the point in the function where control flow reaches them.

Each individual evaluation of a contract assertion is done with a specific evaluation semantic. We
propose four evaluation semantics: ignore, observe, enforce, and quick_enforce.

The ignore semantic does nothing; it is a non-checking semantic. The observe, enforce, and quick_-
enforce semantics identify contract violations; they are checking semantics.

If a contract violation is identified at runtime:

• The observe semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, program execution will continue from the point of evaluation of the
contract assertion.

• The enforce semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, the program is terminated in an implementation-defined fashion.

• The quick_enforce semantic will not invoke the contract-violation handler, but instead imme-
diately terminate the program in an implementation-defined fashion.

Evaluating a contract assertion with a checking semantic is also called performing a contract check.
When performing a contract check, the value of the predicate is determined to identify whether a
contract violation occurred. The enforce and quick_enforce semantics are collectively called enforcing
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semantics because they do not allow program execution to continue past an identified contract
violation.

When a contract violation has been identified at run time, a function, ::handle_contract_violation,
called the contract-violation handler, will be invoked. The implementation-provided version of this
function, the default contract-violation handler, has implementation-defined effects; the recommended
practice is that the default contract-violation handler outputs diagnostic information about the
contract violation.

Whether this function is replaceable is implementation-defined, giving the user the ability to install
their own user-defined contract-violation handler at link time by defining their own function with
the appropriate name and signature. This function takes one argument of type const reference to
std::contracts::contract_violation. This type is defined in a new header, <contracts>. When the
contract-violation handler is called, an object of this type is created by the implementation and
passed in, providing access to some information about the contract violation that occurred, such as
its source location and the used evaluation semantic.

Contract assertions can also be evaluated during constant evaluation; in this case, evaluating a
predicate that is not a core constant expression is also considered a contract violation. During
constant evaluation, the contract-violation handler is not called, instead a compile-time diagnostic
is issued; if the evaluation semantic is an enforcing semantic, the program is ill-formed.

2.3 Features Not Proposed

To keep the scope of this MVP proposal minimal (while still viable), the following features are
intentionally not included in this proposal; we expect these features to be proposed as post-MVP
extensions at a later time.

• The ability to specify precondition and postcondition assertions for virtual functions

• The ability to specify precondition and postcondition assertions on function pointers and
function type aliases

• The ability to specify contract assertions evaluated as control passes in and out of a coroutine

• The ability to refer to “old” values of parameters and other entities (i.e. the values they had
when the function was called) in the predicate of a postcondition

• The ability to assume that an unchecked contract predicate would evaluate to true and to
allow the compiler to optimize based on that assumption, i.e., the assume semantic

• The ability to express the desired evaluation semantic directly on the contract assertion

• The ability to assign an assertion level to a contract assertion or, more generally, to specify in
code properties of contracts and how they map to a contract semantic

• The ability to express postconditions of functions that do not exit normally, e.g., a postcondition
that a function does or does not exit via an exception

• The ability to write a contract predicate that cannot be evaluated at run time e.g., because it
calls a function with no definition
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• The ability to reliably use contract assertions that maintain state or have other side effects
relevant for the correctness of the assertions themselves or the surrounding program (so-called
destructive side effects).

• The ability to write variable declarations or other code conditional on whether contract
assertions are checked, similar to an #ifndef NDEBUG block for assert

• The ability to express invariants

• The ability to express procedural interfaces

Most of the above features were, in some shape or form, part of previous Contracts proposals; as a
general rule, however, nothing in previous Contracts proposals should be assumed to be true about
this proposal unless explicitly stated in this paper.

3 Proposed Design

3.1 Design Principles

The Contracts facility in this proposal has been guided by certain common principles that have
helped clarify the optimal choices for how the facility should work and how it should integrate with
the full breadth of the C++ language.

Central to adding a facility for checking contracts into the language is the ability for programs to
provide algorithms that identify when the program is in a correct or incorrect state. Key to the
ability for such algorithms to detect the correctness of a program is that they do not, because of
their presence or evaluation, alter that correctness. Whenever any form of correctness check fails
these fundamental criteria it becomes an essential part of the program, and we then lose the ability
to check correctness of the original program.

To ensure the first part of this property for contract assertions, we can find three actionable principles
that follow:

1. Concepts Do Not See Contracts — If the mere presence of a contract assertion — inde-
pendent of the predicate within that assertion — on a function or in a block of code would
change the satisfiability of a concept, then a contained program could be substantially changed
by simply using contracts in such a way; we, therefore, remove the ability to do this. As a
corollary, the addition or removal of a contract assertion must not change which branch is
selected by an if constexpr, the result of SFINAE, the result of overload resolution, or the
result of the noexcept operator.

2. Zero Overhead — The presence of a contract assertion that is not actually checked — i.e.,
that is ignored — must not impact how a program behaves, e.g., by triggering additional
lambda captures that result in the addition of additional member variables to closure objects.

3. Chosen Semantic Independence — Which evaluation semantic will be used for any given
evaluation of a contract assertion and whether that evaluation semantic is a checking semantic
must not be detectable at compile time; such detection might result in different programs
being executed when contract checks are enabled.
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At compile time, we have removed places where a program can implicitly be changed and thus
made potentially incorrect by adding a contract assertion to it. At runtime, we need to ensure a
related but different property: that the evaluation of a contract assertion’s predicate will, in and of
itself, not change the correctness of a program. When such an evaluation would do that, we call
that a destructive side effect. Central to this proposal is the idea that we aim to dissuade users
from writing contract assertions with destructive side effects, and that many of the other aspects of
Contracts — most importantly the ability to freely select the semantics of evaluation of individual
contract assertions — have their correctness depend on the assumption that contract assertions will
not have destructive side effects.

This next principle is as foundational with respect to runtime evaluation as our first principle was
with respect to compile time evaluation:

4. No Destructive Side Effects — Contract assertions whose predicates, when evaluated,
could affect the correctness of the program, should not be supported.

To enable local reasoning about contract assertions, and more importantly to enable global reasoning
about how contract assertions are configured without needing to inspect each one, we must ensure
another important principle that is related to the previous one:

5. Completeness of Contract Assertions — Each individual contract assertion encapsulates
a complete check of a provision of the plain-language contract.

From the previus two principles, a number of others can be identified that guide both how users
should be using the facility and what our design should aim to minimize:

6. Redundancy of Contract Assertions — In a correct program (i.e. one that does not
violate any provisions of its plain-language contract) augmented with contract assertions, it
should be possible to remove any subset of these contract assertions such that the program is
still correct.

7. Independence of Contract Assertions — The result of evaluating a contract assertion
should never affect the result of evaluating any other contract assertions.

8. Independence of Contract Assertion Evaluations — The result of evaluating a contract
assertion should never affect the result of subsequent evaluations of the same contract assertion.

A corollary of these principles is that it is not a correct use of the proposed Contracts facility to
write contract assertions whose predicates, when evaluated, have side effects that maintain state
affecting the correctness of the contract assertions, as this constitutes a destructive side effect. Side
effects in predicates are not ill-formed, nor are they undefined behavior, but they are not guaranteed
to occur any particular number of times or at all and cannot be relied upon for correctness (see
Section 3.5.6). We therefore do not, in this initial proposal, support contract assertions that for
example increment a counter and then check whether the value of the counter is below a certain
number, or contract assertions where one assertion sets a flag and another assertion unsets it. Such
use cases may be supported in a future extension. Note that this constitutes a difference between
the proposed Contracts facility and macro-based assertions (see Section 3.6.6).

Some additional principles involve defining our common understanding of the relationship between
contract assertions and plain language contracts.
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9. Contract Assertions Check a Plain Language Contract— The evaluation of a function
contract assertion must be tied to the evaluation of the function to which the function contract
assertion is attached so that the assertion will verify the plain language contract (or some
subset of the plain language contract) of that function, not of some other function.1

10. Function Contract Assertions Serve Both Caller and Callee — A function contract
assertion, much like a function declaration, is highly relevant to both the caller of and
implementer of a function. In particular, as part of the agreement between callers and callees,
two pairs of promises are made.

(a) Callers promise to satisfy a function’s preconditions, resulting in callees being able to
rely upon those preconditions being true.

(b) Callees (i.e., function implementers) promise to satisfy a function’s postconditions when
invoked properly, resulting in a caller’s ability to rely upon those postconditions.

The answer to the commonly asked question of whether a function contract assertion is part
of the interface of a function or of its implementation is, therefore, that it is part of both.

11. Contract Assertions Are Not Flow Control—A contract assertion provides an algorithm
to validate correctness, but importantly nothing about a contract assertion guarantees always
associating any particular runtime behavior with that syntactic construct. An unadorned
contract assertion2 might enforce the associated condition, terminating if it is violated, but
might equally do nothing at all in another build, allowing violations to happen.

Importantly, this aspect of Contracts is why contract assertions must not be used for error
handling and input validation: If a function has in-contract requirements to report certain
events as errors, that handling must be done with standard C++ control statements that are
not optional, never with contract assertions.3

The design of this proposal has been guided by two additional principles regarding how to address
open design questions for which solutions are not yet agreed upon or known.

12. Explicitly Define All New Behavior — For any behavior that we define as part of a
Contracts facility, certain rules must be followed in many cases. Enforcing those rules can be
done in two primary ways: making violations ill-formed or making the behavior undefined when
the rule is broken. For the specification and behavior of Contracts, we prioritize programs
having well-defined behavior when using the new facility and thus have chosen to never
explicitly introduce new undefined behavior when evaluating contract assertions.

13. Choose Ill-Formed to Enable Flexible Evolution — When no clear consensus has
become apparent regarding the proper solution to a problem that Contracts could address, we
have chosen to leave the relevant constructs ill-formed rather than giving them unspecified or

1In particular, the function contract assertions attached to a virtual function must not implicitly be applied to all
overriding functions, but rather should apply only when invoking the function through a pointer or reference to that
particular base class.

2Future proposals might allow for more local control over the semantics with which a given contract assertion is
evaluated, but that is always a choice opted into via explicit annotations, not the default behavior of normal uses of
the Contracts facility.

3See [P2053R1].
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undefined behavior. This choice enables conforming extensions to explore possible options while
leaving open all options for an eventual solution being incorporated into the C++ Standard.

Finally, there are two more design principles to ensure that adding Contracts to existing programs
does not cause breakage in ways that could significantly hamper the adoption of Contracts in the
field.

14. No Caller-Side Language Break — For any existing function f, if function contract
specifiers are added to f, and the definition of f still compiles after this addition, then any
existing, correct usage of f should continue to compile and work correctly.

15. No ABI Break — It should be possible for a conforming implementation to guarantee
that adding function contract specifiers to an existing function preserves ABI backwards-
compatibility.

3.2 Syntax

We propose three new syntactic constructs: precondition specifiers, postcondition specifiers, and
assertion statements, spelled with pre, post, and contract_assert, respectively, followed by the
predicate in parentheses:

int f(const int x)
pre (x != 1) // precondition specifier
post (r : r != 2) // postcondition specifier; r names the result object of f

{
contract_assert (x != 3); // assertion statement
return x;

}

The predicate is an expression contextually convertible to bool. The grammar requires the expression
inside the parentheses to be a conditional-expression. This requirement guards against the common
typo a = b (instead of a == b) by making the former ill-formed without an extra pair of parentheses
around the expression.

3.2.1 Function Contract Specifiers

Precondition and postcondition specifiers are collectively called function contract specifiers. They
may be applied to the declarator of a function (see Section 3.3.1 for which declarations) or of
a lambda expression to introduce a function contract assertion4 of the respective kind to the
corresponding function. (For lambda expressions, the corresponding function is the call operator or
operator template of the compiler-generated closure type.)

A precondition specifier is spelled with pre and introduces a precondition assertion to the corre-
sponding function:

4The distinction between precondition and postcondition specifiers and precondition and postcondition assertions
is analogous to the distinction between noexcept specifiers and exception specifications: The former refers to the
syntactic construct, and the latter refers to the conceptual entity that is a property of a function. The distinction is
important because a function that has function contract assertions may have multiple declarations, some of which
may not have function contract specifiers (see Section 3.3.1 for details). Note that no such distinction is necessary for
assertion statements.
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int f(int i)
pre (i >= 0);

A postcondition specifier is introduced with post and introduces a postcondition assertion to the
corresponding function:

void clear()
post (empty());

A postcondition specifier may introduce a name to the result object of the function, called the result
name, via a user-defined identifier preceding the predicate and separated from it by a colon:

int f(int i)
post (r: r >= i); // r refers to the result object of f.

The exact semantics of the result name are discussed in Section 3.4.3.

pre and post are contextual keywords. They are parsed as part of a function contract specifier only
when they appear in the appropriate syntactic position. In all other contexts, they are parsed as
identifiers. This property ensures that the introduction of pre and post does not break existing C++
code.

Function contract specifiers appear at the end of a function declarator,5 after trailing return types
and requires clauses, and immediately before the semicolon in a declaration:

template <typename T>
auto g(T x) -> bool

requires std::integral<T>
pre (x > 0);

Function contract specifiers on a definition appear in the corresponding location in the declaration
part of the definition, immediately prior to the function body (noting that constructs such as
= default and = delete are also function bodies).

For lambda expressions, function contract specifiers appear immediately prior to the lambda body:
int f() {

auto f = [] (int i)
pre (i > 0)
{ return ++i; };

return f(42);
}

Any number of function contract specifiers, in any order, may be specified on a function declaration.
Precondition specifiers do not have to precede postcondition specifiers but may be freely intermingled
with them:

5Should function contract specifiers be allowed on virtual functions in the future, the intention is to add an
exception to the rule that function contract specifiers appear at the end of a function declarator, to allow placing
contract assertions prior to the pure-specifier = 0 when it is present, for visual consistency with = default.
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void f()
pre (a)
post (b)
pre (c); // OK

Evaluation of preconditions and postcondition assertions will still be done in their respective lexical
order, see Section 3.5.1.

3.2.2 Assertion Statement

An assertion statement is a kind of contract assertion that may appear as a statement in the body of
a function or lambda expression. An assertion statement is spelled with contract_assert, followed
by the predicate in parentheses, followed by a semicolon:

void f() {
int i = get_i();
contract_assert(i != 0);
// ...

}

Unlike pre and post, contract_assert is a full keyword, which is necessary to be able to disambiguate
an assertion statement from a function call. The keyword contract_assert is chosen instead of
assert to avoid a clash with the existing assert macro from header <cassert>.

3.2.3 Attributes for Contract Assertions

All three kinds of contract assertions (pre, post, and contract_assert) permit attributes that
appertain to the introduced contract assertion. We do not propose to add any such attributes to
the C++ Standard itself, yet this permission can be useful for vendor-specific extensions to the
functionality provided by this proposal. The syntactic location for such attributes specific to contract
assertions is in between the pre, post, or contract_assert and the predicate:

bool binary_search(Range r, const T& value)
pre [[vendor::message("A nonsorted range has been provided")]] (is_sorted(r));

void f() {
int i = get_i();
contract_assert [[analyzer::prove_this]] (i > 0);
// ...

}

In addition, attributes such as [[likely]] and [[unlikely]] that can appertain to other statements
that involve some runtime evaluation can also appertain to contract_assert. The syntactic location
for such attributes that appertain to the statement (rather than to the contract assertion it
introduces) is before the statement:

void g(int x) {
if (x >= 0) {

[[likely]] contract_assert(x <= 100); // OK, this branch is more likely
// ...

}
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else {
[[unlikely]] contract_assert(x >= -100); // OK, this branch less likely
// ...

}
}

Finally, an attribute can also appertain to the result name optionally declared in a postcondition
specifier:

int g()
post (r [[maybe_unused]]: r > 0);

The attribute [[maybe_unused]] is explicitly allowed to appertain to the result name.

3.3 Restrictions on the Placement of Contract Assertions

3.3.1 Multiple Declarations

Any function declaration is a first declaration if no other declarations of the same function are
reachable from that declaration; otherwise, it is a redeclaration. The sequence of function contract
specifiers on a first declaration of a function introduces the corresponding function contract assertions
that apply to that function.

It is ill-formed, no diagnostic required (IFNDR) if multiple first declarations for the same function
are in different translation units that do not have the same sequence of function contract specifiers.

A redeclaration of a function shall have either no function contract specifiers or the same sequence
of function contract specifiers as any first declaration reachable from it; otherwise, the program is
ill-formed.

In effect, all places in which a function might be used or defined see a consistent and unambiguous
view of what the sequence of function contract specifiers of that function is.

Equivalence of function contract specifiers is determined as follows. Two sequences of function
contract specifiers are considered to be the same if they consist of the same function contract
specifiers in the same order. A function contract specifier c1 on a function declaration d1 is the
same as a function contract specifier c2 on a function declaration d2 if their predicates p1 and
p2 would satisfy the one-definition rule (ODR) if placed in an imaginary function body on the
declarations d1 and d2, respectively, except the names of function parameters, names of template
parameters, and the result name may be different.6 (The entities found by name lookup will be the
same.)

3.3.2 Virtual Functions

For a declaration of a virtual function to have precondition or postcondition specifiers is ill-formed.
Support for virtual functions is expected to be proposed in a future extension (see Section 2.3).

6Note that the ODR for function definitions does not allow for such exceptions: Multiple definitions of the same
inline function in different translation units must be token-identical; different names for function parameters and
template parameters are not allowed.
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3.3.3 Defaulted and Deleted Functions

For a declaration of a function defaulted on its first declaration to have precondition or postcondition
specifiers is ill-formed:

struct X {
X() pre (true) = default; // error (pre on function defaulted on first declaration)

};

struct Y {
Y() pre (true);

};

Y::Y() pre (true) = default; // OK (not the first declaration; pre (true) can be omitted)

Further, for a declaration of an explicitly deleted function to have precondition or postcondition
specifiers is ill-formed:

struct X {
X() pre (true) = delete; // error

};

3.3.4 Coroutines

For a coroutine to have precondition or postcondition specifiers is ill-formed. Support for coroutines
is expected to be proposed in a future extension (see Section 2.3).

This requirement is enforced on the function definition since whether a function is a coroutine cannot
be known until a use of co_return, co_await, or co_yield is found enclosed by the function body.

Using contract_assert within the body of a coroutine is valid, but an await-expression or yield-
expression may not appear in the predicate of a contract assertion as a subexpression that is in the
suspension context of that coroutine:

std::generator<int> f() {
contract_assert(((co_yield 1), true)); // error

}

stdex::task<void> g() {
contract_assert((co_await query_database()) > 0); // error
// ...

}

An await-expression or yield-expression is allowed in the predicate of a contract assertion if it is not
in the suspension context of that coroutine, e.g., because it appears inside an immediately invoked
lambda that is not suspending the evaluation of the function or coroutine evaluating the predicate
itself:

contract_assert(([]() -> std::generator<int> {
co_yield 1; // OK

}(), true));
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3.3.5 Function Pointers

Function contract specifiers may not be attached to a function pointer:
typedef int (*fpt)(int) post (r: r != 0); // error

int f(int x) post (r: r != 0);
int (*fp)(int) post (r: r != 0) = f; // error

The contract assertions on a function have no impact on its type and thus no impact on the type of
its address, nor on what types of function pointers that address may be assigned to:

int f(int x) post (r: r != 0);
int (*fp)(int) = f; // OK

When a function is invoked through a function pointer (for example when calling f through fp in
the example above), its function contract assertions must still be evaluated as normal. The same
behavior applies to other kinds of indirect calls, such as via std::function.

The consequence of this behavior is that, for calls through a function pointer, an implementation
cannot, in general, check the precondition and postcondition assertions of the function at the call
site. Such checks have to be performed either inside the function or in a thunk.

3.3.6 Function Type Aliases

Function contract specifiers may not be attached to a function type alias:
using ft = int(int) post (r: r != 0); // error

However, function contract specifiers may be attached to a function declaration that uses a function
type alias:

using ft = int(int);
ft f post (r: r != 0); // OK

Note that such a function declaration does not introduce names for the parameters of the function,
and therefore does not provide a way to spell a contract predicate referring to these parameters.

3.3.7 Use of C Variadic Functions Parameters

If a contract predicate contains a use of the va_start macro as a subexpression, the program is
ill-formed, no diagnostic required.

If we were to allow this, we would have to require that any use of va_start within a contract
assertion predicate is matched by a use of va_end in the same predicate, however this cannot be
checked statically. The reason no diagnostic is required is that because, with current toolchain
behaviors, this situation may not be diagnosable: on some implementations, va_start may expand to
a C++ expression along the lines of “address of previous argument plus one”, losing the information
that the va_start macro was used by the time the C++ frontend receives the preprocessed stream
of tokens.

The other macros involved in the processing of C variadic parameters — va_arg and va_end — do
not need to be explicitly prohibited as they are useless without the use of va_start.
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3.4 Semantic Rules for Contract Assertions

3.4.1 Name Lookup and Access Control

For precondition assertions, name lookup in the predicate is generally performed as if the predicate
came at the beginning of the body of the function or lambda expression. This name lookup occurs
as if a function body were specified on the declaration where the precondition specifier appears —
i.e., using the parameter names on the declaration — instead of where the actual function definition
appears (which may not even be visible) where a different declarator’s parameter names would be
in effect.

Access control is applied based on that behavior; i.e., the predicate may reference anything that
might be referenced from within the body of the function or lambda expression. (A special rule,
however, states that the program is ill-formed if such references trigger implicit lambda captures;
see Section 3.4.7.) When the precondition assertion is part of a member function, protected and
private data members of that function’s type may be accessed. When a precondition assertion is
part of a function that is a friend of a type, full access to that type is allowed.

For postcondition assertions, name lookup first considers its result name (see Section 3.4.3), if any,
to be in a synthesized enclosing scope around the precondition assertion. For all other names, name
lookup and access control is performed in the same fashion as for a precondition assertion.

For assertion statements, name lookup and access control occurs as if the predicate’s expression
were located in an expression statement at the location of the assertion statement.

3.4.2 Implicit const-ness of Local Entities

A contract check is supposed to observe, not change, the state of the program, exceptions such as
logging notwithstanding. To prevent accidental bugs due to unintentional modifications of entities
inside a contract predicate, identifiers referring to local variables and parameters inside a contract
predicate are const lvalues. This is conceptually similar to how identifiers referring to members are
implicitly const lvalues inside a const member function. In particular, in a contract predicate,

• an identifier that names a variable with automatic storage duration of object type T, a variable
with automatic storage duration of type reference to T, or a structured binding of type T whose
corresponding variable has automatic storage duration, is an lvalue of type const T

• *this is implicitly const

These const amendments are shallow (on the level of the lvalue only); attempting to invent so-called
deep-const rules would likely make raw pointers and smart pointers behave differently, which is not
desirable. The type of lvalues referring to namespace-scope or local static variables is not changed;
such accesses are more likely to be intentionally modifying, e.g., for logging or counting:

int global = 0;

void f(int x, int y, char *p, int& ref)
pre((x = 0) == 0) // error: assignment to const lvalue
pre((*p = 5)) // OK
pre((ref = 5)) // error: assignment to const lvalue
pre((global = 2)) // OK
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{
contract_assert((x = 0)); // error: assignment to const lvalue
int var = 42;
contract_assert((var = 42)); // error: assignment to const lvalue

static int svar = 1;
contract_assert((svar = 1)); // OK

}

Class members declared mutable can be modified as before. Expressions that are not lexically part
of the contract condition are not changed. The result of decltype(x) is not changed since it still
produces the declared type of the entity denoted by x. However, decltype((x)) yields const T&
where T is the type of the expression x.

Modifications of local variables and parameters inside a contract predicate are possible — although
discouraged — via applying a const_cast, but modifications of const objects continue to be undefined
behavior as elsewhere in C++. This includes parameters required to be declared const because they
are used in a postcondition (see Section 3.4.4):

int g(int i, const int j)
pre(++const_cast<int&>(i)) // OK (but discouraged)
pre(++const_cast<int&>(j)) // undefined behavior
post(++const_cast<int&>(i)) // OK (but discouraged)
post(++const_cast<int&>(j)) // undefined behavior

{
int k = 0;
const int l = 1;
contract_assert(++const_cast<int&>(k)); // OK (but discouraged)
contract_assert(++const_cast<int&>(l)); // undefined behavior

}

Overload resolution results (and thus semantics) may change if a predicate is hoisted into or out of
a contract predicate:

struct X {};
bool p(X&) { return true; }
bool p(const X&) { return false; }

void my_assert(bool b) { if (!b) std::terminate(); }

void f(X x1)
pre(p(x1)) // fails

{
my_assert(p(x1)); // passes

X x2;
contract_assert(p(x2)); // fails
my_assert(p(x2)); // passes

}

However, such an overload set that yields different results depending on the const-ness of the
parameter is, arguably, in itself a bug.
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When a lambda inside a contract predicate captures a non-function entity by copy, the type of the
implicitly declared data member is T, but (as usual) naming such a data member inside the body of
the lambda yields a const lvalue unless the lambda is declared mutable. When the lambda captures
such an entity by reference, the type of an expression naming the reference is const T. When the
lambda captures this of type pointer to T, the type of the implicitly declared data member is pointer
to const T:

void f(int x)
pre([x] { return x = 2; }()) // error: x is const
pre([x] mutable { return x = 2; }()) // OK, modifies the copy of the parameter
pre([&x] { return x = 2; }()) // error: ill−formed assignment to const lvalue
pre([&x] mutable { return x = 2; }()); // error: ill−formed assignment to const lvalue

struct S {
int dm;
void mf() // not const

pre([this]{ dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([this] () mutable { dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([*this]{ dm = 1; }()) // error: ill−formed assignment to const lvalue
pre([*this] () mutable { dm = 1; }()) // OK, modifies a copy of *this

{}
};

3.4.3 Postconditions: Referring to the Result Object

A postcondition specifier may optionally specify a result name, introducing a name that refers to
the result object of the function. This functionality is conceptually similar to how the identifiers in
a structured binding are not references but merely names referring to the elements of the unnamed
structured binding object. As with a variable declared within the body of a function or lambda
expression, the introduced name cannot shadow function parameter names. Note that this introduced
name is visible only in the predicate to which it applies and does not introduce a new name into the
scope of the function.

For a function f with the return type T, the result name is an lvalue of type const T, decltype(r) is
T, and decltype((r)) is const T&. This is behavior with the implicit const-ness of identifiers naming
local entities and parameters in contract predicates (see Section 3.4.2).

Although strongly discouraged, modifications of the return value in the postcondition assertion
predicate are possible via applying a const_cast. Note that even if the object is declared const at
the call site or the function’s return type is const-qualified, such modifications are not undefined
behavior because, at the point where the postcondition is checked, initialization of the result object
has not yet completed, and therefore const semantics do not apply to it:

struct S {
S();
S(const S&) = delete; // non−copyable, non−movable
int i = 0;
bool foo() const;

};
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const S f()
post(r: const_cast<S&>(r).i = 1) // OK (but discouraged)

{
return S{};

}

const S y = f(); // well−defined behavior
bool b = f().foo(); // well−defined behavior

Clarifying the relevant existing wording to make this intent clearer might be useful; such a clarification
is being proposed in [CWG2841].

The address of the result name refers to the address of the result object, except for trivially copyable
types for which it may also refer to a temporary object created by implementation that will later be
used to initialize the return object; this dispensation exists to ensure that adding a postcondition
assertion does not alter a function’s ABI by making passing the return value in a register impossible.

This means that for nontrivially copyable types, we now have a reliable way to obtain the address
of the result object inside a postcondition assertion, something that was previously not possible:

X f(X* ptr)
post(r: &r == ptr) // guaranteed to pass (for the call from main below)

// if X is not trivially copyable
{

return X{};
}

int main() {
X x = f(&x);

}

If a postcondition names the return value on a nontemplated function with a deduced return type,
that postcondition must be attached to the declaration that is also the definition (and thus there
can be no earlier declaration):

auto f1() post (r : r > 0); // error, type of r is not readily available.

auto f2() post (r : r > 0) // OK, type of r is deduced below.
{ return 5; }

template <typename T>
auto f3() post (r : r > 0); // OK, postcondition instantiated with template

auto f4() post (true); // OK, return value not named

3.4.4 Postconditions: Referring to Parameters

If a function parameter is ODR-used by a postcondition assertion predicate, that function parameter
must have reference type or be const. That function parameter must be declared const on all
declarations of the function (even though top-level const-qualification of function parameters is
discarded in other cases), including the declaration that is part of the definition:
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void f(int i) post ( i != 0 ); // error, i must be const.

void g(const int i) post ( i != 0 );
void g(int i) {} // error, missing const for i in definition

void h(const int i) post (i != 0);
void h(const int i) {}
void h(int i); // error, missing const for i in redeclaration

Without this rule, reasoning about postcondition predicates on a function declaration would be
impossible without also inspecting the definition because the parameter value might have been
modified there. Consider:

double clamp(double min, double max, double value)
post( r : (value < min && r == min)

|| (value > max && r == max)
|| (r == value) );

The postcondition is clearly intended to validate that value is clamped to be within the range
[min,max]. The following, however, would be an implementation of clamp that would both fail to
violate the postcondition and fail to be remotely useful:

double clamp(double min, double max, double value) {
min = max = value = 0.0;
return 0.0;

}

Requiring that parameters be const if a postcondition predicate refers to them avoids such extreme
failures and subtle variations on this theme by making modification of the parameters in the
definition impossible.

Further, ODR-using an array parameter by a postcondition assertion predicate is ill-formed. This is
because such an array parameter will decay to a pointer, and there is no way to make this resulting
pointer const to prevent such cases:

void f(const int a[]) post (a[0] == 5) // error
{

static int x[1];
a = x;
x[0] = 5; // ...otherwise you could do this to satisfy the postcondition above

}

Note that this applies only to array parameters, not references to arrays:
void f(const int (&a)[N]) post (a[0] == 5); // OK

3.4.5 Not Part of the Immediate Context

The predicate of a function contract assertion, while lexically part of a function declaration, is not
considered part of the immediate context:
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template <std::regular T>
void f(T v, T u)

pre ( v < u ); // not part of std::regular

template <typename T>
constexpr bool has_f =

std::regular<T> &&
requires(T v, T u) { f(v, u); };

static_assert( has_f<std::string>); // OK, has_f returns true.
static_assert(!has_f<std::complex<float>>); // error, has_f causes hard instantiation error.

As a consequence, contract assertions are able to expand the requirements of a function template
in the same way a function body can, causing a program to be unrecoverably ill-formed (i.e., not
subject to SFINAE) if those requirements are not met for a given set of function template arguments.

3.4.6 Function Template Specializations

The function contract assertions of an explicit specialization of a function template are independent
of the function contract assertions of the primary template:

bool a = true;
bool b = false;

template <typename T>
void f() pre(a) {}

template<>
void f<int>() pre(b) {} // OK, precondition assertion different from that of primary template

template<>
void f<bool>() {} // OK, no precondition assertion

3.4.7 No Implicit Lambda Captures

For lambdas with default captures, contract assertions that are part of the lambda need to be
prevented from triggering lambda captures that would otherwise not be triggered. Otherwise, adding
a contract assertion to an existing program could change the observable properties of the closure type
or cause additional copies or destructions to be performed, violating the Zero Overhead principle
described in Section 3.1. Therefore, if all potential references to a local entity implicitly captured by a
lambda occur only within contract assertions attached to that lambda (precondition or postcondition
specifiers on its declarator or assertion statements inside its body), the program is ill-formed:

static int i = 0;

void test() {
auto f1 = [=] pre(i > 0) { // OK, no local entities are captured.
};

int i = 1;
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auto f2 = [=] pre(i > 0) { // error, cannot implicitly capture i here
};

auto f3 = [i] pre(i > 0) { // OK, i is captured explicitly.
};

auto f4 = [=] {
contract_assert(i > 0); // error, cannot implicitly capture i here

};

auto f5 = [=] {
contract_assert(i > 0); // OK, i is referenced elsewhere.
(void)i;

};

auto f6 = [=] pre([]{
bool x = true;
return [=]{ return x; }(); // OK, x is captured implicitly.

}()) {};
}

3.5 Evaluation and Contract-Violation Handling

3.5.1 Point of Evaluation

All precondition assertions attached to a function are evaluated after the initialization of function
parameters and before the evaluation of the function body begins. Note that what this means for
constructors and destructors can contain subtleties; see Section 3.6.2.

All postcondition assertions attached to a function are evaluated after the return value has been
initialized and local automatic variables have been destroyed but prior to the destruction of function
parameters. Multiple precondition or postcondition assertions are evaluated in the order in which
they are declared.

An assertion statement will be executed at the point where control flow reaches the statement.

Precondition assertions, postcondition assertions, and assertion statements are therefore distin-
guished from one another by their points of evaluation, while (plain-language) preconditions and
postconditions are distinguished by who is responsible for ensuring that they are true, the caller or
the callee (see Section 2.1). In most cases, precondition and postcondition assertions are used to
check preconditions and postconditions, respectively, but this is not necessarily always the case. In
some cases, in order to check a (plain-language) precondition, one might use an assertion statement
at the beginning of a function body (for example, to insulate the check from the caller if it is
considered to be an implementation detail), or even a postcondition assertion (for example, because
the precondition predicate can be evaluated algorithmically more efficiently after having evaluated
the function body first).
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3.5.2 Evaluation Semantics: ignore, observe, enforce, quick_enforce

Each evaluation of a contract assertion — during run time as well as for evaluations during
constant evaluation (at compile time) — is done with a specific evaluation semantic, which may or
may not evaluate the predicate. Four different evaluation semantics are provided: ignore, observe,
enforce, or quick_enforce. An implementation may provide additional evaluation semantics, with
implementation-defined behavior, as a vendor extension.

The ignore semantic does not perform a contract check; it is therefore called a non-checking
semantic. When a contract assertion is evaluated with the ignore semantic, there is no effect. Note
that predicate is still parsed and is a potentially evaluated expression; i.e., it ODR-uses entities that
it references. Therefore, it must always be a well-formed, evaluable expression (see Section 3.6.6 for
how this behaviour differs from that of an assert macro that is disabled by defining NDEBUG).

The observe, enforce, and quick_enforce semantics perform a contract check to identify contract
violations; they are therefore called checking semantics. A contract check may result in a contract
violation being identified; see Section 3.5.4 for a description of how a contract check is performed.

If no contract violation is identified, program execution will continue from the point of evaluation of
the contract assertion.

If a contract violation is identified at runtime:

• The observe semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, program execution will continue from the point of evaluation of the
contract assertion.

• The enforce semantic will invoke the contract-violation handler; if the contract-violation
handler returns normally, the program is terminated in an implementation-defined fashion.

• The quick_enforce semantic will not invoke the contract-violation handler, but instead imme-
diately terminate the program in an implementation-defined fashion.

Note that the fashion of termination can be different for different contract assertion evaluations in
the same program. For example, it is a conforming implementation of the quick_enforce semantic
to call __builtin_trap() when the predicate evaluates to false, but to call std::terminate when
evaluation of the predicate exits via an exception.

If a contract violation is identified at compile time (during constant evaluation):

• The observe semantic will issue a diagnostic (a warning);

• The enforce and quick_enforce semantics will render the program ill-formed.

See Section 3.5.9 for more details on constant evaluation of contract assertions.

The enforce and quick_enforce semantics are collectively called enforcing semantics because they
do not allow program execution to continue past an identified contract violation.

3.5.3 Selection of Semantics

The semantic a contract assertion will have when evaluated is implementation-defined. The selection
of semantic (ignore, observe, enforce, or quick_enforce) may happen at compile time, link time,
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load time, or run time. In practice, the choice of semantics will most likely be controlled by a
command-line option to the compiler, although platforms might provide other avenues for selecting
a semantic, and the exact forms and flexibility of this selection are not mandated by this proposal.

Different contract assertions can have different semantics, even in the same function. The same
contract assertion may even have different semantics for different evaluations. Chains of consecutive
evaluations of contract assertions may have individual contract assertions repeated any number of
times (with certain restrictions and limitations; see Section 3.5.5) and may involve evaluating the
same contract assertion with different evaluation semantics.

The semantic a contract assertion will have when evaluated cannot be identified through any
reflective functionality of the C++ language. Branching at compile time based on whether a contract
assertion will be checked or unchecked, or which concrete semantic it will have when evaluated, is
therefore not possible. This is another important difference between contract assertions and the
assert macro (see Section 3.6.6).

We expect that implementations will provide appropriate compiler flags to choose the evaluation
semantics assigned to contract assertions, and that these flags can vary across translation units.
Whether the contract assertion semantic choice for runtime evaluation can be delayed until link or
run time is also, similarly, likely to be controlled through additional compiler flags.

We recommend that an implementation provide modes to set all contract assertions to have, at
translation time, the enforce or the ignore semantic for runtime evaluation.

We recommend that a contract assertion will have the enforce semantic at run time when nothing
else has been specified by a user. Compiler flags like -DNDEBUG, -O3, or similar are understood to
perhaps be considered to be “doing something” to indicate a desire to prefer speed over correctness,
and these flags are certainly conforming decisions. The ideal practice, however, is to make sure that
the beginner student, when first compiling software in C++, does not need to understand Contracts
to benefit from the aid that will be provided by notifying that student of their own mistakes.

A compiler may offer separate compiler flags for selecting a evaluation semantic for constant
evaluation, e.g., if the user wishes to ignore contracts at compile time to minimize compile times
but still perform contract checks at run time. A reasonable default configuration for an optimized
Release build might be to enforce contract assertions at compile time but to ignore them at run time
(to maximize runtime performance with C++’s usual disregard for moderate increases in compile
time).

3.5.4 Checking the Contract Predicate

When a contract assertion is being evaluated with a checking semantic, a contract check is performed
to determine the result of evaluating the contract predicate.

If the result of the predicate can be determined, two possible results appear.

1. The predicate evaluates to true.

2. The predicate evaluates to false.

If the predicate evaluates to true, no contract violation has been identified. Execution will continue
normally after the point of evaluation of the contract assertion.
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If the predicate evaluates to false, a contract violation has been identified. The contract-violation
handling process will be invoked; if the contract violation occurs at run time, the contract-violation
handler will be called with the value predicate_false for detection_mode (see Section 3.5.8).

If evaluation of the predicate does not produce a value, two more possible outcomes of the contract
check appear.

3. Control remains in the purview of the contract-checking process. This occurs when

• evaluation of the predicate exits via an exception

• evaluation of the predicate happens as part of constant evaluation, i.e., at compile time,
and the predicate is not a core constant expression, i.e., cannot be evaluated at compile
time (see Section 3.5.9).

4. Control never returns to the purview of the contract-checking process. This occurs when

• evaluation of the predicate enters an infinite loop or suspends the thread indefinitely

• evaluation of the predicate results in a call to longjmp

• evaluation of the predicate results in program termination

In this paper, we made the decision to refer to case 3 as a form of contract violation,7 and the
contract-checking process will treat it as such. When this happens because of a thrown exception
at run time, the contract-violation handler will be called with the value evaluation_exception for
detection_mode.

In case 4, any effects of the incomplete evaluation of the predicate, such as a call to longjmp or
program termination, happen according to the normal rules of the C++ language.

3.5.5 Consecutive and Repeated Evaluations

A vacuous operation is one that should not, a priori, be able to alter the state of a program that a
contract could observe and thus could not induce a contract violation. Examples of such vacuous
operations include

• doing nothing, such as an empty statement

• performing trivial initialization, including trivial constructors and value-initializing scalar
objects

• performing trivial destruction, including destruction of scalars and invoking trivial destructors

• initializing reference variables

• transfer of control via function invocation or a return statement, though note the corresponding
function parameter and result value initialization might not be vacuous

7This situation possibly occurs when the actual plain-language contract has not been violated, such as when
evaluation of the predicate hits a resource limit that the actual function invocation will not hit. In such situations, we
still treat this as a runtime contract violation and defer to the contract-violation handler to make a determination as
to what the proper next course of action will be.
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Two contract assertions shall be considered consecutive when they are separated only by vacuous
operations. A contract-assertion sequence is a sequence of consecutive contract assertions. These
will naturally include checking

• all precondition assertions on a single function when invoking that function

• all postcondition assertions on a single function when that function returns normally

• consecutive assertion statements

• the precondition assertions of a function and any assertion statements that are at the beginning
of the body of that function

• the precondition assertions of a function f1 and the precondition assertions of the first function
f2 invoked by f1, when all statements preceding the invocation of f2 and preparing the
arguments to the invoked function f2 involve only vacuous operations

• the postcondition assertions of a function f1 and the precondition assertions of the next
function f2 invoked immediately after f1 returns, when the destruction of the arguments of f1
and the preparation of the arguments of f2 involve only vacuous operations

At any point within a contract-assertion sequence, any previously evaluated contract assertions may
be evaluated again, with the same or a different evaluation semantic,8 up to an implementation-
defined number of times.

As a recommended practice, an implementation should provide an option to perform a specified
number of repeated evaluations for contract assertions. By default, no additional repetitions should
be performed, i.e. each contract assertion should be evaluated exactly once.

In practice, the above rules mean that the preconditions and postconditions of a function may be
evaluated, as a group, any number of times. Evaluations still, however, occur in sequence, and thus
later contract assertions will never be evaluated until after earlier ones are evaluated. For example,
consider this function:

void f(int *p)
pre( p != nullptr ) // precondition 1
pre( *p > 0 ); // precondition 2

An invocation of f will always evaluate precondition 1 first. After that, precondition 1 may be repeated
any time later during the sequence. Precondition 2 will always be evaluated after precondition 1 has
been evaluated at least once, and after that, 2 too may be evaluated again. On many platforms, the
simplest sequence 1 – 2 will be evaluated, with each precondition being evaluated exactly once, in
order. In other situations, where both caller-side and callee-side checking is being performed, the
sequence 1 – 2 – 1 – 2 will be evaluated. Beyond those most common cases, the following sequences
of evaluation are conforming:

1 – 1 – 2
1 – 2 – 2
1 – 2 – 2 – 1, ...

8Note that an equivalent formulation is that the entire sequence of contract assertions already evaluated up to a
point may be repeated with an arbitrary subset of those contract assertions evaluated with the ignore semantic.
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while the following are not:

2 – 1,
2 – 2,
1,
1 – 1, ...

Repeated evaluations may also be done with different semantics, allowing a compiler to emit checks
of related contracts (such as a precondition and a postcondition that relate to the same data)
adjacent to one another, possibly resulting in the ability to elide one or both when they can be
statically proven to hold.

Note that there is a distinction between evaluating a contract assertion and evaluating its predicate.
Evaluating a contract assertion with the ignore semantic also counts as an evaluation of the contract
assertion, even though its predicate is not evaluated.

3.5.6 Predicate Side Effects

The predicate of a contract assertion is an expression that, when evaluated, follows the normal C++
rules for expression evaluation. It is therefore allowed to have observable side effects, such as logging.

If the compiler can prove that evaluation of the predicate would result in the values true or false
(i.e., it cannot throw an exception, cause a call to longjmp, or program termination), the compiler is
allowed to elide all the side effects of evaluating the predicate. In other words, the compiler may
generate a side-effect-free expression that provably produces the same result as the predicate and
may evaluate that expression instead of the predicate. By evaluating this replacement expression,
the compiler effectively elides the evaluation of the entire predicate, resulting in no side effects of
the predicate occurring. This ability to replace an expression that has side effects with one that has
none applies only to the entire predicate; i.e., either all or none of the side effects of the predicate
expression will be observed. The compiler may also not introduce new side effects.

As with many other allowed program transformations, this replacement of the predicate with a
side-effect-free expression must be equivalent for only evaluations with well-defined behavior. In
other words, the replacement predicate may have undefined behavior when the actual predicate
would.

If the compiler cannot prove that evaluation of the predicate will not exit via an exception, then
the compiler is not allowed to elide the evaluation of the predicate because the thrown exception
must be available via std::current_exception in the contract-violation handler (see Section 3.5.8).

Likewise, if the compiler cannot prove that evaluation of the predicate will not call longjmp or
cause program termination, then the compiler is not allowed to elide the evaluation of the predicate
because, during predicate evaluation, such calls are guaranteed to happen as normal.

Further, as described in Section 3.5.5, contract predicates may be evaluated repeatedly within a
chain, even a chain of a single contract assertion. Therefore, in general, observable side effects of the
predicate evaluation may happen zero, one, or many times:

int i = 0;
void f() pre ((++i, true));
void g() {
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f(); // i may be 0, 1, 17, etc.
}

If the chosen semantic for these preconditions is observe and the contract-violation handler returns
normally on each violation, multiple violations might result:

int i = 0;
void f() pre ((++i, false));
void g() {

f(); // i may be any value; the contract−violation handler
// will be invoked at most that number of times.

}

In other cases, if the compiler cannot prove that true and false are the only results possible,
it cannot check the contract assertion without evaluating the contract predicate. In such cases,
observable side effects of the predicate evaluation must happen at least once but may happen many
times:

int i = 0;
void f() pre ((++i, throw true));
void g() {

f(); // i may be 1, 2, 17, etc. The same number of contract violations
// will be reported to the contract−violation handler.

}

Since one cannot rely on the side effects of predicate evaluation happening any particular number of
times or at all, the use of contract predicates with side effects is generally discouraged. Note that if
the predicate is a side-effect-free expression, neither elision nor repetition of evaluating the predicate
is observable, and a contract check that does not result in a violation is, therefore, as-if-equivalent
to evaluating the predicate once.

3.5.7 The Contract-Violation Handler

The contract-violation handler is a function named ::handle_contract_violation that is attached
to the global module and has C++ language linkage. This function will be invoked when a contract
violation is identified at run time.

This function

• shall take a single argument of type const std::contracts::contract_violation&

• shall return void

• may be noexcept

The implementation shall provide a definition of this function, which is called the default contract-
violation handler and has implementation-defined effects. The recommended practice is that the
default contract-violation handler will output diagnostic information describing the pertinent
properties of the provided std::contracts::contract_violation object. The Standard Library
provides no user-accessible declaration of the default contract-violation handler, and users have
no way to call it directly. Whether the default contract-violation handler itself is noexcept is
implementation-defined, though the recommended implementation certainly could be.
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Whether ::handle_contract_violation is replaceable is implementation-defined. When it is replace-
able, that replacement is done in the same way it would be done for the global operator new
and operator delete, i.e., by defining a function with the correct signature (function name and
argument type) and return type that satisfies the requirements listed above. Such a function is
called a user-defined contract-violation handler.

A user-provided contract-violation handler may have any exception specification; i.e., it is free to
be noexcept(true) or noexcept(false). Enabling this flexibility is a primary motivation for not
providing any declaration of ::handle_contract_violation in the Standard Library; whether that
declaration was noexcept would force that decision on user-provided contract-violation handlers, like
it does for the global operator new and operator delete, which have declarations that are noexcept
provided in the Standard Library.

On platforms where there is no support for a user-defined contract-violation handler, providing
a function with the signature and return type needed to attempt to replace the default contract-
violation handler is ill-formed, no diagnostic required. Platforms can therefore issue a diagnostic
informing a user that their attempt to replace the contract-violation handler will fail on their
chosen platform. At the same time, not requiring such a diagnostic allows use cases like compiling a
translation unit on a platform that supports user-defined contract-violation handlers but linking
it on a platform that does not, without forcing changes to the linker to detect the presence of a
user-defined contract-violation handler that will not be used.

3.5.8 The Contract-Violation Handling Process

When a contract violation (see Section 3.5.4) is identified at run time, the contract-violation handling
process will be invoked. An object of type std::contracts::contract_violation will be produced and
passed to the violation handler. This object provides information about the contract violation that
has occurred via a set of property functions such as location (returning a source_location associated
with the contract violation), comment (returning a string with a textual representation of the contract
predicate), assertion_kind (the kind of contract assertion — pre, post, or contract_assert), and
semantic (the evaluation semantic of the contract assertion that caused the contract violation). This
API is described in more detail in Section 3.7.

The manner in which this contract_violation object is produced is unspecified other than that
the memory for it is not allocated via operator new (similar to the memory for exception objects).
This object may already exist in read-only memory, or it may be populated at run time on the
stack. The lifetime of this object will continue at least through the point at which the violation
handler completes execution. The same lifetime guarantee applies to any objects accessible through
the contract_violation object’s interface, such as the string returned by the comment property.

Further, if the contract violation was caused by the evaluation of the predicate exiting via an exception,
the contract-violation handler is invoked as-if from within a handler for that exception generated by
the implementation. Therefore, inside the contract-violation handler, that exception is the currently
handled exception and is available via std::current_exception. Since the exception is considered
to be handled by the contract-violation handler, it will not be rethrown automatically when the
contract-violation handler returns, but the user can do so manually using std::rethrow_exception.
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For expository purposes, assume that we can represent the process with some magic compiler
intrinsics.

• std::contracts::evaluation_semantic __current_semantic() — Return the semantic with
which to evaluate the current contract assertion. This intrinsic is constexpr; i.e., it may be
called either during constant evaluation (see Section 3.5.9) or at run time. The result may be a
compile-time value (e.g., controlled by a compiler flag or a platform-specific annotation on the
contract assertion) or, for a contract evaluation at run time, may even be a value determined
at run time based on what the platform provides.

• __check_predicate(X) — Determine the result of the predicate X at run time either by
returning true or false if the result does not need evaluation of X or by evaluating X (and
thus potentially also invoking longjmp, terminating execution, or letting an exception escape
the invocation of this intrinsic).

• __handle_contract_violation(evaluation_semantic, detection_mode) — Handle a runtime
contract violation of the current contract. This intrinsic will produce a contract_violation ob-
ject populated with the appropriate location and comment for the current contract, along with
the specified semantic and detection mode. The lifetime of the produced contract_violation
object and all of its properties must last through the invocation of the contract-violation
handler.

Building from these intrinsics, the evaluation of a contract assertion is notionally equivalent to the
following exposition-only pseudocode:

evaluation_semantic _semantic = __current_semantic();
if (evaluation_semantic::ignore == _semantic) {

// Do nothing.
}
else if (evaluation_semantic::observe == _semantic

|| evaluation_semantic::enforce == _semantic
|| evaluation_semantic::quick_enforce == _semantic)

{
// checking semantic

if consteval {
// See Section 3.5.9.

}
else {

// exposition−only variables for control flow
bool _violation; // Violation handler should be invoked.
bool _handled = false; // Violation handler has been invoked.

// Check the predicate and invoke the violation handler if needed.
try {

_violation = __check_predicate(X);
}
catch (...) {

if (evaluation_semantic::quick_enforce == _semantic) {
std::terminate(); // implementation−defined program termination

} else {
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// Handle violation within exception handler.
_violation = true;
__handle_contract_violation(_semantic,

detection_mode::evaluation_exception);
_handled = true;

}
}
if (_violation && evaluation_semantic::quick_enforce == _semantic) {

__builtin_trap(); // implementation−defined program termination
}
if (_violation && !_handled) {

__handle_contract_violation(_semantic,
detection_mode::predicate_false);

}

if (_violation && evaluation_semantic::enforce == _semantic) {
abort(); // implementation−defined program termination

}
}

}
else {

// implementation−defined _semantic
}

If the semantic is known at compile time to be ignore, the above is functionally equivalent to
sizeof( (X) ? true : false ); — i.e., the expression X is still parsed and ODR-used but it is only
used on discarded branches.

The invocation of the contract-violation handler when an exception is thrown by the evaluation
of the contract assertion’s predicate must be done within the compiler-generated catch block for
that exception. The invocation when no exception is thrown must be done outside the compiler-
generated try block that would catch that exception. There are many ways in which these could be
accomplished, the exposition-only boolean variables above are just one possible solution.

One important takeaway from having the semantic of evaluation being effectively unspecified until
run time is that, unlike a macro-based solution, a contract assertion’s definition is the same even
though individual evaluations may have different semantics. This means that an implementation
which supports mixing translation units where contract assertions are configured to have different
semantics is not, in and of itself, an ODR violation.9

3.5.9 Compile-Time Evaluation

Contract assertions may be evaluated during constant evaluation (at compile time). During constant
evaluation, the four possible evaluation semantics have the following meaning.

9This is possible because multiple versions of the same function with different evaluation semantics in different
TUs may result in a different instruction stream, but do not result in a different token sequence. The situation is
somewhat similar to multiple versions of the same inline function being optimised differently in different TUs, which is
not an ODR violation either.
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• ignore — Nothing happens during constant evaluation; the contract expression must still be a
valid expression that might ODR-use other entities.

• observe —Constant-evaluate the predicate; if a contract violation occurs, a diagnostic (warning)
is emitted.

• enforce and quick_enforce — Constant-evaluate the predicate; if a contract violation occurs,
the program is ill-formed.

Constant evaluation of the predicate can have one of three possible outcomes.

1. The result is true. — No contract violation.

2. The result is false. — Contract violation.

3. The predicate is not a core constant expression. — Contract violation.

To satisfy the “Concepts Do Not See Contracts” design principle described in Section 3.1, the
presence of a contract assertion must not alter whether containing expressions are or are not eligible
to be constant expressions, particularly because it is possible to SFINAE on whether an expression
is a core constant expression. Therefore, evaluating a contract assertion never makes an expression
ineligible to be a core constant expression, although its predicate being ineligible to be evaluated
will result in a contract violation.10

A special rule is applied to potentially constant variables that are not constexpr, such as variables
with static or thread storage duration and non-volatile const-qualified variables of integral or
enumeration type. Such variables may be constant-initialized (at compile time) or dynamically
initialized (at run time) depending on whether the initializer is a core constant expression:

int compute_at_runtime(int n); // not constexpr

constexpr int compute(int n) {
return n == 0 ? 42: compute_at_runtime(n);

}

void f() {
const int i = compute(0); // constant initialization
const int j = compute(1); // dynamic initialization

}

In such cases, the compiler firsts determines whether the initializer is a core constant expression by
performing trial evaluation11 with all contract assertions ignored. (Therefore, contract assertions
cannot trigger a contract violation during trial evaluation or otherwise influence the determination
performed by the trial evaluation.) If and only if this trial evaluation determines that the expression
is a core constant expression, then the variable is constant-initialized and its initializer is now a
manifestly constant-evaluated context.

10This situation is conceptually somewhat similar to evaluation of the predicate exiting with an exception: it possibly
occurs when the actual plain-language contract has not been violated, but we cannot tell because we cannot evaluate
the contract predicate. We still treat this case as a compile-time contract violation.

11Trial evaluation is performed notionally (as specified in [expr.const]). In practice, an implementation is allowed to
perform the constant evaluation of the initializer in one step as long as the result is the same.
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For any manifestly-constant evaluated context (including the initialization of constexpr variables,
template parameters, array bounds, and variables where trial evaluation has determined that the
variable is constant-initialized), the expression is then evaluated with the contract assertions having
the semantics ignore, observe, enforce, or quick_enforce chosen in an implementation-defined manner.
This evaluation behaves normally with regard to possible contract violations.

This rule is again derived from the “Zero Overhead” principle in Section 3.1. In the example
above, adding a contract assertion to compute (i.e., when called with 0) must not silently flip the
initialization of i from constant to dynamic, thereby changing the semantics of the program. By
the same token, if compute is already not a core constant expression and is evaluated at run time
(i.e., when called with a value other than 0), a contract assertion must not lead to it instead being
evaluated at compile time and causing a compile-time contract violation. This rule avoids aggressive
enforcement of contract checks at compile time for functions that would otherwise be evaluated
at run time (at which point the contract check might succeed). Consider adding the following
precondition assertion:

constexpr int compute(int n)
pre (n == 0 || !std::is_constant_evaluated()) // passes for both i and j

{
return n == 0 ? 42: compute_at_runtime(n);

}

void f() {
const int i = compute(0); // constant initialization
const int j = compute(1); // dynamic initialization

}

The above precondition check would fail for j if it were evaluated at compile time. However,
compute is not evaluated at compile time for j because trial evaluation (which does not consider
contract annotations) determines that compute(1) is not a core constant expression (due to the
call to compute_at_runtime), and j will, therefore, be initialized at run time, at which point the
precondition passes. The above program, therefore, contains no contract violations.

If trial evaluation (with all contract assertions ignored) determines that the initializer is a core
constant expression, and the variable is constant-initialized with all contract assertions checked in a
manifestly constant-evaluated context, and any such constant-evaluated predicate then causes the
initializer to no longer be a core constant expression, the program is ill-formed:

constexpr int foo(int i) {
return i == 0 ? 0 : throw 0; // error: not a core constant expression

}

constexpr int bar(int * p)
pre((*p = 1)) {
return foo(*p);

}

constexpr int baz(int i) {
return bar(&i);

}
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static int x = baz(0); // constant initialization

The rules regarding elision and duplication of side effects described in Section 3.5.6 apply equally
during constant evaluation:

constexpr int f(int i)
pre ((++const_cast<int&>(i), true)) {
return i;

}

inline std::size_t g() {
int a[f(0)];
return a.size(); // may be 0, 1, 17, etc.

}

In the above example, different translation units might have different declarations for the array a,
resulting in multiple distinct definitions — an ODR violation — for the function g. Considering that
such ODR violations happen only when function contract assertions are already unwisely jumping
through const_cast hoops to modify function parameters; this is a recognized but insignificant
concern. Note further that even without the possibility to elide or duplicate side effects, the ODR
violation would still occur because the type of a would still depend on whether the contract assertion
would be evaluated with a checking or non-checking evaluation semantic when determining the size
of the array a.

3.6 Noteworthy Design Consequences

3.6.1 Undefined Behavior

As stated in the design principles in Section 3.1, the design of this proposal has deliberately not
introduced any new explicitly undefined behavior into the C++ language and, we hope, fails to
introduce any other undefined behavior through new holes in the specification.

At the same time, since contract predicates follow the existing rules for evaluating C++ expressions,
no special protection is offered against the evaluation of a predicate expression that has undefined
behavior due to these existing rules. In other words, if a contract assertion is evaluated with a
checking semantic and the resulting predicate evaluation has undefined behavior, then the evaluation
of the contract assertion itself has undefined behavior. Consider:

int f(int a) { return a + 100; }
int g(int a) pre (f(a) > a);

In this program, the compiler is allowed to assume that the signed integer addition inside f will
never overflow (because this would be undefined behavior) and replace the precondition assertion of
g with pre(true), or in other words, elide the precondition assertion entirely, even if the evaluation
semantic is enforce or quick_enforce.

With regard to undefined behavior occurring elsewhere after a contract assertion has been checked,
the contract assertion does not formally constitute an optimization barrier that guards against
so-called time-travel optimization since the C++ Standard does not specify such things. Consider:
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int f(int* p) pre ( p != nullptr ) {
std::cout << *p; // undefined behavior

}

int main() {
f(nullptr);

}

This program has defined behavior if the evaluation semantic chosen for the precondition is enforce
or quick_enforce; a contract violation occurs, and control flow will not continue into the function.
If the selected semantic is ignore, this program will have undefined behavior; control flow will
always reach the null pointer dereference within f. If the semantic is observe, the program will have
undefined behavior when the contract-violation handler returns normally. Even though observe is a
checking semantic, the implementation is theoretically allowed to optimize out the contract check
when it can determine that the contract-violation handler will return normally. We do not expect
this to occur in practice since the contract-violation handler will generally be a function defined in
a different translation unit, acting as a de facto optimization barrier.

We hope that, should the Standard adopt an optimization barrier such as std::observable() from
[P1494R2], that barrier will be implicitly integrated into all contract assertions evaluated with the
observe semantic. More specifically, returning normally from the contract-violation handler when it
is invoked by a contract assertion being evaluated with the observe semantic will be an obsevable
checkpoint in the nomenclature of [P1494R2].

3.6.2 Constructors and Destructors

Constructors and destructors both follow the same rules as for regular function invocations such
that precondition and postcondition assertions are evaluated as control transfers in and out of the
constructor or destructor. Clarity about what this means is important.

Two cases are worth calling out because they provide a place where user-provided code will be
evaluated where none was explicitly possible before.

1. The precondition assertions of a constructor are evaluated before the complete function body,
which includes the function-try block and member initializer list.

2. The postcondition assertions of a destructor are evaluated before returning to the caller and
thus occur after the destruction of all members and base classes.

During the above situations, members, bases, and the object itself are not within their lifetimes;
accessing any of these or doing anything that depends on the dynamic type of these objects (such
as dynamic_cast, typeid, invoking a virtual member function, or accessing a member of a virtual
base class) will, therefore, have undefined behavior. The value of this as a location for the storage
of the object about to be constructed or already destroyed is still, however, quite useful for many
contract assertions.

For the remaining function contract assertions of constructors and destructors (postconditions
of constructors and preconditions of destructors), the dynamic type of this is not known. When
evaluating these function contract assertions, the same rules for the dynamic type apparent during
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the constructor or destructor body apply to the function contract assertion, namely that it will be
the constructor’s or destructor’s class, not the class of the complete object:

struct B { virtual ~B(); } // polymorphic base

template <typename Base>
struct D : public Base {}; // generic derived class

struct C : public B {
C()

post( typeid(*this) == typeid(C) ) // Type is always C here.
post( dynamic_cast<C* >(this) == this ) // This dynamic_cast works.
post( dynamic_cast<D<C>*>(this) == nullptr ); // Never derived class here.

~C()
pre( typeid(*this) == typeid(C) ) // same as above
pre( dynamic_cast<C* >(this) == this )
pre( dynamic_cast<D<C>*>(this) == nullptr );

};

3.6.3 Friend Declarations Inside Templates

As described in Section 3.3.1, if a function has function contract assertions, then the function
contract specifiers introducing these assertions need to be placed on every first declaration (i.e.,
every declaration from which no other declaration is reachable) but can be omitted on redeclarations.
However, in certain situations, reasoning about which declarations are first declarations and which
are redeclarations can be difficult because the notion of first declaration is defined via reachability
and has nothing to do with which declaration appears lexically first in a given translation unit. One
particularly interesting case are friend declarations inside templates.

According to the existing language rules for templates, a friend declaration of a function inside a
template becomes reachable only from the point at which the template is instantiated. Consider
a program that has multiple templates declaring the same function as a friend and a separate
declaration of that function, all located in different headers:

// x.h
template <typename T>
struct X {

friend void f() pre (x); // 1
};

// y.h
template <typename T>
struct Y {

friend void f() pre (x); // 2
};

// f.h
void f() pre (x); // 3

Now consider an implementation file that makes use of these headers:

39



#include <x.h>
#include <y.h>
int g() {

Y<int> y1; // 4
Y<long> y2; // 5
X<int> x; // 6

}
#include <f.h>

A number of things worth noting happen here.

• At 4, the definition of Y<int> is instantiated and the friend declaration located at 2 is
instantiated as part of that friend declaration. Since no other definition of f is reachable at
this point, 2 is a first declaration for f.

• At 5, the definition of Y<long> is instantiated and the friend declaration located at 2 is
instantiated again, this time as a redeclaration of f. Since f has a precondition specifier, that
specifier is compared to the previous declaration of f, and we determine that the specifiers
match (they are, after all, from the same line of code).

• At 6, the definition of X<int> is instantiated and the friend declaration located at 1 is
instantiated. This is a redeclaration since the two declarations instantiated from 2 are both
reachable.

• At 3, included after the definition of g, we finally have a namespace-scope declaration of f
with three reachable declarations of f appearing prior to it in our translation unit, and thus
they must match.

Another translation unit might instantiate X and Y in different orders, resulting in 1 potentially
being a first declaration. Including <f.h> prior to <x.h> and <y.h> will result in the declaration at 3
always being the first declaration. Thus, the small change of adding #include <f.h> to the start of
x.h and y.h will result in 3 always being the first declaration across all translation units.

If the precondition specifier is omitted from any declaration of f that might be a first declaration
in some translation unit, then the program will be ill-formed (unless the precondition specifier is
removed from all declarations of f). If that same translation unit includes a declaration with the
precondition specifier later, a diagnostic is required; otherwise, it is not.

To avoid cases that are hard to reason about, always doing one of the following is recommended
when using a friend declaration of a function with function contract assertions inside a template.

• Befriend functions that have reachable declarations, such that the friend declaration will
always be a redeclaration.

• Duplicate the function contract specifiers on each friend declaration.

• Make the function a hidden friend; i.e., the friend declaration is the only declaration of the
function and is also a definition.
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3.6.4 Recursive Contract Violations

No dispensation is provided to disable contract checking during the evaluation of a contract assertion’s
predicate or the evaluation of the contract-violation handler; in both cases, contract checks behave as
usual. Therefore, if a contract-violation handler calls a function containing a contract assertion that
is violated and this contract assertion is evaluated with a checking semantic, the contract-violation
handler will be called recursively.

The user is responsible for handling this case explicitly if they wish to avoid overflowing the call stack.
Identifying and preventing such recursion would require the overhead of a thread-local variable,
and so we do not impose such additional complexity on all users of contracts. A user-defined
contract-violation handler could, however, prevent such recursion like this:

void handle_contract_violation(const contract_violation& violation)
{

thread_local bool handling = false;
if (handling) {

// violation encountered recursively.
std::abort();

}
handling = true;

// ... do what needs to be done on a violatoin

handling = false;
}

3.6.5 Throwing Violation Handlers

No restrictions are placed on what a user-defined contract-violation handler is allowed to do. In
particular, a user-defined contract-violation handler is allowed to exit other than by returning, e.g.,
terminating, calling longjmp, and so on. In all cases, evaluation happens as described above. The
same applies to the case in which a user-defined contract-violation handler that is not noexcept
throws an exception:

void handle_contract_violation(const std::contracts::contract_violation& v) {
throw my_contract_violation_exception(v);

}

Such an exception will escape the contract-violation handler and unwind the stack as usual until it
is caught or control flow reaches a noexcept boundary. Such a contract-violation handler, therefore,
bypasses the termination of the program that would occur when the contract-violation handler
returns from a contract assertion evaluation with the enforce semantic.

For contract violations inside function contract assertions, the contract-violation handler is treated
as if the exception had been thrown inside the function body. Therefore, if the function in question
is noexcept, a user-defined contract-violation handler that throws an exception from a precondition
or postcondition check results in std::terminate being called, regardless of whether the semantic is
enforce or observe.
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3.6.6 Differences Between Contract Assertions and the assert Macro

Contract assertions are not designed as a drop-in replacement for the assert macro or similar
assertion macros. Apart from the obvious difference that pre and post are part of a function
declaration, which is not possible with a macro, even contract_assert behaves differently from
assert in numerous ways.

First, macro assert can be used as an expression, for example:
const int j = (assert(i > 0), i);

On the other hand, contract_assert is a statement. A possible workaround is to wrap contract_assert
into an immediately-invoked lambda, which makes it usable in places that require an expression
(see Section 3.2.2):

const int j = ([i]{ contract_assert(i > 0); }(), i);

or, perhaps more idiomatically,
const int j = [i]{ contract_assert(i > 0); return i; }();

In other cases, such usages of assertions are better expressed with a precondition assertion. For
example, an assertion subexpression in the member initializer list of a constructor can be better
expressed with a precondition assertion on that constructor.

Second, local entities in contract predicates are implicitly const to discourage contract predicates
that have observable side effects. One consequence is that predicates that attempt to modify a local
variable will compile in an assert macro but not in a contract assertion. Further, due to the implicit
const, the predicate in a contract assertion can yield different overload resolution results (and thus
semantics) from the predicate in a assert macro (see Section 3.4.2). A possible workaround for both
issues is to use const_cast.

Third, in a disabled assert macro (when NDEBUG is defined), all tokens are simply removed by
the processor. On the other hand, contract assertions having the ignore semantic do not evaluate
any code, yet the predicate expression is still parsed and the entities inside are ODR-used (see
Section 3.5.2). Therefore, in a contract assertion, the predicate always needs to be a well-formed,
evaluable expression, even if checks are disabled. The primary benefit of this behavior is that the code
within the contract assertion cannot become uncompilable at any time — a common problem with
macro-based assertion facilities that can lead to libraries where too much technical debt prevents
any attempt to re-enable assertions after a period of their not being used. In addition, treating the
predicate in a consistent fashion independently of the semantic with which it is evaluated helps to
ensure that we do not need to treat distinct choices of semantics as an ODR violation.

Fourth, with macro assert, it is possible to declare entities that will only exist when checks are
enabled, using an #ifndef NDEBUG block:

#ifndef NDEBUG
DebugThingy myDebugThingy;

#endif
// ...
assert(myDebugThingy.ok());
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On the other hand, Contracts do not provide any mechanism to provide declarations of variables or
other code that is conditional on whether contract checks are enabled or on whether a particular
contract assertion will be checked. Following the design principles in Section 3.1, the evaluation
semantic of any contract assertion is unknowable at compile time to discourage contract assertions
from modifying the compile-time semantics of the program they are supposed to observe. That said,
we do expect an alternative mechanism to be proposed in a future extension for providing code
that supports the evaluation of contract assertions in a similar fashion to blocks guarded by the
preprocessor in current usages of assert while being compatible with the above design principle.

Fifth, the predicate in an assert macro is evaluated either zero times (when NDEBUG is defined)
or exactly once (when it is not). On the other hand, contract assertions do not provide such a
guarantee: checked predicates might be evaluated any number of times (see Sections 3.5.5 and 3.5.6).
Therefore, depending on the side effects within a contract assertion happening exactly once when
the contract assertion is checked is not a correct use of the proposed Contracts facility.

Consider how one might use an assert macro to both increment a counter and check that it is
within some range like in the following example (a paraphrased code snippet from Clang):

#ifndef NDEBUG
unsigned nIter = 0;

#endif
while (keepIterating()) {

assert(++nIter < 6); // it is a bug if we end up iterating more than 6 times
// ...

}

The above example would not compile with the facility proposed here for several reasons: as
mentioned above, we do not provide any mechanism to conditionally control the declaration of
variables such as nIter based on whether a particular contract assertion will be evaluated, and in
addition, an attempt to modify the counter in a contract_assert would require a const_cast to
perform the modification. But more importantly, attempting to perform a side effect in a contract
assertion evaluation that is depended on in subsequent evaluations is ill-advised as there is no
guarantee on whether or how many times such a side effect might occur. Instead, the appropriate
transformation is to move the maintenance of values that the assertion depends upon outside of the
assertion itself, such that the predicate of the assertion becomes side-effect free:

unsigned nIter = 0;
while (keepIterating()) {

++nIter;
assert(nIter < 6); // it is a bug if we end up iterating more than 6 times
// ...

}

If needed, backwards-compatibility with the behaviour of the assert macro can be achieved for such
cases via an alternate macro that evaluates the expression outside of the contract assertion and has
the same relationship to NDEBUG as the existing assert macro, while still tying into the Contracts
facility proposed here in a consistent fashion:

#ifndef NDEBUG
#define MY_ASSERT(X) [](const bool b){ contract_assert(b); }(X)
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#else
#define MY_ASSERT(X) static_cast<void>(0)

#endif

The tradeoff of the above macro is that information about the predicate expression X will not be
propagated to the contract-violation handler, although it seems feasible for an implementation to
provide extra platform-specific mechanisms to achieve the same behaviour with better diagnostics.

3.7 Standard Library API

3.7.1 The <contracts> Header

A new header, <contracts>, is added to the C++ Standard Library. The facilities provided in
this header are all freestanding. They have a very specific intended usage audience: those writing
user-defined contract-violation handlers and, in future extensions, other functionality for customizing
the behavior of the Contracts facility in C++. Because these uses are not intended to be frequent,
everything in this header is declared in namespace std::contracts rather than namespace std. In
particular, including the <contracts> header is unnecessary for writing contract assertions.

The <contracts> header provides the following types and functions:
// all freestanding
namespace std::contracts {

enum class assertion_kind : unspecified {
pre = 1,
post = 2,
assert = 3
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

enum class evaluation_semantic : unspecified {
enforce = 1,
observe = 2,
// quick_enforce = 3, // not explicitly provided
// ignore = 4, // not explicitly provided
// assume = 5 // expected as a future extension
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

enum class detection_mode : unspecified {
predicate_false = 1,
evaluation_exception = 2,
/∗ to be extended with implementation−defined values and by future extensions ∗/
/∗ Implementation−defined values should have a minimum value of 1000. ∗/

};

class contract_violation {
// no user−accessible constructor; cannot be copied, moved, or assigned to
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public:
const char* comment() const noexcept;
detection_mode detection_mode() const noexcept;
assertion_kind kind() const noexcept;
std::source_location location() const noexcept;
evaluation_semantic semantic() const noexcept;

};

void invoke_default_contract_violation_handler(const contract_violation&);

}

3.7.2 Enumerations

Each enumeration used for values of the contract_violation object’s properties is defined in the
<contracts> header. All use enum class. The underlying type is unspecified, but needs to be large
enough to hold all possible values, including any implementation-defined extension values.

Fixed values for each enumerator are standardized to allow for portability, particularly for those
logging these values without the step of converting them to human-readable enumerator names.

The following enumerations are provided.

• enum class assertion_kind : unspecified — Identifies one of the three potential kinds of
contract assertion, with implementation-defined alternatives a possibility for when something
invokes the contract-violation handler outside the purview of a contract assertion with one of
those kinds:

– pre — A precondition assertion

– post — A postcondition assertion

– assert — An assertion statement

Implementation-defined values indicate other kinds of contract assertions that may be available
as a vendor extension.

• enum class evaluation_semantic : unspecified — A reification of the evaluation semantic
that can be chosen for the evaluation of a contract assertion:

– enforce and observe — These enumerators are provided explicitly as they can result in
the invocation of the contract-violation handler.

– ignore and quick_enforce — These enumerators are not provided explicitly as they can
never result in the invocation of the contract-violation handler.

Implementation-defined values indicate other evaluation semantics that may be available as a
vendor extension.

• enum class detection_mode : unspecified — An enumeration to identify the various mecha-
nisms via which a contract violation might be identified and the contract-violation handling
process might be invoked at run time:
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– predicate_false — To indicate that the predicate either was evaluated and produced a
value of false or the predicate would have produced a value of false if it were evaluated

– evaluation_exception — To indicate that the predicate was evaluated and an exception
escaped that evaluation; this exception is available in the contract-violation handler via
std::current_exception

Implementation-defined values indicate an alternate method provided by the implementation
in which a contract violation was identified.

Note that the enumerators pre and post match the contextual keyword that introduces the respective
contract assertion kind; however, assertions use assert for the enumerator but contract_assert for
the keyword as the latter needs to be a full keyword and therefore cannot be used as an enumerator
name. While the assert enumerator might appear to be in conflict with the function-like macro
of the same name defined in <cassert>, no issues will arise in practice since the enumerator will
not be used immediately prior to an opening parenthesis and, therefore, will not be expanded as
the function-like macro. Using precondition and postcondition has been explicitly avoided because
those terms refer to conditions based on responsibility (inside and outside of the function) and not
those based on points in time of checking.

For all of the above enumerations, any implementation-defined enumerators should have a minimum
value of 1000 and a name that is an identifier reserved for the implementation (starting with
double underscore or underscore followed by a capital letter) to avoid possible name clashes with
enumerators newly introduced in a future Standard.

3.7.3 The Class std::contracts::contract_violation

The contract_violation object is provided to the handle_contract_violation function when a
contract violation has occurred at run time. This object cannot be constructed, copied, moved, or
assigned to by the user. Whether it is polymorphic is implementation-defined. If it is polymorphic, the
primary purpose in being so is to allow for the use of dynamic_cast to identify whether the provided
object is an instance of an implementation-defined subclass of std::contracts::contract_violation.

The various properties of a contract_violation object are all accessed by const, non-virtual member
functions (not as named member variables) to maximize implementation freedom.

Each contract-violation object has the following properties.

• const char* comment() const noexcept — The value returned should be a null-terminated
multi-byte string (NTMBS) in the ordinary literal encoding; it is otherwise unspecified. We
recommmend that this value contain a textual representation of the predicate of the contract
assertion that has been violated. Providing the empty string, a pretty-printed, truncated
or otherwise modified version of the predicate, or some other message intended to identify
the contract assertion for the purpose of aiding in diagnosing the bug are all conforming
implementations. A conforming implementation may also allow users to select a mode where
an empty string is returned, in which case one could assume that this information is not
present in generated object files and executables.

• detection_mode detection_mode() const noexcept — The method by which a violation of the
contract assertion was identified

46



• assertion_kind kind() const noexcept — The kind of the contract assertion that has been
violated

• std::source_location location() const noexcept — The value returned is unspecified. That
the value be the source location of the caller of a function when a precondition is violated is
recommended. For other contract assertion kinds or when the location of the caller is not used,
we recommend that the source location of the contract assertion itself is used. Returning a
default-constructed source_location or some other value are all conforming implementations.
A conforming implementation may also allow users to select a mode based on whether a
meaningful value or a default-constructed value is returned.

• evaluation_semantic semantic() const noexcept — The semantic with which the violated
contract assertion was being evaluated

3.7.4 The Function invoke_default_contract_violation_handler

The Standard Library provides a function, invoke_default_contract_violation_handler, which has
behavior matching that of the default contract-violation handler. This function is useful if the user
wishes to fall back to the default contract-violation handler after having performed some custom
action (such as additional logging).

invoke_default_contract_violation_handler takes a single argument of type lvalue reference to
const contract_violation. Since such an object cannot be constructed or copied by the user and is
provided only by the implementation during contract-violation handling, this function can be called
only during the execution of a user-defined contract-violation handler.

invoke_default_contract_violation_handler is not specified to be noexcept. However, just like
with all other functions in the Standard Library that are known to never throw an exception, a
conforming implementation is free to add noexcept to this function if it is known that, on this
implementation, the default contract-violation handler will never throw an exception.

3.7.5 Standard Library Contracts

We do not propose any changes to the specification of existing Standard Library facilities to mandate
the use of Contracts (e.g., to check the preconditions and postconditions specified for Standard
Library functions), but such use should be permitted. Given that a violation of a precondition when
using a Standard Library function is undefined behavior, Standard Library implementations are
already free to choose to use Contracts themselves as soon as they are available.

Note that Standard Library implementers and compiler implementers must work together to make
use of contract assertions on Standard Library functions. Currently, compilers, as part of the
platform defined by the C++ Standard, take advantage of knowledge that certain Standard Library
invocations are undefined behavior. Such optimizations must be skipped to meaningfully evaluate
a contract assertion when that same contract has been violated. This agreement between library
implementers and compiler vendors is needed because, as far as the Standard is concerned, they are
the same entity and provide a single interface to users.
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4 Proposed Wording
The wording below serves to formally specify the design described in Section 3. In the case of
divergence or contradiction between the design description in Section 3 and the wording, the design
intent is determined by the design description in Section 3.

The proposed changes are relative to the C++26 working draft [N4981].

Modify [intro.compliance], paragraph 2:

— [...]

— Otherwise, if a program contains

— a violation of any diagnosable rule,

— a preprocessing translation unit with a #warning preprocessing directive
([cpp.error]), or

— an occurrence of a construct described in this document as “conditionally-
supported” when the implementation does not support that construct, or

— a contract assertion ([basic.contract.eval]) evaluated with a checking semantic
in a manifestly constant-evaluated context resulting in a contract violation,

a conforming implementation shall issue at least one diagnostic message.

[Note: During template argument deduction and substitution, certain constructs that
in other contexts require a diagnostic are treated differently; see [temp.deduct]. —end
note ]

Furthermore, a conforming implementation shall not accept

— a preprocessing translation unit containing a #error preprocessing directive
([cpp.error]), or

— a translation unit with a static_assert-declaration that fails ([dcl.pre]), or

— a contract assertion ([basic.contract.eval]) evaluated with the enforce or
quick_enforce semantic in a manifestly constant-evaluated context resulting in a
contract violation.

Modify [lex.name], Table 4: Identifiers with special meaning:

[...]
override
post
pre

Modify [lex.key], Table 5: Keywords:
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[...]
continue
contract_assert
co_await
[...]

Modify [basic.pre], paragraph 5:

Every name is introduced by a declaration, which is a

— [...]

— exception-declaration ([except.pre]), or

— implicit declaration of an injected-class-name ([class.pre]), or

— result-name-introducer in a postcondition assertion ([dcl.contract.res]).

Modify [basic.def], paragraph 1:

A declaration may (re)introduce one or more names and/or entities into a translation
unit. If so, the declaration specifies the interpretation and semantic properties of these
names. A declaration of an entity or typedef-name X is a redeclaration of X if another
declaration of X is reachable from it ([module.reach]); otherwise, it is a first declaration.

Modify [basic.def], paragraph 2:

Each entity declared by a declaration is also defined by that declaration unless

— [...]

— It is a static_assert-declaration ([dcl.pre]),

— It is a result-name-introducer ([dcl.contract.res]),

— It is an attribute-declaration ([dcl.pre]),

— [...]

Modify [basic.scope], paragraph 1:

The declarations in a program appear in a number of scopes that are in general discontigu-
ous. The global scope contains the entire program; every other scope S is introduced by a
declaration, parameter-declaration-clause, statement, or handler, or contract assertion (as
described in the following subclauses of [basic.scope]) appearing in another scope which
thereby contains S. An enclosing scope at a program point is any scope that contains it;
the smallest such scope is said to be the immediate scope at that point. A scope intervenes
between a program point P and a scope S (that does not contain P ) if it is or contains S
but does not contain P .

Add a new paragraph after [basic.scope.decl], paragraph 13:

The locus of the result-name-introducer in a postcondition assertion ([dcl.contract.res]) is
immediately after it.
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Add a new section after [basic.scope.temp]:

Contract assertion scope [basic.scope.contract]

Each contract assertion ([basic.contract]) introduces a contract assertion scope that
includes its conditional-expression.

If a result-name-introducer ([dcl.contract.res]) potentially conflicts with a declaration
whose target scope is the parameter scope or, if associated with a lambda-declarator , the
nearest enclosing lambda scope of the contract assertion, the program is ill-formed.

Modify [basic.stc.dynamic.general], paragraph 2:

The library provides default definitions for the global allocation and deallocation
functions. Some global allocation and deallocation functions ([new.delete]) are re-
placeable ([new.delete])([dcl.fct.def.replace]); these are attached to the global module
([module.unit]). A C++ program shall provide at most one definition of a replaceable
allocation or deallocation function. Any such function definition replaces the default
version provided in the library ([replacement.functions]). The following allocation and
deallocation functions ([support.dynamic]) are implicitly declared in global scope in each
translation unit of a program.

Modify [basic.stc.dynamic.allocation], paragraph 5:

A global allocation function is only called as the result of a new expression ([expr.new]),
or called directly using the function call syntax ([expr.call]), or called indirectly to allocate
storage for a coroutine state ([dcl.fct.def.coroutine]), or called indirectly through calls to
the functions in the C++ standard library.

[Note: In particular, a global allocation function is not called to allocate storage for
objects with static storage duration ([basic.stc.static]), for objects or references with thread
storage duration ([basic.stc.thread]), for objects of type std::type_info ([expr.typeid]), for
an object of type std::contracts::contract_violation when a contract violation occurs
([basic.contract.eval]), or for an exception object ([except.throw]). —end note ]

Modify [intro.execution], paragraph 11 and split into multiple paragraphs as follows:

[11] When invoking a function f (whether or not the function is inline), every argument
expression and the postfix expression designating f the called function are sequenced before
every precondition assertion of f, which in turn is sequenced before every expression or
statement in the body of f.the called function. For each function invocation or evaluation
of an await-expression F , each evaluation that does not occur within F but is evaluated on
the same thread and as part of the same signal handler (if any) is either sequenced before
all evaluations that occur within F or sequenced after all evaluations that occur within
F ; if F invokes or resumes a coroutine ([expr.await]), only evaluations subsequent to the
previous suspension (if any) and prior to the next suspension (if any) are considered to
occur within F .

Several contexts in C++ cause evaluation of a function call, even though no corresponding
function call syntax appears in the translation unit.
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[Example: Evaluation of a new-expression invokes one or more allocation and constructor
functions; see [expr.new]. For another example, invocation of a conversion function
([class.conv.fct]) can arise in contexts in which no function call syntax appears. —end
example ]

The sequencing constraints on the execution of the called function (as described above)
are features of the function calls as evaluated, regardless of the syntax of the expression
that calls the function.

[12] For each function invocation or evaluation of an await-expression F , each evaluation
that does not occur within F but is evaluated on the same thread and as part of the same
signal handler (if any) is either sequenced before all evaluations that occur within F or
sequenced after all evaluations that occur within F ; if F invokes or resumes a coroutine
([expr.await]), only evaluations subsequent to the previous suspension (if any) and prior
to the next suspension (if any) are considered to occur within F .

Add a new subclause after [basic.exec]:

Contract assertions [basic.contract]
General [basic.contract.general]

Contract assertions allow the programmer to specify states of the program that are
considered incorrect at certain points in the program execution. Contract assertions are
introduced by precondition-specifiers, postcondition-specifiers ([dcl.contract.func]), and
assertion-statements ([stmt.contract.assert]).

The conditional-expression of a precondition-specifier , postcondition-specifier , or assertion-
statement is contextually converted to bool ([conv.general]); the converted expression is
called the predicate of the corresponding contract assertion.

An invocation of the macro va_start ([cstdarg.syn]) shall not be a subexpression of the
predicate of a contract assertion, no diagnostic required.

[Note: Within the predicate of a contract assertion, id-expressions referring to variables
with automatic storage duration are const ([expr.prim.id.unqual]), this is a pointer to
const ([expr.prim.this]), and the result object can be named if a result-name-introducer
([dcl.contract.res]) has been specified. —end note ]

Evaluation [basic.contract.eval]

A contract assertion may be evaluated using one of the following four evaluation semantics:
ignore, observe, enforce, or quick_enforce. The ignore semantic is a non-checking semantic;
observe, enforce, and quick_enforce are checking semantics; enforce and quick_enforce
are enforcing semantics.

Which evaluation semantic is used for any given evaluation of a contract assertion is
implementation-defined. [Note: Different evaluations of the same contract assertion might
use different evaluation semantics. This includes evaluations of contract assertions during
constant evaluation. —end note ]
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Recommended practice: An implementation should provide the option to translate a
program such that all contract assertion evaluations have the ignore semantic as well
as the option to translate a program such that all contract assertion evaluations have
the enforce semantic. By default, contract assertion evaluations should have the enforce
semantic.

The evaluation of a contract assertion with the ignore semantic has no effect. [Note: The
predicate is potentially evaluated ([basic.def.odr]) but not evaluated. —end note ]

The evaluation of a contract assertion with a checking semantic (observe, enforce, or
quick_enforce) is also called a contract check. If the value B of the predicate can be
determined without evaluating the predicate, that value may be used; otherwise, the
predicate is evaluated and B is the result of that evaluation. [Note: To determine whether
a predicate would evaluate to true or false, an alternative evaluation that produces the
same value as the predicate but has no side effects might be evaluated instead of the
predicate, resulting in the side effects of the predicate not occurring. —end note ]

If B is false or if the evaluation of the predicate exits via an exception or is performed in
a context that is manifestly constant-evaluated ([expr.const]) and the predicate is not
a core constant expression, a contract violation occurs. [Note: If B is true, no contract
violation occurs and control flow continues normally after the point of evaluation of
the contract assertion. If the evaluation of the predicate does not produce a value and
no contract violation occurs, e.g., because the evaluation of the predicate calls longjmp
([cset.jmp.syn]) or causes program termination, this evaluation is performed as usual.
—end note ]

If a contract violation occurs in a context that is manifestly constant-evaluated
([expr.const]), a diagnostic is produced; if the evaluation semantic is an enforcing semantic,
the program is ill-formed.

[Note: Different evaluation semantics chosen for the same contract assertion in different
translation units may result in violations of the one definition rule ([basic.def.odr]) when a
contract assertion has side effects during constant evaluation. —end note ] [Example:

constexpr int f(int i)
{

contract_assert(++const_cast<int&>(i), true);
return i;

}
inline void g()
{

int a[f(1)]; // size dependent on the evaluation semantic of contract_assert above
}

—end example ]

If a contract violation occurs in a context that is not manifestly constant-evaluated, if
the evaluation semantic is quick_enforce, the program is immediately terminated in an
implementation-defined fashion. If the evaluation semantic is enforce or observe, an object
v of type std::contracts::contract_violation ([support.contracts.violation]) containing
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information about the contract violation is created in an unspecified manner, and the
contract-violation handler (see below) is invoked with v as its only argument. Storage for v
is allocated in an unspecified manner except as noted in [basic.stc.dynamic.allocation]. The
destruction of v is sequenced after the corresponding contract-violation handler exits. If the
contract violation occurred because the evaluation of the predicate exited via an exception,
the contract-violation handler is invoked while that exception is the currently handled
exception ([except.handle]). [Note: This allows the exception to be inspected within
the contract-violation handler ([basic.contract.handler]) using std::current_exception
([except.special.general]). —end note ]

If the contract-violation handler returns normally and the evaluation semantic is enforce,
the program is terminated in an implementation-defined fashion.

If the contract-violation handler returns normally and the evaluation semantic is observe,
control flow continues normally after the point of evaluation of the contract assertion.

[Note: The observe semantic provides the opportunity to install a logging handler to
instrument a codebase without having to exit the program upon contract violation.
Conversely, the two enforcing semantics do not allow program execution to continue past
a contract violation. The enforce semantic provides the opportunity to log information
about the contract violation before exiting the program, while the quick_enforce semantic
is intended to terminate the program as soon as possible as well as minimize the impact
of contract checks on the generated code size. —end note ]

If a contract-violation handler invoked from the evaluation of a function contract assertion
exits via an exception, the behavior is as if the function body exits via that same exception.
[Note: A function-try-block ([except.pre]) is part of the function body and thus does not
have an opportunity to catch the exception. —end note ] [Note: If this happens on a call
to a function with a non-throwing exception specification, the function std::terminate()
is invoked ([except.terminate]). —end note ] If a contract-violation handler invoked
from an assertion-statement ([stmt.contract.assert]) exits via an exception, the exception
propagates from the execution of that statement.

The evaluations of two contract assertions A1 and A2 are consecutive when the only
operations sequenced after A1 and sequenced before A2 are

— trivial initialization, construction, and destruction of objects,

— initialization of references,

— transfer of control via function invocation or a return statement.

[Note: This list contains effectively vacuous evaluations whose evaluation will not invali-
date the conditions that might be asserted by a contract assertion when performing a
mix of returning from and invoking a series of functions. —end note ]

A contract-assertion sequence is a sequence of contract assertions that are consecutive.
At any point within a contract-assertion sequence, any previously evaluated contract
assertion may be evaluated again with the same or a different evaluation semantic. Such
repeated evaluations of a contract assertion may happen up to an implementation-defined
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number of times. [Note: For example, this allows evaluating all function contract assertions
twice, both in the caller’s translation unit before invoking the function and in the callee’s
translation unit as part of the function body. This allowance also extends to evaluations
of contract assertions during constant evaluation. —end note ]

Recommended practice: An implementation should provide an option to perform a specified
number of repeated evaluations for contract assertions. By default, no repeated evaluations
should be performed.

Contract-violation handler [basic.contract.handler]

The contract-violation handler of a program is a function named
::handle_contract_violation that is attached to the global module. The contract-
violation handler shall take a single argument of type lvalue reference to
const std::contracts::contract_violation and shall return void. The contract-
violation handler may be noexcept. The implementation shall provide a definition of
the contract-violation handler, called the default contract-violation handler. [Note: No
declaration for the default contract-violation handler is provided by any standard library
header. —end note ]

Recommended practice: The default contract-violation handler should produce
diagnostic output that suitably formats the most relevant contents of the
std::contracts::contract_violation object, rate-limited for potentially repeated viola-
tions of observed contract assertions, and then return normally.

Whether the default contract-violation handler is replaceable ([dcl.fct.def.replace])
is implementation-defined. [Note: A program providing a definition for
::handle_contract_violation when it is not replaceable will result in multiple
definitions of the contract-violation handler and is thus ill-formed, no diagnostic required.
—end note ]

Add a new paragraph after [expr.prim.this], paragraph 2:

If the expression this appears within the conditional-expression of a contract assertion
([basic.contract.general]) (including as the result of the implicit transformation in the body
of a non-static member function and including in the bodies of nested lambda-expressions),
const is combined with the cv-qualifier-seq used to generate the resulting type (see below).

Modify [expr.prim.id.unqual], paragraph 3 and split into multiple paragraphs as follows:

[3] The result is the entity denoted by the unqualified-id ([basic.lookup.unqual]).

[4] If the unqualified-id appears in a lambda-expression at program point P and
the entity is a local entity ([basic.pre]) or a variable declared by an init-capture
([expr.prim.lambda.capture]), then let S be the compound-statement of the innermost
enclosing lambda-expression of P . If naming the entity from outside of an unevaluated
operand within S would refer to an entity captured by copy in some intervening lambda-
expression, then let E be the innermost such lambda-expression.

— If there is such a lambda-expression and if P is in E’s function parameter scope but
not its parameter-declaration-clause, then the type of the expression is the type of
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a class member access expression ([expr.ref]) naming the non-static data member
that would be declared for such a capture in the object parameter ([dcl.fct]) of the
function call operator of E. [Note: If E is not declared mutable, the type of such an
identifier will typically be const qualified. —end note ]

— Otherwise (if there is no such lambda-expression or if P either precedes E’s function
parameter scope or is in E’s parameter-declaration-clause), the type of the expression
is the type of the result.

[5] Otherwise, if the unqualified-id appears in the predicate of a contract assertion
([basic.contract]) and the entity is

— the result object of (possibly deduced, see [dcl.spec.auto]) type T of a function
call and the unqualified-id is the result name ([dcl.contract.res]) in a postcondition
assertion,

— is a variable with automatic storage duration of object type T,

— a structured binding of type T whose corresponding variable has automatic storage
duration, or

— a variable with automatic storage duration of type “reference to T”,

then the type of the expression is const T. [Note: A function parameter is a variable
with automatic storage duration. —end note ]

[6] [Note: If the entity is a template parameter object for a template parameter of type T
([temp.param]), the type of the expression is const T. —end note ] [Note: The type will
be adjusted as described in [expr.type] if it is cv-qualified or is a reference type. —end
note ]

[7] The expression is an xvalue if it is move-eligible (see below); an lvalue if the entity is a
function, variable, structured binding ([dcl.struct.bind]), result name ([dcl.contract.res]),
data member, or template parameter object; and a prvalue otherwise ([basic.lval]); it is a
bit-field if the identifier designates a bit-field.

Modify [expr.prim.lambda.general], paragraph 1:
lambda-declarator :

lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt
trailing-return-typeopt function-contract-specifier-seqopt

noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt
function-contract-specifier-seqopt

trailing-return-typeopt function-contract-specifier-seqopt
( parameter-declaration-clause ) lambda-specifier-seqopt

noexcept-specifieropt attribute-specifier-seqopt trailing-return-typeopt
requires-clauseopt function-contract-specifier-seqopt

Modify [expr.prim.lambda.closure], paragraph 6:

[...] Any noexcept-specifier and function-contract-specifier ([dcl.contract.func]) specified
on a lambda-expression applies to the corresponding function call operator or operator
template. [...]
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Add a new paragraph after [expr.prim.lambda.closure], paragraph 7:

If all potential references to a local entity implicitly captured by a lambda-expression L
occur within the function contract assertions ([dcl.contract.func]) of the call operator or
operator template of L or within assertion-statements ([stmt.contract.assert]) within the
body of L, the program is ill-formed. [Note: This is intended to prevent situations where
adding a contract assertion to an existing C++ program could cause additional copies or
destructions to be performed even if the contract assertion is never checked. —end note ]
[Example:

static int i = 0;

void test() {
auto f1 = [=] pre(i > 0) { // OK, no local entities are captured
};

int i = 1;

auto f2 = [=] pre(i > 0) { // error: cannot implicitly capture i here
};

auto f3 = [i] pre(i > 0) { // OK, i is captured explicitly
};

auto f4 = [=] {
contract_assert(i > 0); // error: cannot implicitly capture i here

};

auto f5 = [=] {
contract_assert(i > 0); // OK, i is referenced elsewhere
(void)i;

};

auto f6 = [=] pre([]{
bool x = true;
return [=]{ return x; }(); // OK, x is captured implicitly

}()) {};
}

—end example ]

Modify [expr.call], paragraph 6:

When a function is called, each parameter ([dcl.fct]) is initialized ([dcl.init],
[class.copy.ctor]) with its corresponding argument, and each precondition assertion
([dcl.contract.func)] is evaluated. If the function is an explicit object member function
and there is an implied object argument ([over.call.func]), the list of provided arguments
is preceded by the implied object argument for the purposes of this correspondence. If
there is no corresponding argument, the default argument for the parameter is used.

Modify [expr.call], paragraph 7:
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The postfix-expression is sequenced before each expression in the expression-list and any
default argument. The initialization of a parameter, including every associated value
computation and side effect, is indeterminately sequenced with respect to that of any other
parameter. These evaluations are sequenced before the evaluation of the precondition
assertions of the function, which are evaluated in sequence ([dcl.contract.func]).

Modify [expr.await], paragraph 2:

An await-expression shall appear only in a potentially-evaluated expression within the
compound-statement of a function-body outside of a handler ([except.pre]). In a declaration-
statement or in the simple-declaration (if any) of an init-statement, an await-expression
shall appear only in an initializer of that declaration-statement or simple-declaration. An
await-expression shall not appear in a default argument ([dcl.fct.default]). An await-
expression shall not appear in the initializer of a block variable with static or thread
storage duration. An await-expression shall not appear in the predicate of a contract
assertion ([basic.contract]). A context within a function where an await-expression can
appear is called a suspension context of the function.

Modify [expr.const], paragraph 2:

A variable or temporary object o is constant-initialized if

— either it has an initializer or its default-initialization results in some initialization
being performed, and

— the full-expression of its initialization is a constant expression when interpreted
as a constant-expression with all contract assertions having the ignore evaluation
semantic ([basic.contract.eval]), except that if o is an object, that full-expression may
also invoke constexpr constructors for o and its subobjects even if those objects are of
non-literal class types. [Note: The initialization, when evaluated, might still evaluate
contract assertions with other evaluation semantics, resulting in a diagnostic or ill-
formed program if a contract violation occurs. —end note ] [Note: Such a class can
have a non-trivial destructor. Within this evaluation, std::is_constant_evaluated()
([meta.const.eval]) returns true. —end note ]

Modify [expr.const], paragraph 19:

[ Example:
[...]

template<class T>
constexpr int k(int) { // k<int> is not an immediate function because A(42) is a

return A(42).y; // constant expression and thus not immediate−escalating
}

constexpr int l(int c) pre(c >= 2) {
return (c % 2 == 0) ? c / 0 : c;

}

const int i0 = l(0); // dynamic initialization is contract violation or undefined behavior
const int i1 = l(1); // static initialization to 1 or contract violation at compile time
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const int i2 = l(2); // dynamic initialization is undefined behavior
const int i3 = l(3); // static initialization to 3

— end example ]

Modify [expr.const], footnote 73:

Testing this condition can involve a trial evaluation of its initializer, with contract
assertion evaluations having the ignore evaluation semantic ([basic.contract.eval]), as
described above.

Modify [stmt.pre], paragraph 1:
statement :

attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
attribute-specifier-seqopt assertion-statement
declaration-statement
attribute-specifier-seqopt try-block

Add a new paragraph after [stmt.return], paragraph 3:

All postcondition assertions ([dcl.contract.func]) of the function are evaluated in sequence.
The destruction of all local variables within the function body is sequenced before the
evaluation of any postcondition assertions. [Note: This, in turn, is sequenced before the
destruction of function parameters. —end note ]

Modify [stmt.return], paragraph 5:

The copy-initialization of the result of the call is sequenced before the destruction of
temporaries at the end of the full-expression established by the operand of the return state-
ment, which, in turn, is sequenced before the destruction of local variables ([stmt.jump])
of the block enclosing the return statement. [Note: These operations, in turn, are se-
quenced before the destruction of local variables in each remaining enclosing block of the
function, then the evaluation of postcondition assertions, then the destruction of function
parameters. —end note ]

Add a new subclause after [stmt.jump]:

Assertion statement [stmt.contract.assert]
assertion-statement :

contract_assert attribute-specifier-seqopt ( conditional-expression ) ;

An assertion-statement introduces a contract assertion ([basic.contract]). The optional
attribute-specifier-seq appertains to the introduced contract assertion. [Note: An assertion-
statement allows the programmer to specify a state of the program that is considered
incorrect when control flow reaches the assertion-statement. —end note ]
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Modify [dcl.decl.general], paragraph 1:
init-declarator :

declarator initializeropt
declarator requires-clauseopt function-contract-specifier-seqopt

Add a new paragraph after [dcl.decl.general], paragraph 4:

The optional function-contract-specifier-seq ([dcl.contract.func]) in an init-declarator shall
be present only if the declarator declares a function.

Add a new subclause after [dcl.decl]:

Function contract specifiers [dcl.contract]
General [dcl.contract.func]

function-contract-specifier-seq :
function-contract-specifier function-contract-specifier-seq

function-contract-specifier :
precondition-specifier
postcondition-specifier

precondition-specifier :
pre attribute-specifier-seqopt ( conditional-expression )

postcondition-specifier :
post attribute-specifier-seqopt ( result-name-introduceropt conditional-expression )

result-name-introducer :
attributed-identifier :

A function contract assertion is a contract assertion ([basic.contract]) associated with
a function. Each function-contract-specifier of a function-contract-specifier-seq (if any)
of an unspecified first declaration of a function introduces a corresponding function
contract assertion for that function. The optional attribute-specifier-seq following pre or
post appertains to the introduced contract assertion. The optional attribute-specifier-
seq of the attributed-identifier in a result-name-introducer appertains to the introduced
result name (see below). [Note: The function-contract-specifier-seq of a lambda-declarator
applies to the call operator or operator template of the corresponding closure type
([expr.prim.lambda.closure]). —end note ]

A precondition-specifier introduces a precondition assertion, which is a function contract
assertion. [Note: A precondition assertion allows the programmer to specify a state of
the program that is considered incorrect when a function is invoked. —end note ]

A postcondition-specifier introduces a postcondition assertion, which is a function contract
assertion. [Note: A postcondition assertion allows the programmer to specify a state of
the program that is considered incorrect when a function returns normally. It does not
specify anything about a function that exits in another fashion, such as via an exception
or via a call to longjmp ([cset.jmp.syn]). —end note ]
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A declaration E of a function f that is not a first declaration shall have either no function-
contract-specifier-seq or the same function-contract-specifier-seq as any first declaration D
reachable from E. If D and E are in different translation units, a diagnostic is required
only if D is attached to a named module. If a declaration D1 is a first declaration of f in
one translation unit and a declaration D2 is a first declaration of the same function f in
another translation unit, D1 and D2 shall specify the same function-contract-specifier-seq,
no diagnostic required.

A function-contract-specifier-seq s1 is the same as a function-contract-specifier-seq s2 if
s1 and s2 consist of the same function-contract-specifiers in the same order. A function-
contract-specifier c1, on a function declaration d1, is the same as a function-contract-specifier
c2, on a function declaration d2, if their predicates ([basic.contract.general]), p1 and p2,
would satisfy the one-definition rule ([basic.def.odr]) if placed in function definitions on
the declarations d1 and d2, respectively, except for renaming of parameters, renaming of
template parameters, and renaming of the result name ([dcl.contract.res]), if any.

[Note: As a result of the above, all uses and definitions of a function see the equivalent
function-contract-specifier-seq for that function across all translation units. —end note ]

A coroutine ([dcl.fct.def.coroutine]), a virtual function ([class.virtual]), a deleted function
([dcl.fct.def.delete]), or a function defaulted on its first declaration ([dcl.fct.def.default])
may not have a function-contract-specifier-seq.

Access control rules are applied to the predicate of a function contract assertion as if it
were the first expression in the declared function. [Example:

class X {
private:

int m;
public:

void f() pre(m > 0); // OK
friend void g(X x) pre(x.m > 0); // OK

};

void h(X x) pre(x.m > 0); // error: m is a private member
double i;
int j;
auto l1 = [i = j] pre(i > 0) {}; // OK, refers to captured int i

—end example ]

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a
non-reference parameter of that function, that parameter shall be declared const and
shall not have array or function type. [Note: This applies even to declarations that do
not specify the postcondition-specifier. Arrays and functions are still usable when declared
with the equivalent pointer types ([dcl.fct]). —end note ] [Example:

int f(const int i)
post (r: r == i);

int g(int i)
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post (r: r == i); // error: i is not declared const

int f(int i) // error: i is not declared const
{

return i;
}

int g(int i) // error: i is not declared const
{

return i;
}

—end example ]

When a set of function contract assertions are evaluated in sequence, for any two function
contract assertions X and Y in the set, the evaluation of X is sequenced before the
evaluation of Y if the function-contract-specifier introducing X lexically precedes the one
introducing Y .

[Note: The precondition assertions of a function are evaluated in sequence when the
function is invoked ([intro.execution]). The postcondition assertions of a function are
evaluated in sequence when a function returns normally ([stmt.return]). —end note ]

[Note: The function contract assertions of a function are evaluated even when invoked
indirectly, such as through a function pointer. Function pointers cannot have a function-
contract-specifier-seq associated directly with them. —end note ]

The function contract assertions of a function are considered to be needed when

— the function is odr-used ([basic.def.odr]) or, if it appears in an unevaluated operand,
would be odr-used if the expression were potentially evaluated or

— its definition is instantiated.

The function contract assertions of a templated function are instantiated only when
needed ([temp.inst]).

Referring to the result object [dcl.contract.res]

The result-name-introducer of a postcondition-specifier is a declaration. The identifier in
the result-name-introducer is the result name of the corresponding postcondition assertion.
The result name inhabits the contract assertion scope ([basic.scope.contract]) and denotes
the result object of the function. If a postcondition assertion has a result name and the
return type of the function is void, the program is ill-formed. [Note: The result name
when used as an id-expression is a const lvalue ([expr.prim.id.unqual]) —end note ]

If the implementation is permitted to introduce a temporary object for the return value
([class.temporary]), the result name may instead denote that temporary object. [Note:
It follows that, for objects that can be returned in registers, the address of the object
referred to by the result name might be a temporary materialized to hold the value before
it is used to initialize the actual result object. Modifications to that temporary’s value are
still expected to be retained for the eventual result object. —end note ] [Example:
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struct A {}; // trivially copyable

struct B { // not trivially copyable
B() {}
B(const B&) {}

};

template <typename T>
T f(T* ptr)

post(r: &r == ptr)
{

return T{};
}

int main() {
A a = f(&a); // postcondition check may fail
B b = f(&b); // postcondition check is guaranteed to succeed

}

—end example ]

When the declared return type of a non-templated function contains a placeholder type, a
postcondition-specifier with a result-name-introducer shall be present only on a definition.
[Example:

int f(int& p)
post (p >= 0) // OK
post (r: r >= 0); // OK

auto g(auto& p)
post (p >= 0) // OK
post (r: r >= 0); // OK

auto h(int& p)
post (p >= 0) // OK
post (r: r >= 0); // error: cannot name the return value

auto h(int& p)
post (p >= 0) // OK
post (r: r >= 0) // OK

{
return p = 0;

}

—end example ]

Modify [dcl.fct], paragraph 1:

In a declaration T D where D has the form
D1 ( parameter-declaration-clause ) optcv-qualifier-seq

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt
function-contract-specifier-seqopt
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and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-
type-list T”, the type of the declarator-id in D is “derived-declarator-type-list noexceptopt
function of parameter-type-list cv-qualifier-seqopt ref-qualifieropt returning T”, where

— the parameter-type-list is derived from the parameter-declaration-clause as described
below and

— the optional noexcept is present if and only if the exception specification([except.spec])
is non-throwing.

The optional attribute-specifier-seq appertains to the function type.

Modify [dcl.fct], paragraph 2:

In a declaration T D where D has the form
D1 ( parameter-declaration-clause ) cv-qualifier-seqopt

ref-qualifieropt noexcept-specifieropt attribute-specifier-seqopt trailing-return-type
function-contract-specifier-seqopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-
type-list T”, T shall be the single type-specifier auto. The type of the declarator-id in D is
“derived-declarator-type-list noexceptopt function of parameter-type-list optcv-qualifier-seq
optref-qualifier returning U”, where

— the parameter-type-list is derived from the parameter-declaration-clause as described
below,

— U is the type specified by the trailing-return-type, and

— the optional noexcept is present if and only if the exception specification is non-
throwing.

The optional attribute-specifier-seq appertains to the function type.

Modify [dcl.fct.def.general], paragraph 1:
function-definition :

attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt
function-contract-specifier-seqopt function-body

attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause
function-contract-specifier-seqopt function-body

Add new section after [dcl.fct.def.coroutine]:

Replaceable function definitions [dcl.fct.def.replace]

Certain functions for which a definition is supplied by the implementation are replaceable.
A C++ program may provide a definition with the signature and return type of a
replaceable function, called a replacement function. The replacement function is used
instead of the default version supplied by the implementation. Such replacement occurs
prior to program startup ([basic.def.odr], [basic.start]). The program’s declarations

— shall not be specified as inline,

63



— shall be attached to the global module, and

— shall have C++ language linkage;

no diagnostic is required. [Note: The one-definition rule ([basic.def.odr]) applies to the
definitions of a replaceable function provided by the program. The implementation-
supplied function definition is an otherwise-unnamed function with no linkage. —end
note ] [Note: Some replaceable functions, such as those in header <new>, are also declared
in a standard library header and the function definition would be ill-formed without a
compatible declaration; other replaceable functions, such as the contract-violation handler
([basic.contract.handler]) on implementations where it is replaceable, need only match
the specified signature and return type. The exception specification ([except.spec]) is part
of the declaration but not part of the signature. —end note ]

Modify [dcl.attr.grammar], paragraph 1:

Attributes specify additional information for various source constructs such as types,
variables, names, contract assertions, blocks, or translation units.

Modify [dcl.attr.unused], paragraph 2:

The attribute may be applied to the declaration of a class, typedef-name, variable
(including a structured binding declaration), structured binding, result name, non-static
data member, function, enumeration, or enumerator, or to an identifier label ([stmt.label]).

Modify [class.mem.general], paragraph 1:
member-declarator :

declarator virt-specifieropt function-contract-specifier-seqopt pure-specifieropt
declarator requires-clause
declarator requires-clauseopt function-contract-specifier-seqopt
declarator brace-or-equals-initializeropt
identifieropt attribute-specifier-seqopt : brace-or-equals-initializeropt

Modify [class.mem.general], paragraph 1:

A complete class context of a class (template) is a

— function body ([dcl.fct.def.general]),

— default argument ([dcl.fct.default]),

— default template argument ([temp.param]),

— noexcept-specifier ([except.spec]),

— function-contract-specifier ([dcl.contract.func]), or

— default member initializer

within the member-specification of the class or class template.

Modify [class.base.init] paragraph 16:
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Member functions (including virtual member functions, [class.virtual]) can be called for an
object under construction. Similarly, an object under construction can be the operand of
the typeid operator ([expr.typeid]) or of a dynamic_cast ([expr.dynamic.cast]). However,
if these operations are performed in a ctor-initializer (or in a function called directly or
indirectly from a ctor-initializer) before all the mem-initializers for base classes have com-
pleted, during evaluation of a precondition assertion of a constructor or a postcondition
assertion of a destructor ([dcl.contract.func]), or in a function called directly or indirectly
from those contexts, the program has undefined behavior.

Modify [class.cdtor], paragraph 4:

Member functions, including virtual functions ([class.virtual]), can be called during con-
struction or destruction ([class.base.init]). When a virtual function is called directly
or indirectly from a constructor or from a destructor, including during the construc-
tion or destruction of the class’s non-static data members, or during the evaluation of
a postcondition assertion of a constructor or a precondition assertion of a destructor
([dcl.contract.func]), and the object to which the call applies is the object (call it x) under
construction or destruction, the function called is the final overrider in the constructor’s
or destructor’s class and not one overriding it in a more-derived class. If the virtual
function call uses an explicit class member access ([expr.ref]) and the object expression
refers to the complete object of x or one of that object’s base class subobjects but not x
or one of its base class subobjects, the behavior is undefined.

Modify [temp.dep.expr], paragraph 3:

An id-expression is type-dependent if it is a template-id that is not a concept-id and is
dependent; or if its terminal name is

— [...]

— the identifier __func__ ([dcl.fct.def.general]), where any enclosing function is a
template, a member of a class template, or a generic lambda,

— the result name ([dcl.contract.res]) of a postcondition assertion of a function whose
return type is dependent,

— a conversion-function-id that specifies a dependent type, or

— [...]

Modify [temp.inst], paragraph 14:

The noexcept-specifier ([except.spec]) and function-contract-specifiers ([dcl.contract.func])
of a function template are not instantiated along with the function declaration. The
noexcept-specifier of a function template specialization is instantiated when the exception
specification of that function is needed (see [except.spec]). The function-contract-specifiers
of a function template specialization are instantiated when the function contract
assertions of that function are needed (see [dcl.contract.func]). The noexcept-specifier of a
function template specialization is not instantiated along with the function declaration;
it is instantiated when needed ([except.spec]). If such an noexcept-specifier a specifier
is needed but has not yet been instantiated, the dependent names are looked up, the

65



semantics constraints are checked, and the instantiation of any template used in the
noexcept-specifier specifier is done as if it were being done as part of instantiating the
declaration of the specialization at that point. [Note: Therefore, any errors that arise from
instantiating these specifiers are not in the immediate context of the function declaration
and can result in the program being ill-formed ([temp.deduct]). —end note ]

Modify [temp.expl.spec], paragraph 14:

Whether an explicit specialization of a function or variable template is inline, constexpr,
constinit, or consteval is determined by the explicit specialization and is independent of
those properties of the template. Similarly, attributes appearing in the declaration of a
template have no effect on an explicit specialization of that template. [Example:

[...]

—end example ] [Note: For an explicit specialization of a function template, the function-
contract-specifier-seq ([dcl.contract.func]) of the explicit specialization is independent of
that of the primary template. —end note ]

Modify [temp.deduct.general], paragraph 7:

[Note: The equivalent substitution in exception specifications and function
contract assertions ([dcl.contract.func]) is done only when the noexcept-specifier or
function-contract-specifier , respectively, is instantiated, at which point a program is ill-
formed if the substitution results in an invalid type or expression. —end note ]

Modify [except.spec], paragraph 13:

An exception specification is considered to be needed when:

— in an expression, the function is selected by overload resolution ([over.match],
[over.over]);

— the function is odr-used ([basic.def.odr]) or, if it appears in an unevaluated operand,
would be odr-used if the expression were potentially evaluated;

— the exception specification is compared to that of another declaration (e.g., an
explicit specialization or an overriding virtual function);

— the function is defined; or

— the exception specification is needed for a defaulted function that calls the function.
[Note: A defaulted declaration does not require the exception specification of a
base member function to be evaluated until the implicit exception specification of
the derived function is needed, but an explicit noexcept-specifier needs the implicit
exception specification to compare against. —end note ]

The exception specification of a defaulted function is evaluated as described above only
when needed; similarly, the noexcept-specifier of a templated function a specialization of
a function template or member function of a class template is instantiated only when
needed.

Modify [except.terminate], paragraph 1:
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In some situations, exception handling is abandoned for less subtle error handling tech-
niques.

[Note: These situations are:

— [...]

— when execution of a function registered with std::atexit or std::at_quick_exit
exits via an exception ([support.start.term]), or

— when a contract-violation handler ([basic.contract.handler]) invoked from evaluating
a function contract assertion on a function with a non-throwing exception
specification exits via an exception, or

— [...]

—end note ]

Modify [cpp.predefined], Table 22: Feature-test macros, with XXXX replaced by the appropriate value:

Macro name Value
[...] [...]
__cpp_constinit 201907L
__cpp_contracts 20XXXXL
__cpp_decltype 200707L
[...] [...]

Modify [headers], Table 24: C++ library headers:

[...]
<condition_variable>
<contracts>
<coroutine>
[...]

Modify [headers], Table 27: C++ headers for freestanding implementations:

[...]
<compare>
<contracts>
<coroutine>
[...]

Modify [support.general], paragraph 2:

The following subclauses describe common type definitions used throughout the library,
characteristics of the predefined types, functions supporting start and termination of a
C++ program, support for dynamic memory management, support for dynamic type
identification, support for contract-violation handling, support for exception processing,
support for initializer lists, and other runtime support, as summarized in Table 38.

Modify [support.general], Table 38: Language support library summary:
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Subclause Header
[...]
[support.exception] Exception handling <exception>
[support.contracts] Contract-violation handling <contracts>
[support.initlist] Initializer lists <initializer_list>
[...]

Add new section [contract.assertions] in [conforming], after [res.on.exception.handling]:

Contract assertions [contract.assertions]

Unless specified otherwise, an implementation is allowed but not required to check the
specified preconditions and postconditions of a function in the C++ standard library
using contract assertions ([basic.contract]).

Modify [replacement.functions]:

[support] through [thread] and [depr] describe the behavior of numerous functions defined
by the C++ standard library. Under some circumstances, however, certain of these
function descriptions also apply to replacement functions ([dcl.fct.def.replace]) defined in
the program.

A C++ program may provide the definition for any of tThe following dynamic memory
allocation function signatures declared in header <new> ([basic.stc.dynamic], [new.syn])
are replaceable ([dcl.fct.def.replace]):

operator new(std::size_t)
operator new(std::size_t, std::align_val_t)
operator new(std::size_t, const std::nothrow_t&)
operator new(std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete(void*)
operator delete(void*, std::size_t)
operator delete(void*, std::align_val_t)
operator delete(void*, std::size_t, std::align_val_t)
operator delete(void*, const std::nothrow_t&)
operator delete(void*, std::align_val_t, const std::nothrow_t&)

operator new[](std::size_t)
operator new[](std::size_t, std::align_val_t)
operator new[](std::size_t, const std::nothrow_t&)
operator new[](std::size_t, std::align_val_t, const std::nothrow_t&)

operator delete[](void*)
operator delete[](void*, std::size_t)
operator delete[](void*, std::align_val_t)
operator delete[](void*, std::size_t, std::align_val_t)
operator delete[](void*, const std::nothrow_t&)
operator delete[](void*, std::align_val_t, const std::nothrow_t&)

A C++ program may provide the definition of tThe following function signature declared
in header <new> ([basic.stc.dynamic], [new.syn]) is replaceable:

68



bool std::is_debugger_present() noexcept

The program’s definitions are used instead of the default versions supplied by the
implementation ([new.delete]). Such replacement occurs prior to program startup
([basic.def.odr], [basic.start]). The program’s declarations shall not be specified as inline.
No diagnostic is required.

Modify [new.delete.single], paragraphs 2, 6, 13, and 21; [new.delete.array], paragraphs 2, 6, 12, and
18; and [debugging.utility]:

Replaceable: A C++ program may define a function with this function signature,
and thereby displace the default version defined by the C++ standard library
([dcl.fct.def.replace]).

Add a new subclause [support.contracts] after [support.execution]:

Contract-violation handling [support.contracts]
Header <contracts> synopsis [contracts.syn]

The header <contracts> defines types for reporting information about contract violations
([basic.contract.eval]) generated by the implementation.

// all freestanding
namespace std::contracts {

enum class assertion_kind : unspecified {
pre = 1,
post = 2,
assert = 3

};

enum class evaluation_semantic : unspecified {
enforce = 1,
observe = 2

};

enum class detection_mode : unspecified {
predicate_false = 1,
evaluation_exception = 2

};

class contract_violation {
// no user−accessible constructor

public:
// cannot be copied or moved
contract_violation(const contract_violation&) = delete;
// cannot be assigned to
contract_violation& operator=(const contract_violation&) = delete;

/∗ see below ∗/ ~contract_violation();

const char* comment() const noexcept;
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detection_mode detection_mode() const noexcept;
assertion_kind kind() const noexcept;
source_location location() const noexcept;
evaluation_semantic semantic() const noexcept;

};

void invoke_default_contract_violation_handler(const contract_violation&);
}

Enum class assertion_kind [support.contracts.kind]

The type assertion_kind specifies the syntactic form of the contract assertion ([ba-
sic.contract]) whose evaluation resulted in the contract violation. Its enumerated values
and their meanings as as follows:

— assertion_kind::pre: the evaluated contract assertion was a precondition assertion.

— assertion_kind::post: the evaluated contract assertion was a postcondition asser-
tion.

— assertion_kind::assert: the evaluated contract assertion was an assertion-statement.

Recommended practice: Implementation-defined enumerators should have a name that is
an identifier reserved for the implementation ([lex.name]) and a minimum value of 1000.

Enum class evaluation_semantic [support.contracts.semantic]

The type evaluation_semantic specifies the evaluation semantic ([basic.contract.eval]) of
the evaluation that resulted in the contract violation. Its enumerated values and their
meanings as as follows:

— evaluation_semantic::enforce: the contract assertion was evaluated with the enforce
evaluation semantic.

— evaluation_semantic::observe: the contract assertion was evaluated with the ob-
serve evaluation semantic.

Recommended practice: Implementation-defined enumerators should have a name that is
an identifier reserved for the implementation ([lex.name]) and a minimum value of 1000.

[Note: No enumeration values for the ignore or quick_enforce semantics are provided
because evaluations with those evaluation semantics cannot result in a call to the contract-
violation handler. —end note ]

Enum class detection_mode [support.contracts.detection]

The type detection_mode specifies the manner in which a contract violation was identified
([basic.contract.eval]). Its enumerated values and their meanings are as follows:

— detection_mode::predicate_false: the contract violation occurred because the pred-
icate evaluated to false or would have evaluated to false.

— detection_mode::evaluation_exception: the contract violation occurred because the
evaluation of the predicate evaluation exited via an exception.
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Recommended practice: Implementation-defined enumerators should have a name that is
an identifier reserved for the implementation ([lex.name]) and a minimum value of 1000.

Class contract_violation [support.contracts.violation]

The class contract_violation describes information about a contract violation ([ba-
sic.contract.eval]) generated by the implementation. Objects of this type can be created
only by the implementation. Whether the destructor is virtual is implementation-defined.

const char* comment() const noexcept;

Returns: An implementation-defined null-terminated multibyte string in the ordinary
literal encoding ([lex.charset]).

Recommended practice: The string returned should contain a textual representation
of the predicate of the violated contract assertion. The source code produced may
be truncated, be reformatted, represent the code before or after preprocessing, or
be summarized. An implementation can return an empty string if storing a textual
representation of violated predicates is undesired.

detection_mode detection_mode() const noexcept;

Returns: The manner in which the contract violation was identified.

assertion_kind kind() const noexcept;

Returns: The syntactic form of the violated contract assertion.

source_location location() const noexcept;

Returns: An implementation-defined value.

Recommended practice: The value returned should represent a source location for
identifying the violated contract assertion. For a precondition, the value returned
should be the source location of the function invocation when possible; when the
invocation location cannot be ascertained and on contract assertions other than
preconditions, the value returned should be the source location of the violated
contract assertion. The encoding of file_name should match the encoding in a
source_location object generated in any other fashion. An implementation can
return a default-constructed source_location object if storing information regarding
the source location is undesired.

evaluation_semantic semantic() const noexcept;

Returns: The evaluation semantic with which the violated contract assertion was
evaluated.

invoke_default_contract_violation_handler [support.contracts.invoke]

void invoke_default_contract_violation_handler(const contract_violation&);

Effects: equivalent to invoking the default contract-violation handler ([ba-
sic.contract.handler]).
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Add a new section to Annex C, [diff.cpp23], in the appropriate place:

Lexical conventions [diff.cpp23.lex]

Affected subclause: [lex.key]
Change: New keywords.
Rationale: Required for new features.

— The contract_assert keyword is added to introduce a contract assertion through
an assertion-statement ([stmt.contract.assert]).

Effect on original feature: Valid C++ 2023 code using contract_assert as an identifier
is not valid in this revision of C++.

5 Conclusion
The idea of a Contracts facility in the C++ Standard has been worked on actively for nearly two
decades. This proposal represents the culmination of significant effort to reach consensus in the
Contracts study group (SG21). We feel that it will provide significant benefits to C++ users as
it stands and that it will serve as a foundation that can grow to meet the needs expressed by our
many constituents. We hope that it will be well received by the C++ community and that it will
pave the way to a better, safer C++ ecosystem.
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