
Constant evaluation of Contracts

Timur Doumler (papers@timur.audio)

Document #: P2894R2
Date: 2024-01-11
Project: Programming Language C++
Audience: SG21

Abstract

This paper proposes semantics for constant evaluation of contract annotations. We propose that
during constant evaluation, contract annotations should be evaluated with an implementation-
defined choice of ignore, enforce, or observe semantics, analogous to their runtime counterparts;
ignore is an unchecked semantic, while enforce and observe are checked semantics. In a manifestly
constant-evaluated context, a contract predicate with a checked semantic that evaluates to false
or cannot be evaluated because it is not a core constant expression causes a contract violation at
compile time. If the contract semantic is enforce or observe, such a contract violation emits a
compiler diagnostic; additionally, if the contract semantic is enforce, the program is ill-formed.
Special rules are required for the case of evaluating contract annotations in the initialiser of
a non-constexpr variable that may or may not be constant-initialised, such as variables with
static or thread storage duration and variables of const-qualified integral or enumeration type.

1 Introduction
In order to deliver a Contracts facility for Standard C++ (see [P2695R1]), we need to produce
a complete specification for the behaviour of contract annotations both at compile time and at
runtime. The specification currently in development (see [P2900R3]) still has some design holes.
One of these design holes is the question of how contract annotations should behave during constant
evaluation. In this paper, we develop a solution to this question.
This question has first been discussed in the appendices of [P2834R1]. The solution proposed there
no longer applies, since it is tied to the notion of checked and unchecked build modes, which was
removed with the adoption of [P2877R0]. An updated solution is proposed in [P2932R2] section
3.3, derived from the principles proposed in [P2932R2] section 2. In this paper, we instead derive a
solution from practical considerations: how would C++ users expect contract checks to behave when
evaluated at compile time, and how can we best meet their needs? As we will see, the specification
we arrive at in this paper is mostly identical to the one proposed in [P2932R2] section 3.3.

2 Discussion

2.1 To consteval or to not consteval

The first question that arises is whether we should consider contract checking during constant
evaluation at all.

1

mailto:papers@timur.audio

On the one hand, for many users the answer will be “yes”. While we may think of contract
checks primarily as a tool to identify bugs at runtime, similarly to assert macros today, contract
checking can undoubtedly be useful at compile time, too. It provides immediate value for constexpr
functions that can be evaluated either at compile time or during runtime: for program correctness
it is desirable to identify bugs in such function calls at compile time where possible. Consider the
following program:

constexpr int f(int i)
pre (i > 0);

int main() {
std::array<int, f(0)> a; // out-of-contract call during constant evaluation
// ...

}

Going beyond issuing compiler diagnostics in cases like the above, it is desirable to have a solid
framework for the semantics of contract annotations at compile time if we wish to expand usage of
Contracts in C++ to use cases like static analysis and formal program verification.
On the other hand, for many users the answer might be “no”. Checking contracts at compile time
has the potential to significantly increase compile times, which is already a huge problem in many
domains where C++ is used. Forcing compile-time contract checking on every user of C++ will
likely result in many users wrapping their contract annotations into macros to be able to ignore
them at compile time, or even worse, not adopting Contracts in C++ at all.
The answer is therefore that we must give the user both options. Whether contracts are checked
during constant evaluation should be implementation-defined, allowing implementations to offer
both options, e.g. through compiler flags.

2.2 Contract semantics ignore and enforce at compile time

In a previous revision of this paper, we suggested that letting the user choose whether they want to
check their contracts at compile time could be accomplished by making it implementation-defined
whether contract checks in the program are checked during constant evaluation or not, essentially
introducing a “global switch” for turning compile-time contract checking on or off. We since realised
that this is insufficient, because this setting might be different from one translation unit (TU) to
another. Moreover, for an inline function that has contract annotations in a shared header, this
setting might be different from one constant evaluation of a contract annotation to another constant
evaluation of the same contract annotation; such cases must not be considered ODR violations.
The answer is therefore that we should adopt the same approach for constant evaluation of any given
contract annotation as we already do in the Contracts MVP [P2900R3] for runtime evaluation of
any such contract annotation: that the contract semantic of every contract check is implementation-
defined and can vary from contract annotation to contract annotation and also from one evaluation
of a contract annotation to another evaluation of the same contract annotation.
At runtime, there are three possible contract semantics in the Contracts MVP: the unchecked
semantic, ignore, and the checked semantics, enforce and observe. The ignore semantic can be
extended to constant evaluation in a straightforward way: do nothing1. The enforce semantic can
also be extended quite easily: we can say that an enforced contract check is checked during constant
evaluation, and if this check fails, a compiler diagnostic is issued (which is the compile-time analogue
of the default contract-violation handler printing a diagnostic message at runtime) and the program

1Note that even though the ignore semantic means that a contract is not evaluated (neither at compile time nor
at runtime), its predicate is still parsed (so it must be a valid expression) and the entities in the predicate are still
ODR-used; further, the predicate might still be checked at runtime because the runtime semantic may be different
from the compile-time semantic.

2

is ill-formed (which is the compile-time analogue of terminating the program after the contract-
violation handler returns). The only difference is that constant evaluation has no compile-time
analogue for installing a user-defined contract-violation handler: as a user-replaceable function that
is added at link time, a user-defined contract-violation handler is inherently a runtime-only feature.

2.3 Contract semantic observe at compile time

It turns out that the observe semantic has a useful compile-time implementation as well. An
observed contract check is checked during constant evaluation, and if this check fails, a compiler
diagnostic is issued; however, unlike an enforced contract check, this does not render the program
ill-formed, which means the compiler can keep going. This is useful for the same reason that the
observe contract semantic is useful at runtime: it allows to introduce new contract annotations to
an existing legacy codebase without that codebase immediately breaking if a contract violation is
detected.
We initially had concerns about enabling the observe semantic for constant evaluation, because it
seems to introduce a novelty: a normative diagnostic that does not render the program ill-formed, a
“standard warning”. However, after some discussion it turned out that we already have precedent
for such a thing in the Standard since we introduced #warning [P2437R1] for C++23. The fact
that the latter is a preprocessor directive rather than a “proper” language feature does not seem
like a substantial difference.

2.4 Compile-time semantic is independent of runtime semantic

The approach proposed here can be described as essentially taking the block of pseudocode in
[P2900R3] section 3.3.9 which describes the mechanics of contract-violation handling, making both
__current_semantic() and __check_predicate() compiler intrinsics constexpr-enabled, and
adding an if consteval branch with the appropriate instructions to the algorithm.
One important property of this approach is that since the contract semantic of any given contract
check can vary from evaluation of a given contract annotation to the next evaluation of the same
contract annotation, it is also perfectly confirming to use one contract semantic for all constant
evaluations and another contract semantic for all runtime evaluations of a given contract annotation.
This can be very useful since there are plausible use cases for such a setup. For example, in a
debug build of a large and slow-to-compile application, one might want to disable contract checks
at compile time to speed up compilation (minimising turnaround time during development), while
at the same time enabling contract checks at runtime. Our approach enables this and many other
use cases by making the contract semantic implementation-defined both at compile time and at
runtime, following the spirit of [P2877R0].

2.5 Possible outcomes of constant evaluation

When a contract annotation is evaluated during constant evaluation, there are only three possible
outcomes:

— The predicate is a core constant expression that evaluates to true,

— The predicate is not a core constant expression,

— The predicate is a core constant expression that does not evaluate to true.

Our first observation is that we do not need to specify anything further for the first case, the
“happy path”: if a contract annotation is evaluated during constant evaluation, the predicate of that
contract annotation is a core constant expression convertible to bool, and the converted expression
evaluates to true, then the obvious semantics of such a contract check are that it simply has no

3

semantic effect whatsoever. In the remainder of this paper, it is sufficient to study only the second
and third case.

2.6 Contracts that cannot be checked at compile time

What should happen if a contract check with a checked semantic (enforce or observe) encounters a
predicate that is not a core constant expression, i.e. cannot be evaluated at compile time?
First of all, note that since [P2448R2] was adopted for C++23, we do not need to do anything
about this case if the function in question is constexpr or consteval, but is never actually called
during constant evaluation:

bool pred(); // predicate not constexpr

constexpr int f()
pre (pred()); // OK; never called during constant evaluation

consteval int g()
pre (pred()); // OK: never called

int main() {
return f(); // not a constant evaluation of f
// g never called

}

For f, the contract check is only ever checked during runtime, and therefore will have the same
semantics as it always does; for g, the contract check is never checked at all. This program is
therefore well-formed and its behaviour is unambiguous.
The only interesting case is: what should happen if the compiler actually encounters such a predicate
during constant evaluation (we do not have to distinguish between constexpr and consteval here)?
For example, consider the following program:

bool pred(); // predicate not constexpr

constexpr int f()
pre (pred()); // ???

int main() {
std::array<int, f()> a; // constant evaluation of f
// ...

}

One possibility is to specify that if the predicate is not a core constant expression, the entire contract
annotation is not a core constant expression. This would give a compiler error in the case above and
many similar cases. However, it turns out that it is possible to SFINAE on whether an expression
is a constant expression and therefore follow a different codepath depending on whether a contract
is evaluated at compile time; [P2932R2] section 3.3 has an example of such code. Following the
zero overhead principle from [P2932R2], we cannot allow the addition of a contract assertion to
alter the compile-time semantics of the program. The answer is therefore that we should instead
treat this case as a contract violation at compile time: the compiler must issue a diagnostic if the
contract semantic is enforce or observe, and in addition the program is ill-formed if the contract
semantic is enforce.
Conceptually, this specification makes sense. Consider the following function:

constexpr int do_something(int i)
pre (i > 0)
pre (hardware_thingy_available()); // not constexpr

4

Ignoring the precondition annotation when it is not checkable at compile time and we are using
a checked contract semantic at compile time would be wrong, because if the precondition is not
checkable at compile time it is also not satisfiable at compile time: the “hardware thingy” is literally
not available while compiling the code, therefore we cannot satisfy this precondition when calling
the function at compile time. We can think of this as conceptually similar to how we cannot satisfy
a precondition at runtime if we cannot determine whether the predicate evaluates to true or false
because evaluating it throws an exception — this case, too, is treated as a contract violation.
If the user wishes to say that it is still correct to call the function at compile time, even though the
“hardware thingy” does not become available until runtime, they need to express that explicitly in
the precondition, thus making the program correct:

constexpr bool can_do_something() {
if (!std::is_constant_evaluated())

return hardware_thingy_available();
else

return true;
}

constexpr int do_something(int i)
pre (i > 0)
pre (can_do_something()); // OK

Note that making a non-constant-evaluable predicate a contract violation during constant evaluation
implies that a contract assertion is always a core constant expression, even if its predicate is not.

2.7 Predicate evaluation at compile time

What can happen if a contract annotation is evaluated during constant evaluation, the predicate of
that contract annotation is a core constant expression, but that expression does not evaluate to
true?
At runtime, there are many ways in which a predicate can not evaluate to true:

— It can evaluate to false,

— It can throw an exception,

— It can longjmp,

— It can terminate the program,

— It can be undefined behaviour.

In the Contracts MVP, at runtime, we treat the first two cases as a contract violation; in all
remaining cases, the user “gets what they get” (the behaviour “escapes” the contract check).
During constant evaluation, the situation is actually much simpler. You cannot throw an exception,
you cannot longjmp, you cannot terminate the program, and there cannot be undefined behaviour;
an expression that would do any of these things at runtime is not a core constant expression, which
should be treated as a contract violation as discussed in 2.6.
It follows that the only other way in which we could get a contract violation at compile time, and
the only way in which we could get a contract violation at compile time if the predicate is a core
constant expression is if the predicate evaluates to false. As we already discussed above, in this
case the compiler must issue a diagnostic if the contract semantic is enforce or observe, and in
addition the program is ill-formed if the contract semantic is enforce.

5

2.8 Trial constant evaluation

constexpr variables have to be constant-initialised. Contract annotations encountered while
evaluating the initialiser of such a variable will be evaluated during constant evaluation, following
the rules described above.
However, there are certain cases where a non-constexpr variable may or may not be constant-
initialised, depending on whether the initialiser is a core constant expression. One such case are
variables with static or thread storage duration; if the initialiser is a core constant expression, such a
variable will be constant-initialised, otherwise the initialisation will be relegated to runtime (dynamic
initialisation) and will happen during startup before entering main (see [basic.start.static].2):

constexpr int f() { return 42; }
int g() { return 43; } // not constexpr

static int j = f(); // constant initialisation
static int i = g(); // dynamic initialisation

Another case are variables of non-volatile, const-qualified integral or enumeration type (see
[expr.const].3); if the initialiser is a core constant expression, then it becomes a manifestly core
constant expression and the variable can be used afterwards in constant expressions (for example,
as a non-type template argument); otherwise, the variable will be initialised normally at runtime if
and when control flow reaches its definition:

constexpr int f() { return 42; }
int g() { return 43; } // not constexpr

int main() {
const int i = f(); // constant initialisation
const int j = g(); // dynamic initialisation

std::array<int, i> a; // OK
std::array<int, j> b; // error: j is not a core constant expression

}

In all the cases above, the compiler needs to determine whether the initialiser is a core constant
expression, which will determine the semantics of the program. The compiler may perform so-called
trial constant evaluation to make this determination (see [expr.const] 19.5 and [expr.const] footnote
73). This gives rise to a new case that we need to specify: what should happen if the initialiser
would otherwise be a core constant expression, but contains a contract annotation that is not
checkable during constant evaluation? Consider the following program:

bool whatever(); // not constexpr

constexpr int f()
pre(whatever()) // contract check not evaluable at compile time

{
return 42;

}

static int i = f(); // ???

If we treat the contract predicate just like any other expression that is part of the definition of f, this
would mean that the contract check turns the constant initialisation of i into dynamic initialisation
in the code example above. However, similar to other cases such as a contract check triggering a
lambda capture [P2890R1] or a contract check triggering the deduction of a potentially-throwing
exception specification [P2969R0], treating the contract check as “just code” leads to a violation
of the zero overhead principle from [P2932R2]: the mere addition of a contract annotation causes
the program to take a different branch at compile time, which in turn can cause “heisenbugs” (a

6

https://eel.is/c++draft/basic.start.static#2.sentence-1
https://eel.is/c++draft/expr.const#3
https://eel.is/c++draft/expr.const#19.5
https://eel.is/c++draft/expr.const#footnote-73
https://eel.is/c++draft/expr.const#footnote-73

program contains a bug, we add a contract annotation to find the bug, but the contract annotation
causes the program to take another branch where the bug does not exist) and potentially measurable
performance degradations.
Fortunately, in this case there is a workaround that fixes this problem. We can treat such cases as a
compile-time contract violation, in exactly the same way as we would treat a non-core-constant-
expression contract predicate during regular constant evaluation. Specifying this workaround
correctly requires a bit more trickery than for regular constant evaluation. The reason is that the
initialiser might not be a core constant expression anyway, regardless of the presence of the contract
check, but the program might still be valid:

bool whatever(); // not constexpr

constexpr int f(int i)
pre(whatever()) // contract check not evaluable at compile time

{
if (i == 0)

return runtime_thingy::get_value(); // not constexpr

return i;
}

static int i = f(0); // not a core constant expression when passing in 0!

In this case, we do not want to try to check the contract at compile time and make the program
ill-formed as a result of that, because trial constant evaluation for f will fail anyway and the function
will never actually be called at compile time.
The above semantics can be achieved by using the following algorithm. First, we conduct a trial
constant evaluation ignoring any contract annotations that might otherwise be evaluated during that
evaluation, even if these have a checked semantic at compile time; if this trial constant evaluation
fails, the initialiser is not a core constant expression and will be called at runtime instead (which
means the contract checks will be evaluated at runtime as well) and it therefore does not matter
whether any of these contract predicates are core constant expressions. If however, the trial constant
evaluation succeeds, we re-evaluate the expression but this time we evaluate the contract annotations
as well. If any such evaluation fails to be a constant expression or does not evaluate to true we treat
it as a contract violation. For each contract violation where the semantic is enforce or observe, the
compiler must issue a diagnostic; additionally, if the semantic is enforce, the program is ill-formed.

2.9 No eager contract checking during trial evaluation

There is one final variation on the theme of constant evaluation that is worth analysing. Let us
consider a constexpr function that either is or is not a core constant expression, depending on
which arguments are being passed in:

constexpr int divide(int n, int d) {
return n / d; // not a core constant expression if d == 0

}

Now, we might want to add a contract annotation to prevent running into this case:
constexpr int divide(int n, int d)

pre (d != 0) { // contract predicate is always a core constant expression!
return n / d;

}

Everything seems fine. If divide is called at compile time, we can enable compile-time checking
of contracts and get a nice compiler diagnostic that the precondition has been violated (instead
of a much more cryptic error saying that n / d is not a core constant expression). If divide is

7

called at runtime, we can enable runtime checking of contracts, get a runtime diagnostic that the
precondition has been violated, and avoid the undefined behaviour that evaluation of n / d at
runtime would cause.
However, what happens if we call divide in a context where a variable may or may not be
constant-initialised? Consider the following program:

int main() {
const int i = divide(17,0); // ???

}

Note that the difference to the case described in section 2.8 is that the predicate actually is a
core constant expression and can be evaluated at compile time. The user might therefore expect
that the above program should cause the compiler to issue a diagnostic that the precondition has
been violated at compile time. However, that is not what our algorithm does. Trial evaluation to
determine whether divide(17,0) is a core constant expression happens with the contract check
discarded; this trial evaluation determines that the call is not a core constant expression (because
of n / d being a division by zero at compile time) and delegates the call to runtime. As a result,
the contract is never checked at compile time, even if we choose the enforce semantic for compile
time, and we instead run into a contract violation at runtime. This might be surprising to some
users, because when evaluated at compile time, the call to divide would run into a compile-time
contract violation, but this contract violation is not diagnosed.
However, trial evaluation is not actual evaluation, so we cannot rely on the contract annotation
being evaluated at compile time even when using a checked semantic at compile time. This must be
so because relegating the call to runtime might be intentional, and our algorithm cannot distinguish
whether this is the case. Consider:

int g() { // not constexpr
return 42;

}

constexpr int f(int i)
pre (i > 0 || !std::is_constant_evaluated)

{
if (i == 0)

return g(); // f is not a core constant expression when this branch is taken

return i;
}

int main() {
const int i = f(0);
return i;

}

In the code above, there is no precondition violation. The first part of the predicate, i > 0,
evaluates to false, but the second part of the predicate clearly states that this is not a defect if the
function is evaluated at runtime; simultaneously, if i == 0, the call to f ends up being not a core
constant expression and the function f ends up being evaluated at runtime. If we were to check
contracts during trial constant evaluation, the contract check would fail, rendering the program
ill-formed if the contract is enforced even though no precondition is being violated. This would
be an undesirable outcome. The correct choice in this case is, therefore, to stick to the algorithm
described in section 2.8 and to ignore contract checks during trial constant evaluation.

8

3 Summary
In this paper, we have explored the design space of evaluating contract annotations at compile time,
one of the remaining design holes in the Contracts MVP [P2900R3]. After having analysed how
C++ users might expect contract annotations to behave when evaluated at compile time, and how
can we best meet their needs, we propose the following specification.
In a manifestly constant-evaluated context, contract annotations should be evaluated with one of
the three semantics, ignore, observe, or enforce, analogous to their runtime counterparts. If, during
constant evaluation, a contract check has a checked semantic (enforce or observe) and the contract
predicate evaluates to false, or the predicate cannot be evaluated at compile time because it is not
a core constant expression, this is considered a contract violation and the compiler shall issue a
diagnostic. Additionally, if the semantic is enforce, the program is ill-formed. Just like at runtime,
it is implementation-defined (and thus left to the compiler to provide a selection mechanism for)
which contract semantic is used for any given evaluation of a contract check.
Special rules are required for the case of evaluating contract annotations in the initialiser of a
non-constexpr variable that may or may not be constant-initialised, such as variables with static
or thread storage duration and variables of const-qualified integral or enumeration type. To get
the correct behaviour in all cases, we propose the following algorithm. First, we conduct a trial
constant evaluation ignoring any contract annotations that might otherwise be evaluated during that
evaluation, even if these have a checked semantic at compile time; if this trial constant evaluation
fails, the initialiser is not a core constant expression and will be called at runtime instead (which
means the contracts will be checked at runtime as well). If however, the trial constant evaluation
succeeds, we perform the actual constant initialisation, this time including constant evaluation of
the contract annotations we ignored earlier; if any of these contract predicates are not core constant
expressions at this point, or are core constant expressions that evaluate to false, the compiler shall
treat these as contract violations during constant evaluation.

Acknowledgements
Thanks to Oliver Rosten and Gašper Ažman for their helpful feedback on an earlier version of this
paper; thanks to Ville Voutilainen, Joshua Berne, Tom Honermann, Jason Merrill, and Jens Maurer
for their helpful comments on the SG21 reflector thread that led to the current revision of this
paper.

References

[P2437R1] Aaron Ballman. Support for #warning. https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2022/p2437r1.pdf, 2022-01-13.

[P2448R2] Barry Revzin. Relaxing some constexpr restrictions. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2022/p2448r2.html, 2022-01-27.

[P2695R1] Timur Doumler and John Spicer. A proposed plan for Contracts in C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf, 2023-02-09.

[P2834R1] Joshua Berne and John Lakos. Semantic Stability Across Contract-Checking Build
Modes. https://wg21.link/p2834r1, 2023-05-15.

[P2877R0] Joshua Berne and Tom Honermann. Contract Build Modes, Semantics, and Implemen-
tation Strategies. https://wg21.link/p2877r0, 2023-06-09.

[P2890R1] Timur Doumler. Contracts on lambdas. https://wg21.link/p2890r1, 2023-12-04.

9

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2437r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2437r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2448r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2448r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://wg21.link/p2834r1
https://wg21.link/p2877r0
https://wg21.link/p2890r1

[P2900R3] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r3, 2023-12-17.

[P2932R2] Joshua Berne. A Principled Approach to Open Design Questions for Contracts. https:
//wg21.link/p2932r2, 2023-11-14.

[P2969R0] Timur Doumler, Ville Voutilainen, and Tom Honermann. Contract checks are potentially-
throwing. https://wg21.link/p2969r0, 2023-12-04.

10

https://wg21.link/p2900r3
https://wg21.link/p2900r3
https://wg21.link/p2932r2
https://wg21.link/p2932r2
https://wg21.link/p2969r0

	1 Introduction
	2 Discussion
	3 Summary
	References

