
Concept and variable-template template-parameters
Document #: P2841R3
Date: 2024-05-22
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Gašper Ažman <gasper.azman@gmail.com>
James Touton <bekenn@gmail.com>

Abstract

C++ allows passing templates as template parameters. However, they are forced to be
typenames (either type alias templates or class templates). Variable templates or concepts
are not supported. This is a hole in the template facilities and is the topic of this paper.

We introduce a way to pass concepts and variable templates as template parameters.

Example:

template<
template <typename T> concept C,
template <typename T> auto C

>
struct S{};

template <typename T>
concept Concept = true;

template <typename T>
constexpr auto Var = 42;

S<Concept, Var> s;

Note: this paper is a subset of the larger P1985R3 [1] (Universal Template Parameters); the
authors felt this topic is subtle enough to warrant its own paper.

Revisions

R3

• Wording improvements
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R2

• Alter the design so that partial ordering remains independent of template arguments,
following guidance given in Kona.

• Add a section on the deduction of template parameters from the arguments of a variable
template/concept specialization

R1

• Add examples, motivation

• Wording improvement

R0

• Initial revision

Motivation

Template template-parameters allow for higher-order templates and greater composability.
They can be used, for example, to parametrize a function that operates on any container of
any type or to write CRTP-based interfaces.

C++23 limits template template-parameters to be class templates or alias templates. A variable
template (C++14) or a concept (concepts are themselves templates) cannot be passed as a
template argument in C++23.

The motivation for passing a concept as a template argument is very much the same as
our reason for supporting class templates as template arguments: to allow higher-level
constructs.

While there are workarounds - for example by wrapping a variable in a struct with a value
member that can then be passed as a type template template parameter, these workarounds
all suffer the same limitations:

• They have terrible ergonomics

• They have a noticeable impact on performance - instantiating types is expensive

• They do not allow to take advantage of nice concept properties such as terse syntax and
subsumption.

All of these limitations of available patterns are additional motivations for this proposal.

Being able to define a concept adaptor, for instance, would be very nice:

template <typename T, template <typename> concept C>
concept decays_to = C<decay_t<T>>;

Being able to use it with any concept constraint would also be helpful:
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template <decays_to<copyable> T>
auto f(T&& x);

Other such constructs might, for example, include the following.

• range_of<Concept>
Many algorithms can operate on a sequence of integer or string-like types and while
it is possible to express range<T> && SomeConcept<ranges::range_reference_t<R>>, some
codebases do that enough that they might want to have a shorter way to express that
idea, one that would let them use the abbreviated syntax in more cases.

• tuple_of<Concept>
This follows the same idea, but expressing this idea in the require clause of each function
or class that might need it would be an exercise in frustration and a maintenance
nightmare. We explore a tuple_of concept later in this paper. Representing vectors as
tuples-like things of numbers is common in the scientific community, and these scientific
libraries have no ideal way to express these constraints.

• Avoiding duplication.
In his blog post on this very topic, Barry Revzin observed that std::ranges defines a
handful of concepts that are very similar to one another except they use different con-
cepts internally. Concept template parameters can reduce a lot of duplication. Compare
the definitions in the Standard and the implementation with our proposal.

To quote Barry’s aforementioned blog post

I’d rather write a one-line definition per metaconcept, not a one-line definition
per metaconcept instantiation.

So part of the motivation for concept template-parameters is the same as for having functions,
templates, and classes: We want to be able to reuse code and to make it less repetitive and
error-prone.

We also demonstrated how this feature can be leveraged to provide better diagnostics when
a concept is not satisfied [Compiler Explorer].

There is community interest in these features.

• Is it possible to pass a concept as a template parameter?

• Concept to assert an argument is another concept, with whatever parameters

• Passing a concept to a function

• How to pass a variable template as template argument

• Can a variable template be passed as a template template argument?

Unfortunately, this is one of those features that truly shows its power on large examples that
don’t tend to fit into papers.
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Variable-template template-parameters

Variable-template template-parameters (previously proposed in P2008R0 [6]) are useful by
themselves. They can be emulated with a template class with a static public value data
member. Most standard type traits are defined as a type and have an equivalent _v variable:

template <typename T, typename U>
constexpr bool is_same_v = is_same<T, U>::value;

But this is not compile-time efficient: a class has to be instantiated in addition to generating
the value for the constant, which is strictly more work than just producing the constant. For a
‘bool‘ constant, for instance, the difference is substantial; on Apple clang15, it’s about 60% (so,
less than half the time). The memory footprint is more difficult to gauge, but it seems around
a 40% difference.

This performance issue is also explored in more detail in P1715R1 [2].

In other microbenchmarks, Gašper has observed a minimum of 30% speedup by not instanti-
ating class bodies, and a 50% memory usage reduction for programs with heavy traits usage,
specifically when implementing P2300-like classes.

Also, if one has multiple metaprogramming libraries, relying on idioms like ::value is funda-
mentally less composable than a value just being a value. Similarly, if you have a concept
in your codebase, you shouldn’t have to wrap it into a static constexpr ::value member of a
type to pass it to a metafunction.

Wrapping variables in class templates also adds complexity for users: The main reason we
expose both a variable template and a class template for every boolean trait is that the
language does not support variable-template template-parameters. (Note that we are aware
of some codebases using traits as tags for dispatch but this is far from the common case.)

For instance, counting elements that satisfy a specific predicate could be done as

template <template <typename> auto p, typename... Ts>
constexpr std::size_t count_if_v = (... + p<Ts>);

We could do the same thing with a type, but it incurs a class template instantiation for each
element:

template <template <typename> typename p, typename... Ts>
constexpr std::size_t count_if_v = (... + p<Ts>::value);

It will always be more work for the compiler to instantiate a whole class together with its body
(not just its declaration) to allow access to the inner value member than just instantiating a
variable template, no matter how much we try to optimize this pattern. p1715r1 [?] makes
the same case.

Additional examples

The authors have use cases that don’t fit in the paper (typical for the most interesting use
cases) where type-based vs variable-based metaprogramming means the difference of 300s
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compile-times per unit vs. more than an hour (currently by textually duplicating definitions
that could have been genericized if variable template template-parameters were available).
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Terse syntax, overloading, and reusing existing concepts

The following example, simplified from production code shows multiple interesting properties
of concept template parameters. with_values_t takes a function and a predicate, and calls
the function with all the arguments satisfying this predicate.

Here we demonstrate the function with either and maybe, but in reality, this is used with
receiver types - which are also monadic. The call operator applies f to all engaged arguments.
But all the arguments must be of the same shape (all optionals, all expected), etc.

To do that, we here use the abbreviated function template syntax with type-constraints,
which is only possible with concept template parameters.

template <typename T>
struct maybe;
template <typename L, typename R>
struct either;

template <typename T>
concept a_maybe = /*...*/;
template <typename T>
concept an_either = /*...*/;

template <template <typename> concept C>
struct _with_values_t {
static constexpr auto operator()(auto&& f, C auto&& v, C auto&& ... vs) -> decltype(auto) {
if (is_active<C>(e)) { // does the active type in the variant satisfy C

return _with_values_t{}(bind_front(f, *v), FWD(vs)...);
} else {

return _with_values_t{}(f, FWD(vs)...);
}

}
};

// have to enforce it's the same monad or it doesn't make any sense
inline constexpr struct with_values_t : _with_values_t<a_maybe>, _with_values_t<an_either> {
using _with_values_t<a_maybe>::operator();
using _with_values_t<an_either>::operator();

} with_values {};

It would be technically possible to use a type instead here

template <typename T>
struct an_either_t {

static constexpr bool value = an_either<T>;
};

struct _with_values_t {
template <typename First, typename... Tail>
requires (an_either_t<First>::value && (an_either_t<Tail>::value && ...))
static constexpr auto operator()(auto&& f, C auto&& e, C auto&& ... es) -> decltype(auto);

};
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But again:

• This is much less ergonomic as it forces users to wrap their concepts in types which is
not intuitive (ie we have found that difficult to teach).

• The necessity of introducing new names for the same predicate - just exposed as a type,
concept, or variable - adds unnecessary complexity to APIs

• Composability only works by convention.

• Creating types has a significant performance impact on compile times

• Diagnostic messages are slightly worse than they could be because of the added layers
of wrapping and because compilers will decompose concepts in diagnostic messages.

When life gives you Lambdas

To work around the lack of concept parameters, users have started to use generic lambdas

template <typename T, auto ConceptWrapperLambda>
concept decays_to = requires {

ConceptWrapperLambda.template operator()<std::decay_t<T>>();
};
template <class T>
requires decays_to<T, ([]<std::copyable>(){})>
auto f(T&& x) {}

Here the concepts we want to parametrize on are passed as a constrained generic lambda -
which we then try to call when checking our higher-level concepts. This allows not to have to
create a new type for each concept, so it might be slightly easier to use, although the reader
will agree that it particularly arcane. In addition to the usability concerns, lambdas are never
a solution to compile times performance.

All the existing work arounds suffer similar performance and usability concerns, and of course
none support subsumption. Yet, many such workarounds have been developed and a number
of them have been deployed in production. Daisy Hollman provided an entire collection of
such workarounds.
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Previous work

Variable-template template-parameters were proposed in P2008R0 [6] and were part of the
original design for variable templates N3615 [7]. Concept template-parameters have been
described by Barry Revzin (back when Concept names were uppercase) in his blog here and
here. We mentioned them in P2632R0 [5] and P1985R3 [1].

Universal template-parameters

The fact that variable-template template-parameters and concept template-parameters ap-
pear in the same papers is not accidental. For a universal template-parameter to be universal,
we need tomake sure it covers the set of entities we could want to use as template-parameters.
There is, therefore, an important order of operations. If we were to add universal template-
parameters before concept template-parameters and variable-template template-parameters,
we would be in a situation where either

• we can’t ever add concept template-parameters and variable-template template-parameters

• ”universal template-parameters would not be truly universal”

• we would feel forced to come up with some kind of ”more universal template-parameter”
syntax

None of these outcomes seems desirable; therefore, the best course of action is to ensure
that we support as best we can the full set of entities we might ever want to support as
template-parameters, before adding support for universal template-parameters.

Design

Syntax

We propose the following syntax for the declaration of a template head accepting a concept
as a parameter:

template<
template <template-parameter-list> concept C

>

We propose the following syntax for the declaration of a template head accepting a variable
template as parameter:

template<
template <template-parameter-list> auto C

>

Note that because variable templates and their type can be arbitrarily specialized, auto here
acts only as a syntactic marker and cannot be replaced by a type-id.

This forms a natural, somewhat intuitive extension of the existing syntax for template exten-
sion:
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template<
typename T,
auto V,
template <template-parameter-list> typename TT,
template <template-parameter-list> auto VT,
template <template-parameter-list> concept C,

>

Default Arguments

Like type template template parameters, concepts, and variable template template parame-
ters can have a default argument that is a concept name or the name of a variable template
respectively. Packs can’t be defaulted. (That’s a separate paper!)

Usage

Within the definition of a templated entity, a concept template-parameter can be used any-
where a concept name can be used, including as a type constraint, in the requires clause, and
so forth.

For example, the following should be valid:

template <template <typename T> concept C>
struct S {

void f(C auto);

};

Concept template-parameters and subsumption

Consider:

template <typename T>
requires view<T> && input_range<T>
void f(); // #1

template <typename T>
requires view<T> && contiguous_range<T>
void f(); // #2

We expect #2 to be more specialized than #1 because contiguous_range subsumes
input_range.

Now, consider:

template <typename T>
requires all_of<T, view, input_range>
void f(); // #1

template <typename T>
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requires all_of<T, view, contiguous_range>
void f(); // #2

[Run this example on Compiler Explorer]

This example ought to be isomorphic to the previous one, and #2 should still be more special-
ized than #1. To do that, we need to be able to substitute concept template arguments in
constraint expressions when normalizing constraints.

When establishing subsumption, we have historically not substituted template arguments,
instead establishing a mapping of template parameters to arguments for each constraint and
comparing those mappings.

But to establish subsumption rules for concept template-parameters, we need to depart from
that somewhat.

Concepts have the particularity of never being explicitly specialized, deduced, dependent, or
even instantiated. Substituting a concept template argument is only a matter of replacing
the corresponding template parameter with the list of constraints of the substituted concept,
recursively.

As such, subsumption for concept template-parameters does not violate the guiding principle
of subsumption.

For example, a range_of_integrals defined as follow:

template<typename T>
concept range_of_integrals = std::ranges::range<T> && std::integral<std::remove_cvref_t<std::

ranges::range_reference_t<T>>>;

Can be mechanically lifted:

template<typename T, template <typename...> concept C>
concept range_of = std::ranges::range<T> && C<std::remove_cvref_t<std::ranges::

range_reference_t<T>>>;
template<typename T>
concept range_of_integrals = range_of<T, std::integral>;

Note that this transformation does not change any other behavior of normalization, i.e.,
concept template-parameters that appear within other atomic constraints are not substituted,
and arguments that are not concept names are not substituted either.

Fold expressions involving concept template-parameters

Our proposed design allow for subsumption in the the presence of fold expressions whose
pattern is a concept. (For the non-concept case, see P2963R0 [4])

template <
typename T,
template <typename...> concept... C>

concept all_of = (C<T> && ...);
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Once substituted, the sequence of binary && or || is normalized, all_of, any_of, and so on can
then be implemented in a way that supports subsumption.

One very important case where this facility is absolutely essential is constraining tuples (and
other algebraic data-types) by dimension:

template <typename X, template <typename> concept... C>
concept product_type_of = (... && C<std::tuple_element_t<C...[?], X>>);
// index-of-current-element, not proposed, but needed ~~~~~~~

P2632R0 [5] discusses alternatives to the awful index-of-current-element syntax above.

ADL

Similar to variables, variable templates and concepts are not associated entities when per-
forming argument-dependent lookup. This is consistent with previous work (for example
N3595 [3] and P0934R0 [8]) and the general consensus toward ADL.

Deduction of concept and template parameters

Variable and concept template-parameters should be deducible from a template argument of
a class template, used in the argument list of a function.

template <template <class> auto V, template <class> concept C>
struct A {}; // A takes a variable template template argument

template <template <class T> auto V, template <class> concept C>
void foo(A<V, C>); // can accept any specialization of A; V and C are deduced

template <class T>
auto Var = 0;

template <class T>
concept Concept = true;

void test() {
foo(A<Var, Concept>{});

}

[Run this example on Compiler Explorer]

Partial ordering of function templates involving concept template
parameters

Let us introduce three concepts that refine eachother A, B, and C, as well as a class template S
that carries a concept X and a type T.
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If we then define an overload set of two functions where one deduces the concept, we get
into an interesting situation where if concept parameters are allowed participate in partial
ordering, the choice of template arguments of S can change the subsumption order.

template <template <typename T> concept X, typename T>
struct S {};
template <typename T>
concept A = true;
template <typename T>
concept B = true && A<T>;
template <typename T>
concept C = true && B<T>;

template <template <typename T> concept X, typename T>
int answer(S<X, T>) requires B<T> { return 42; }
template <template <typename T> concept X, typename T>
int answer(S<X, T>) requires X<T> { return 43; }

answer(S<A, int>{});
answer(S<C, int>{});
answer(S<B, int>{});

In a previous version of this proposal, we proposed that the concept template argument (A, B,
C respectively) would be substituted in each viable answer overload before determining partial
ordering.

However, historically, it was always possible to determine the partial ordering of two function
templates before substitution, and independently of any template argument. This has notably
allowed compilers to cache partial orderings of function templates, and even though the
compiler isn’t confused, one might legitimately be concerned that the users might be. On
the face of it, it seems valuable for a C++ programmer to be able to partially order function
templates in their head, and this feature seems to allow a corner-case where that is impossible
before substitution.

It was always the position of the authors that use cases where concepts are deduced from
functions arguments were contrived but we did not want to outright limit the set of places
were a concept template parameter could be used, and it took us a while to find a reasonable
way to resolve these opposite design goals.

Ultimately we found a solution that preserves all the uses cases this feature was designed for,
while not making partial ordering dependent on arguments.

The rule we are proposing is:

Given a template declaration D with a concept parameter C, if C appears in the associ-
ated constraints of D, then D is never at least as constrained as another constrained
declaration. In the example above, the 3 calls to answer are, with is rule, ambiguous.

This rule makes any overload that references a concept template parameter in its requires
clause unorderable solely based on subsumption.

We think this has nice properties:
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• It’s fairly straightforward to teach

• It’s easy to produce a good diagnosis for.

• It leaves the design space open.

Consider this slightly different example:

template <template <typename> concept C>
concept A = C<int>;
template <template <typename> concept C>
concept B = true && A<C>;

template <template <typename T> concept X>
void f() {}; // #1
template <template <typename T> concept X>
void f() requires A<X> {} // #2
template <template <typename T> concept X>
void f() requires B<X> {} // #3

template <typename T>
concept Foo = true;

f<Foo>(); // #4 (ambiguous between 2 and 3)

Here, #2 and #3 are more specialized than #1 (because they are constrained and #1 is not).

With the rule proposed above, neither #2 or #3 are as least as constrained as each other (as
they refer to a concept templaste parameter X). As such #2 is not more specialized than #3
and #3 is not more specialized than #2, and the call #4 is ambiguous.

We could conceive an alternative design instead, such that we would consider dependent
concept-id (ie dependent on a concept template parameter of the function template) to
be atomic constraints (option 2).

With that alternative design, for the example above the associated constraints of #2 would be,
after normalization C<int> (where C<int> is an atomic constraint and C refers to some invented
template argument), and the associated constraints of #3 would be, after normalization true
&& C<int> (where C<int> is the same expression as #2’s).

In that model, #3 subsumes #2 and the call is not ambiguous. The key observation is that,
the nature of C does not affect subsumption whether it would be substituted or not.

Not looking at template arguments (and considering dependent concept-id) can lead to
situations where overloads are ambiguous, when they would not be if the concept argument
was written verbatim and not passed via a parameter.

template <typename T>
concept Foo = true;

template <template <typename> concept C>
concept B = true && C<int>;
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template <template <typename T> concept X>
void f() requires Foo<int>{}; // #1

template <template <typename T> concept X>
void f() requires B<X> {} // #2

f<Foo>(); // ambiguous between #1 and #2

The opposite is not possible.

There is a compromise between these two options. We could consider that a concept that
appears (either as concept-id, or as concept template argument of another concept-id) in a
subexpression of && or || makes that subexpression atomic (and that subexpression only).

template <template <typename> concept X>
concept AlwaysTrue = true; // X is not used
template <typename T>
concept A = true;
template <typename T, template <typename> concept C>
void f(T) requires
A<T>
|| C<int> // atomic (depends on C)
|| AlwaysTrue<T, C> {} // atomic (depends on C, even if C is never used by AlwaysTrue)

This would be less restrictive than Option 1, and less precise than Option 2, but easier to
implement. Lets refer to this option as 1B.

In no case do we expand concept template arguments when considering subsumption; the
question is merely about how much subsumption depth we want to preserve, that is, how
much rope for resolving ambiguity do we want to give users.

Ultimately, while whe have a slight preference for option 1.

In the previous revision of this paper, EWG was asked to choose between these options:

• Option 1: Don’t try to determine a more constrained overload at all in the presence of a
referenced concept template parameter.

• Option 1B: Before normalization (ie at the top level), if a concept template parameter is
referenced in the subexpression of of a logical && or ||, consider that subexpression
atomic

• Option 2: After normalization of non-dependent concept-id, consider concept-id refering
to a concept template parameter to be atomic constraints. (Option 1 and 1B can be
evolved into option 2 later, the opposite would be a breaking change.)

EWG choose the first option.

Deduction of template parameters from the argument list of a variable template
argument

This is not proposed.
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Consider:

template<template <typename...> auto, auto>
inline constexpr bool is_specialization_of_v = false;

template<
template <typename...> auto v,
typename... Args
>
inline constexpr bool is_specialization_of_v<v, v<Args...>> = true; // #2

template <typename T>
constexpr int i = 42;

static_assert(is_specialization_of_v<i, i<int>>); // #3

[Compiler Explorer]

Should we be able to deduce Args from int? Some existing implementations will eagerly
substitute i<int> by its value (here, 42), such that there is subsequently nothing left to deduce
Args against.

While it would be possible to make that work, the implementation effort is non-negligible
and the benefits limited, as we could only deduce the arguments of entities that are valid
template arguments - which sounds obvious but that means that the above example can only
work on a subset of variables (constexpr variables template specialization of structural types).

Wewould also need to decidewhether is_specialization_of_v<i, i<int>>behaves differently
from is_specialization_of_v<i, (i<int>)> and how that generalizes to arbitrary subexpres-
sions involving variable template specializations.

So, for now, arguments of variable template template parameters are not deduced. instead,
we should make #2 ill-formed, so that we have the opportunity to extend that at a later time
if we find sufficient motivation for it.

There are existing cases where we make non-deductible partial specializations ill-formed (see
[temp.spec.partial.match]), however in the general case we don’t seem to (for example here
is an example with a non-deducible pack)

Equivalence of atomic constraints

One interesting concept to consider is tuple_of, whichwould e.g., allow constraining a function
on a tuple-like of integrals, a frequent use case in scientific computation.

In the absence of member and alias packs, a tuple_like concept could look like

template <typename T, int N>
constexpr bool __tuple_check_elements = [] {

if constexpr (N == 0)
return true;

else if constexpr(requires (T t) {
typename std::tuple_element_t<N-1, T>;
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{ std::get<N-1>(t) };
})
return __tuple_check_elements<T, N-1>;

return false;
}();

template <typename T>
concept tuple_like = requires {

typename std::tuple_size<T>::type;
} && __tuple_check_elements<T, std::tuple_size_v<T>>;

Here, we use a constexpr variable template to check the constraint on individual elements.
We can trivially adapt this code to take a concept argument:

template <typename T, template <typename> concept C>
concept decays_to = C<std::decay_t<T>>;

template <typename T, int N, template <typename> concept C>
constexpr bool __tuple_check_elements = [] {

if constexpr (N == 0)
return true;

else if constexpr(requires (T t) {
typename std::tuple_element_t<N-1, T>;
{ std::get<N-1>(t) } -> decays_to<C>;

})
return __tuple_check_elements<T, N-1, C>;

return false;
}();

template <typename T, template <typename> concept C>
concept tuple_of = requires {

typename std::tuple_size<T>::type;
} && __tuple_check_elements<T, std::tuple_size_v<T>, C>;

And this works fine, but __tuple_check_elements is an atomic constraint, sowe cannot establish
a subsumption relationship for this concept.

With a sufficient number of pack features, we could probably write a concept that checks all
elements with a single constraint, i.e.,

template <typename T, typename E, int N, template <typename> concept C>
concept __tuple_of_element = requires (T t) {

typename std::tuple_element_t<N, T>;
{ std::get<N>(t) } -> decays_to<C>;

} && C<std::tuple_element_t<0, T>>;

template <typename T, template <typename> concept C>
concept tuple_of = requires {

typename std::tuple_size<T>::type;
} && (__tuple_of_element<T, T::[:], current_expansion_index_magic(), C> && ...);
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But in addition to relying on imaginary features, this is pretty inefficient since ordering
complexity would be proportional to the square of the number of tuple elements.

Fortunately, while checking satisfaction does require looking at every element, we can look at
just one element to establish subsumption in this particular case.

We can rewrite our concept as

template <typename T, int N, template <typename> concept C>
concept __tuple_of_element = requires (T t) {

typename std::tuple_element_t<N, T>;
{ std::get<N>(t) } -> decays_to<C>;

} && C<std::tuple_element_t<0, T>>;

template <typename T, int N, template <typename> concept C>
constexpr bool __check_tuple_elements = [] {

if constexpr (N == 1)
return true;

else if constexpr(__tuple_of_element<T, N-1, C>)
return __check_tuple_elements<T, N-1, C>;

return false;
}();

template <typename T, template <typename> concept C>
concept tuple_of = requires {

typename std::tuple_size<T>::type;
} && (std::tuple_size_v<T> == 0 || (

// Check the first element with a concept to establish subsumption
__tuple_of_element<T, 0, C> &&
// Check constraint satisfaction for subsequent elements
__check_tuple_elements<T, std::tuple_size_v<T>, C>

));

[Run this example on Compiler Explorer]

For this to work, the concept template-parameter C needs to be substituted in the concept
__tuple_of_element but not in the atomic constraint __check_tuple_elements<T, std::tuple_-
size_v<T>, C>.

Atomic constraints also need to ignore concept template-parameters for the purpose of
comparing their template arguments when establishing atomic constraint equivalence during
subsumption.

Status of this proposal and further work

Ourmain priority should be tomake progress on some form of universal template parameters.

This paper has been implemented in an experimental version of clang, available on godbolt.

Before that, we need to ensure concepts and variable-template template-parameters are
supported features so that universal template-parameters support the gamut of entities that
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could reasonably be used as template-parameters.

As part of that, subsumption for concept template-parameters, as proposed in this paper, as
well as subsumption of fold expressions should be considered an integral part of the design
since adding them later might be somewhat challenging, although it should not affect existing
valid code.

Implementation

The paper as proposed has been implemented in a fork of Clang and is available on compiler-
explorer. The implementation revealed no particular challenge. In particular, we confirmed
that the proposed changes do not prevent memoization for subsumption and satisfiability,
i.e., a concept and the set of its concept parameters are what needs to be cached.

Wording

1. Add a grammar production for qualified concept-names

�? Concept definitions [temp.concept]

concept-definition:
concept concept-name attribute-specifier-seqopt = constraint-expression ;

qualified-concept-name:
nested-name-specifieropt concept-name

concept-name:
identifier

[Editor’s note: In [temp.param], use the new production]

type-parameter-key:
class
typename

type-constraint:
nested-name-specifieropt concept-name qualified-concept-name
nested-name-specifieropt concept-name qualified-concept-name < template-
argument-listopt >

2. Unifying existing terminology

The introduction of new non-type, non non-type template parameters might lead to confusion
given the state of the current terminology. Beside actually specifying the behavior of concept
parameters and variable template parameters, we recommend renaming non-type template
parameters and distinguishing type template parameters from type-parameters that are not
types.
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If it is not a type, what is it?

A non-type template parameter is neither an expression nor an object. It might be a variable
but a non-type template argument is not. ”value template parameter” might work, but we
talk in a few places of the ”value of a template parameter”, and talking about the ”value of
a value template-parameter” might be a new source of confusion. Ultimately, we propose
”constant template parameter”.

This gives us:

Grammar Prose

type-parameter type template parameter

parameter-declaration constant template parameter

type-template-parameter type template template parameter

variable-template-parameter variable template template parameter

concept-template-parameter concept template parameter

3. Wording for variable-template and concept template parameters

�? Preamble [basic.pre]

Every name is introduced by a declaration, which is a

• name-declaration, block-declaration, ormember-declaration [dcl.pre,class.mem],

• init-declarator [dcl.decl],

• identifier in a structured binding declaration [dcl.struct.bind],

• init-capture [expr.prim.lambda.capture],

• condition with a declarator [stmt.pre],

• member-declarator [class.mem],

• using-declarator [namespace.udecl],

• parameter-declaration [dcl.fct],

• type-parameter [temp.param],

• type-template-parameter [temp.param],

• variable-template-parameter [temp.param],

• concept-parameter [temp.param],

• elaborated-type-specifier that introduces a name [dcl.type.elab],

• class-specifier [class.pre],

• enum-specifier or enumerator-definition [dcl.enum],

• exception-declaration [except.pre], or
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• implicit declaration of an injected-class-name [class.pre].

�? Argument-dependent name lookup [basic.lookup.argdep]

When the postfix-expression in a function call[expr.call] is an unqualified-id, and unqualified
lookup[basic.lookup.unqual] for the name in the unqualified-id does not find any

• declaration of a class member, or

• function declaration inhabiting a block scope, or

• declaration not of a function or function template

then lookup for the name also includes the result of argument-dependent lookup in a set of
associated namespaces that depends on the types of the arguments (and for type template
template arguments, the namespace of the template argument), as specified below.

[...]

For each argument type T in the function call, there is a set of zero or more associated entities
to be considered. The set of entities is determined entirely by the types of the function
arguments (and any template type template template arguments). Any typedef-name s and
using-declarations used to specify the types do not contribute to this set. The set of entities is
determined in the following way:

• If T is a fundamental type, its associated set of entities is empty.

• If T is a class type (including unions), its associated entities are: the class itself; the class of
which it is a member, if any; and its direct and indirect base classes. Furthermore, if T is a
class template specialization, its associated entities also include: the entities associated
with the types of the template arguments provided for template type parameters; the
templates used as type template template arguments; and the classes of which any
member templates used as type template template arguments are members. [Note:
Non-type constant template arguments, variable template template arguments and
concept template arguments do not contribute to the set of associated entities. —end
note ]

• If T is an enumeration type, its associated entities are T and, if it is a class member, the
member’s class.

• If T is a pointer to U or an array of U, its associated entities are those associated with U.

• If T is a function type, its associated entities are those associated with the function
parameter types and those associated with the return type.

• If T is a pointer to a member function of a class X, its associated entities are those
associated with the function parameter types and return type, together with those
associated with X.

• If T is a pointer to a data member of class X, its associated entities are those associated
with the member type together with those associated with X.
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In addition, if the argument is an overload set or the address of such a set, its associated
entities are the union of those associated with each of the members of the set, i.e., the entities
associated with its parameter types and return type. Additionally, if the aforementioned
overload set is named with a template-id, its associated entities also include its type template
template-arguments and those associated with its type template-argument s.

The associated namespaces for a call are the innermost enclosing non-inline namespaces for
its associated entities as well as every element of the inline namespace set [namespace.def]
of those namespaces. Argument-dependent lookup finds all declarations of functions and
function templates that

• are found by a search of any associated namespace, or

• are declared as a friend [class.friend] of any class with a reachable definition in the set
of associated entities, or

• are exported, are attached to a named module M [module.interface], do not appear in
the translation unit containing the point of the lookup, and have the same innermost
enclosing non-inline namespace scope as a declaration of an associated entity attached
to M [basic.link].

If the lookup is for a dependent name [temp.dep,temp.dep.candidate], the above lookup is
also performed from each point in the instantiation context [module.context] of the lookup,
additionally ignoring any declaration that appears in another translation unit, is attached to
the global module, and is either discarded [module.global.frag] or has internal linkage.

�? User-defined literals [lex.ext]

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let len be the
number of code units in str (i.e., its length excluding the terminating null character). If S
contains a literal operator template with a non-type constant template parameter for which
str is a well-formed template-argument, the literal L is treated as a call of the form

operator ""X<str>()

Otherwise, the literal L is treated as a call of the form

operator ""X(str, len)

�? Constant expressions [expr.const]

A converted constant expression of type T is an expression, implicitly converted to type T, where
the converted expression is a constant expression and the implicit conversion sequence
contains only

• user-defined conversions,

• [...]
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• function pointer conversions[conv.fctptr],

and where the reference binding (if any) binds directly. [Note: Such expressions can be used
in new expressions[expr.new], as case expressions[stmt.switch], as enumerator initializers if
the underlying type is fixed[dcl.enum], as array bounds[dcl.array], and as non-type constant
template arguments[temp.arg]. —end note ]

�? The typedef specifier [dcl.typedef]

A simple-template-id is only a typedef-name if its template-name names an alias template or
a template template-parameter a type-template-parameter . [Note: A simple-template-id that
names a class template specialization is a class-name [class.name]. If a typedef-name is used
to identify the subject of an elaborated-type-specifier [dcl.type.elab], a class definition [class], a
constructor declaration [class.ctor], or a destructor declaration [class.dtor], the program is
ill-formed. —end note ]

�? Decltype specifiers [dcl.type.decltype]

For an expression E, the type denoted by decltype(E) is defined as follows:

• if E is an unparenthesized id-expression naming a structured binding[dcl.struct.bind],
decltype(E) is the referenced type as given in the specification of the structured binding
declaration;

• otherwise, if E is an unparenthesized id-expression naming a non-type constant template-
parameter [temp.param], decltype(E) is the type of the template-parameter after per-
forming any necessary type deduction[dcl.spec.auto,dcl.type.class.deduct];

• otherwise, if E is an unparenthesized id-expression or an unparenthesized class member
access[expr.ref], decltype(E) is the type of the entity named by E. If there is no such
entity, the program is ill-formed;

• otherwise, if E is an xvalue, decltype(E) is T&&, where T is the type of E;

• otherwise, if E is an lvalue, decltype(E) is T&, where T is the type of E;

• otherwise, decltype(E) is the type of E.

�? Placeholder type deduction [dcl.type.auto.deduct]

Placeholder type deduction is the process by which a type containing a placeholder type is
replaced by a deduced type.

A type T containing a placeholder type, and a corresponding initializer-clauseE, are determined
as follows:

• For a non-discarded return statement that occurs in a function declared with a return
type that contains a placeholder type, T is the declared return type.

• [...]
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• For a non-type constant template parameter declared with a type that contains a place-
holder type, T is the declared type of the non-type constant template parameter and E
is the corresponding template argument.

�? Structured binding declarations [dcl.struct.bind]

Otherwise, if the qualified-id std::tuple_size<E> names a complete class type with a member
named value, the expression std::tuple_size<E>::value shall be a well-formed integral con-
stant expression and the number of elements in the attributed-identifier-list shall be equal to
the value of that expression. Let i be an index prvalue of type std::size_t corresponding
to vi. If a search for the name get in the scope of E[class.member.lookup] finds at least one
declaration that is a function template whose first template parameter is a non-type constant
template parameter, the initializer is e.get<i>(). Otherwise, the initializer is get<i>(e), where
get undergoes argument-dependent lookup[basic.lookup.argdep].

�? Address of an overload set [over.over]

An id-expression whose terminal name refers to an overload set S and that appears without
arguments is resolved to a function, a pointer to function, or a pointer to member function for
a specific function that is chosen from a set of functions selected from S determined based
on the target type required in the context (if any), as described below. The target can be

• an object or reference being initialized [dcl.init,dcl.init.ref,dcl.init.list],

• [...]

• a non-type constant template-parameter [temp.arg.nontype].

The id-expression can be preceded by the & operator.

�? User-defined literals [over.literal]

A numeric literal operator template is a literal operator template whose template-parameter-list
has a single template-parameter that is a non-type constant template parameter pack[temp.vari-
adic] with element type char. A string literal operator template is a literal operator template
whose template-parameter-list comprises a single non-type constant template-parameter of
class type. The declaration of a literal operator template shall have an empty parameter-
declaration-clause and shall declare either a numeric literal operator template or a string literal
operator template.

�? Template parameters [temp.param]

The syntax for template-parameters is:
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template-parameter:
type-parameter
parameter-declaration
type-template-parameter
variable-template-parameter
concept-parameter

type-parameter:
type-parameter-key ...opt identifieropt
type-parameter-key identifieropt = type-id
type-constraint ...opt identifieropt
type-constraint identifieropt = type-id
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

type-parameter-key:
class
typename

type-constraint:
qualified-concept-name
qualified-concept-name < template-argument-listopt >

type-template-parameter:
template-head type-parameter-key ...opt identifieropt
template-head type-parameter-key identifieropt = id-expression

variable-template-parameter:
template-head auto ...opt identifieropt
template-head auto identifieropt = id-expression

concept-parameter:
template < template-parameter-list > concept ...opt identifieropt
template < template-parameter-list > concept identifieropt = qualified-concept-name

A template template parameter ia a type-template-parameter, a variable-template-parameter, or
a concept-parameter. A constant template parameter is a template parameter introduced by a
parameter-declaration.

The component names of a type-constraint are its concept-name and those of its nested-name-
specifier (if any). [Note: The > token following the template-parameter-list of a type-parameter
template template parameter can be the product of replacing a >> token by two consecutive
> tokens [temp.names]. —end note ]

There is no semantic difference between class and typename in a type-parameter-key. typename
followed by an unqualified-id names a template type parameter. typename followed by a
qualified-id denotes the type in a non-typeparameter-declaration constant template parameter.

[Editor’s note: Remove the footnote]

[ Footnote: Since template template-parameters and template template-arguments are treated
as types for descriptive purposes, the terms non-type parameter and non-type argument are
used to refer to non-type, non-template parameters and arguments. —end note ]

A template-parameter of the form class identifier is a type-parameter. [ Example:
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class T { /*...*/ };
int i;

template<class T, T i> void f(T t) {
T t1 = i; // template-parameters T and i
::T t2 = ::i; // global namespace members T and i

}

Here, the template f has a type-parameter called T, rather than an unnamed non-type constant
template-parameter of class T. —end example ] A storage class shall not be specified in a
template-parameter declaration. Types shall not be defined in a template-parameter declaration.

The identifier in a type-parameter is not looked up. A type-parameter whose identifier does not
follow an ellipsis defines its identifier to be a typedef-name (if declared without template) or
template-name (if declared with template) in the scope of the template declaration.

The identifier in a template template parameter is not looked up. P whose identifier does not
follow an ellipsis defines its identifier to be a concept-name T if P is a concept-parameter or a
template-name T otherwise. T is declared in the scope of the template declaration.

[Note: A template argument can be a class template or alias template. For example,

template<class T> class myarray { /*...*/ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;

};

—end note ]

[...]

A non-type constant template-parameter shall have one of the following (possibly cv-qualified)
types:

• a structural type (see below),

• a type that contains a placeholder type[dcl.spec.auto], or

• a placeholder for a deduced class type[dcl.type.class.deduct].

The top-level cv-qualifiers on the template-parameter are ignored when determining its type.

A structural type is one of the following:

• a scalar type, or

• an lvalue reference type, or

• a literal class type with the following properties:

– all base classes and non-static data members are public and non-mutable and
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– the types of all bases classes and non-static data members are structural types or
(possibly multidimensional) array thereof.

An id-expression naming a non-type constant template-parameter of class type T denotes a
static storage duration object of type const T, known as a template parameter object, which is
template-argument-equivalent[temp.type] to the corresponding template argument after it
has been converted to the type of the template-parameter [temp.arg.nontype]. No two tem-
plate parameter objects are template-argument-equivalent. [Note: If an id-expression names
a non-type non-reference constant template-parameter, then it is a prvalue if it has non-class
type. Otherwise, if it is of class type T, it is an lvalue and has type const T [expr.prim.id.unqual].
—end note ]

[ Example:

using X = int;
struct A {};
template<const X& x, int i, A a> void f() {

i++; // error: change of template-parameter value

&x; // OK
&i; // error: address of non-reference

template-parameter
&a; // OK
int& ri = i; // error: attempt to bind non-const reference to

temporary
const int& cri = i; // OK, const reference binds to temporary
const A& ra = a; // OK, const reference binds to a template parameter

object
}

—end example ]

[Note: A non-type constant template-parameter cannot be declared to have type cv void.
[ Example:

template<void v> class X; // error
template<void* pv> class Y; // OK

—end example ] —end note ]

A non-type constant template-parameter of type “array of T” or of function type T is adjusted
to be of type “pointer to T”. [ Example:

template<int* a> struct R { };
template<int b[5]> struct S { };
int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion
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—end example ]

A non-type constant template parameter declared with a type that contains a placeholder type
with a type-constraint introduces the immediately-declared constraint of the type-constraint
for the invented type corresponding to the placeholder [dcl.fct].

A default template argument is a template argument [temp.arg] specified after = in a template-
parameter. A default template argument may be specified for any kind of template-parameter
(type, non-type constant, template) that is not a template parameter pack[temp.variadic]. A
default template argument may be specified in a template declaration. A default template
argument shall not be specified in the template-parameter-lists of the definition of a member
of a class template that appears outside of the member’s class. A default template argument
shall not be specified in a friend class template declaration. If a friend function template
declaration D specifies a default template argument, that declaration shall be a definition
and there shall be no other declaration of the function template which is reachable from D or
from which D is reachable.

[...]

When parsing a default template argument for a non-type constant template-parameter, the
first non-nested > is taken as the end of the template-parameter-list rather than a greater-than
operator. [ Example:

template<int i = 3 > 4 > // syntax error
class X { };

template<int i = (3 > 4) > // OK
class Y { };

—end example ]

If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is a
parameter-declaration that declares a pack[dcl.fct], then the template-parameter is a template
parameter pack[temp.variadic]. A template parameter pack that is a parameter-declaration
whose type contains one or more unexpanded packs is a pack expansion. Similarly, a template
parameter pack that is a type-parameter with a template-parameter-list containing one or more
unexpanded packs is a pack expansion. A type parameter pack with a type-constraint that
contains an unexpanded parameter pack is a pack expansion. A template parameter pack
that is a pack expansion shall not expand a template parameter pack declared in the same
template-parameter-list. [ Example:

template <class... Types> // Types is a template type parameter
pack
class Tuple; // but not a pack expansion

template <class T, int... Dims> // Dims is a non-type constant template
parameter pack
struct multi_array; // but not a pack expansion
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template <class... T>
struct value_holder {

template <T... Values> struct apply { }; // Values is a non-type constant template
parameter pack
}; // and a pack expansion

template <class... T, T... Values> // error: Values expands template type
parameter
struct static_array; // pack T within the same template parameter
list

—end example ]

[...]

If a template-parameter is a type-parameter with an ellipsis prior to its optional identifier or is
a parameter-declaration that declares a pack [dcl.fct]

• a type-parameter with an ellipsis prior to its optional identifier,

• a parameter-declaration that declares a pack [dcl.fct], or

• a template template parameter with an ellipsis prior to its optional identifier,

then the template-parameter is a template parameter pack [temp.variadic]. A template param-
eter pack that is a parameter-declaration whose type contains one or more unexpanded packs
is a pack expansion. Similarly, a template parameter pack that is a type-parameter template
template parameter with a template-parameter-list containing one or more unexpanded packs
is a pack expansion. A type parameter pack with a type-constraint that contains an unexpanded
parameter pack is a pack expansion. A template parameter pack that is a pack expansion
shall not expand a template parameter pack declared in the same template-parameter-list.

[...]

�? Names of template specializations [temp.names]

A template specialization [temp.spec] can be referred to by a template-id:

simple-template-id:
template-name < template-argument-listopt >

template-id:
simple-template-id
operator-function-id < template-argument-listopt >
literal-operator-id < template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument ...opt
template-argument-list , template-argument ...opt
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template-argument:
constant-expression
type-id
id-expression
qualified-concept-name

[...]

A concept-id is a simple-template-id where the template-name is a concept-name. A concept-id is
a prvalue of type bool, and does not name a template specialization. A concept-id evaluates to
true if the concept’s normalized constraint-expression [temp.constr.decl] is satisfied [temp.con-
str.constr] by the specified template arguments and false otherwise. [Note: Since a constraint-
expression is an unevaluated operand, a concept-id appearing in a constraint-expression is not
evaluated except as necessary to determine whether the normalized constraints are satisfied.
—end note ] [ Example:

template<typename T> concept C = true;
static_assert(C<int>); // OK

—end example ]

[...]

�? Template arguments [temp.arg]

�? General [temp.arg.general]

There are three forms of template-argument, corresponding to the three forms of template-
parameter: type, non-type constant and template. A template template-argument can name
a type or alias template, a variable template, or a concept.

The type and form of each template-argument specified in a template-id shall match the type
and form specified for the corresponding parameter declared by the template in its template-
parameter-list. When the parameter declared by the template is a template parameter pack
[temp.variadic], it will correspond to zero or more template-arguments. [ Example:

template<class T> class Array {
T* v;
int sz;
public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }

};

Array<int> v1(20);
typedef std::complex<double> dcomplex; // std::complex is a standard library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);
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void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

—end example ]

[...]

�? Template type arguments [temp.arg.type]

A template-argument for a template-parameter which is a type type-parameter shall be a type-id.

[ Example:

template <class T> class X { };
template <class T> void f(T t) { }
struct { } unnamed_obj;

void f() {
struct A { };
enum { e1 };
typedef struct { } B;
B b;
X<A> x1; // OK
X<A*> x2; // OK
X<B> x3; // OK
f(e1); // OK
f(unnamed_obj); // OK
f(b); // OK

}

—end example ] [Note: A template type argument can be an incomplete type[term.incom-
plete.type]. —end note ]

[...]

�? Template non-type constant arguments [temp.arg.nontype]

If the type T of a template-parameter [temp.param] contains a placeholder type [dcl.spec.auto]
or a placeholder for a deduced class type [dcl.type.class.deduct], the type of the parameter is
the type deduced for the variable x in the invented declaration

T x = E ;

whereE is the template argument provided for the parameter. [Note: E is a template-argument
or (for a default template argument) an initializer-clause. —end note ] If a deduced parameter
type is not permitted for a template-parameter declaration [temp.param], the program is
ill-formed.
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The value of a non-type constant template-parameter P of (possibly deduced) type T is de-
termined from its template argument A as follows. If T is not a class type and A is not a
braced-init-list, A shall be a converted constant expression [expr.const] of type T; the value of
P is A (as converted).

Otherwise, a temporary variable

constexpr T v = A;

is introduced. The lifetime of v ends immediately after initializing it and any template pa-
rameter object (see below). For each such variable, the id-expression v is termed a candidate
initializer.

If T is a class type, a template parameter object[temp.param] exists that is constructed so as
to be template-argument-equivalent to v; P denotes that template parameter object. P is
copy-initialized from an unspecified candidate initializer that is template-argument-equivalent
to v. If, for the initialization from any candidate initializer,

• the initialization would be ill-formed, or

• the full-expression of an invented init-declarator for the initialization would not be a
constant expression when interpreted as a constant-expression [expr.const], or

• the initialization would cause P to not be template-argument-equivalent[temp.type] to
v,

the program is ill-formed.

Otherwise, the value of P is that of v.

For a non-type constant template-parameter of reference or pointer type, or for each non-static
data member of reference or pointer type in a non-type constant template-parameter of class
type or subobject thereof, the reference or pointer value shall not refer to or be the address
of (respectively):

• a temporary object[class.temporary],

• a string literal object[lex.string],

• the result of a typeid expression[expr.typeid],

• a predefined __func__ variable[dcl.fct.def.general], or

• a subobject[intro.object] of one of the above.

�? Template template arguments [temp.arg.template]

A template-argument for a template template-parameter shall be the name of a class template
or an alias template, expressed as id-expression.

For a type-template-parameter, the name shall denote a class template or alias template. For
a variable-template-parameter, the name shall denote a variable template. For a concept-
parameter, the name shall denote a concept.
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Only primary templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their
parameter lists match that of the template template parameter.

Any partial specializations [temp.spec.partial] associated with the primary template are con-
sidered when a specialization based on the template template-parameter is instantiated. If a
specialization is not reachable from the point of instantiation, and it would have been selected
had it been reachable, the program is ill-formed, no diagnostic required. [ Example:

template<class T> class A { // primary template
int x;

};
template<class T> class A<T*> { // partial specialization

long x;
};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A> uses the primary template, so c.y.x has

type int
// V<int*> within C<A> uses the partial specialization, so c.z.x has type long

—end example ]

Two template parameters are of the same kind if:

• they are both type-parameters,

• they are both constant template parameters,

• they are both type-template-parameters,

• they are both variable-template-parameters, or

• they are both concept-parameters.

A template template parameter P and a template argument A are compatible if

• A denotes a class template or alias template and P is a type-template-parameter,

• A denotes a variable template and P is a variable-template-parameter, or

• A denotes a qualified-concept-name and P is a concept-parameter.

[Editor’s note: See CWG2398]

A template-argument matches a template template-parameter P when A and P are compatible
and P is at least as specialized as the template-argument A. In this comparison, if P is uncon-
strained, the constraints on A are not considered. If P contains a template parameter pack,
then A also matches P if each of A’s template parameters matches the corresponding tem-
plate parameter in the template-head of P. Two template parameters match if they are of
the same kind (type, non-type, template), for non-type constant template-parameters, their
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types are equivalent [temp.over.link], and for template template-parameters, each of their
corresponding template-parameters matches, recursively. When P’s template-head contains a
template parameter pack [temp.variadic], the template parameter pack will match zero or
more template parameters or template parameter packs in the template-head of A with the
same type and form as the template parameter pack in P (ignoring whether those template
parameters are template parameter packs).

[...]

�? Type equivalence [temp.type]

[...]

Two template-ids are the same if

• their template-names, operator-function-ids, or literal-operator-ids refer to the same tem-
plate, and

• their corresponding type template-arguments are the same type, and

• the template parameter values determined by their corresponding non-type constant
template arguments[temp.arg.nontype] are template-argument-equivalent (see below),
and

• their corresponding template template-arguments refer to the same template.

Two template-ids that are the same refer to the same class, function, concept, or variable.

[...]

�? Partial ordering by constraints [temp.constr.order]

A constraint P subsumes a constraint Q if and only if, for every disjunctive clause Pi in the
disjunctive normal form [ Footnote: A constraint is in disjunctive normal form when it is a
disjunction of clauses where each clause is a conjunction of atomic constraints. For atomic
constraints A, B, and C, the disjunctive normal form of the constraint A ∧ (B ∨ C) is (A ∧ B) ∨
(A ∧ C). Its disjunctive clauses are (A ∧ B) and (A ∧ C). —end note ] of P , Pi subsumes every
conjunctive clause Qj in the conjunctive normal form [ Footnote: A constraint is in conjunctive
normal form when it is a conjunction of clauses where each clause is a disjunction of atomic
constraints. For atomic constraints A, B, and C, the constraint A ∧ (B ∨ C) is in conjunctive
normal form. Its conjunctive clauses are A and (B ∨ C). —end note ] of Q, where

• a disjunctive clause Pi subsumes a conjunctive clause Qj if and only if there exists an
atomic constraint Pia in Pi for which there exists an atomic constraint Qjb in Qj such that
Pia subsumes Qjb, and

• an atomic constraint A subsumes another atomic constraint B if and only if A and B are
identical using the rules described in ??.
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[ Example: Let A and B be atomic constraints [temp.constr.atomic]. The constraint A ∧ B
subsumes A, but A does not subsume A ∧ B. The constraint A subsumes A ∨ B, but A ∨ B
does not subsume A. Also note that every constraint subsumes itself. —end example ]

[Note: The subsumption relation defines a partial ordering on constraints. This partial ordering
is used to determine

• the best viable candidate of non-template functions [over.match.best],

• the address of a non-template function [over.over],

• the matching of template template arguments [temp.arg.template],

• the partial ordering of class template specializations [temp.spec.partial.order], and

• the partial ordering of function templates [temp.func.order].

—end note ]

The associated constraints C of a declaration D are subsumption eligible unless D is a template
declaration and C is dependent on a concept-parameter of D.

A declaration D1 is at least as constrained as a declaration D2 if

• D1 and D2 are both constraineddeclarations and D1’s associated constraints are subsumption
eligible and subsume those of D2; or

• D2 has no associated constraints.

A declaration D1 is more constrained than another declaration D2 when D1 is at least as con-
strained as D2, and D2 is not at least as constrained as D1. [ Example:

template<typename T> concept C1 = requires(T t) { --t; };
template<typename T> concept C2 = C1<T> && requires(T t) { *t; };

template<C1 T> void f(T); // #1
template<C2 T> void f(T); // #2
template<typename T> void g(T); // #3
template<C1 T> void g(T); // #4

f(0); // selects #1
f((int*)0); // selects #2
g(true); // selects #3 because C1<bool> is not satisfied
g(0); // selects #4

—end example ]

[ Example:

template <template <typename T> concept X, typename T>
struct S {};
template <typename T>
concept A = true;
template <typename T>
concept B = true && A<T>;
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template <typename T>
concept C = true && B<T>;

template <template <typename T> concept X, typename T>
int answer(S<X, T>) requires B<T> { return 42; } // #1
template <template <typename T> concept X, typename T>
int answer(S<X, T>) requires X<T> { return 43; } // #2

// error: the 3 following calls are ambiguous because #1 and #2 are not subsumption eligible
// (their associated constraints depend on a concept template parameter X)
answer(S<A, int>{});
answer(S<C, int>{});
answer(S<B, int>{});

—end example ]

�? Constraint normalization [temp.constr.normal]

The normal form of an expression E is a constraint [temp.constr.constr] that is defined as
follows:

• The normal form of an expression ( E ) is the normal form of E.

• The normal form of an expression E1 || E2 is the disjunction [temp.constr.op] of the
normal forms of E1 and E2.

• The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1
and E2.

• The normal form of a concept-id C<A1, A2, ..., An> is the normal form of the constraint-
expression of C, after substituting A1, A2, ..., An

– substituting each use of Ai’s corresponding template parameter in the constraint-
expression of C if Ai denotes a concept-name

– substituting each Ai that is not a concept-name for C’s respective template parame-
ters in the parameter mappings in each atomic constraint. If any such substitution
results in an invalid type or expression, the program is ill-formed; no diagnostic is
required.

[Editor’s note: We need wording to substitute C when C names a concept template
parameter]

[ Example:

template<typename T> concept A = T::value || true;
template<typename U> concept B = A<U*>;
template<typename V> concept C = B<V&>;

Normalization of B’s constraint-expression is valid and results in T::value (with the map-
ping T 7→ U*) ∨ true (with an empty mapping), despite the expression T::value being
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ill-formed for a pointer type T. Normalization of C’s constraint-expression results in the
program being ill-formed, because it would form the invalid type V&* in the parameter
mapping. —end example ]

[Editor’s note: The wording in blue is added by P2963]

• For a fold-operator [expr.prim.fold] that is either && or ||

– The normal form of an expression ( ... fold-operator E ) is the normal form of (
E fold-operator...).

– The normal form of an expression ( E1 fold-operator ... fold-operator E2 ) is
the the normal form of

* (E1 fold-operator...) fold-operator E2 if E1 contains an unexpanded pack, or

* E1 fold-operator (E2 fold-operator...) otherwise.

[Editor’s note: The wording in pink is added by P2963 and removed by this paper]

– Thenormal formof (E && ...) is a fold expanded conjunction constraint [temp.constr.fold]
whose constraint is the normal form of E.

– The normal form of (E || ...) is a fold expanded disjunction constraint whose
constraint is the normal form of E.

[Editor’s note: Add the following two bullets]

– If E contains an unexpanded pack P naming a concept-name, the normal form of (E
fold-operator ...) is the normal form of ( ((E′

0 op E′
1) op · · · ) op E′

N−1 ) where E′
i

is formed by substituting the ith element of the corresponding template parameter
of P in E.

– Otherwise, the normal form of (E && ...) is a fold expanded conjunction constraint
[temp.constr.fold] whose constraint is the normal form of E and the normal form of
(E || ...) is a fold expanded disjunction constraint whose constraint is the normal
form of E.

• The normal form of any other expression E is the atomic constraint whose expression is
E and whose parameter mapping is the identity mapping.

The process of obtaining the normal form of a constraint-expression is called normalization.
[Note: Normalization of constraint-expressions is performed when determining the associated
constraints [temp.constr.constr] of a declaration and when evaluating the value of an id-
expression that names a concept specialization [expr.prim.id]. —end note ]

�? Variadic templates [temp.variadic]

A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces
zero or more instantiations of the pattern in a list (described below). The form of the pattern
depends on the context in which the expansion occurs. Pack expansions can occur in the
following contexts:
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• In a function parameter pack [dcl.fct]; the pattern is the parameter-declaration without
the ellipsis.

• In a using-declaration [namespace.udecl]; the pattern is a using-declarator.

• In a template parameter pack that is a pack expansion []:

– if the template parameter pack is a parameter-declaration; the pattern is the parameter-
declaration without the ellipsis;

– if the template parameter pack is a type-parameter; the pattern is the corresponding
type-parameter without the ellipsis.

– if the template parameter pack is a template template parameter; the pattern is
the corresponding template template parameter without the ellipsis.

• [...]

[...]

The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of
elements in the pack expansion parameters. Each Ei is generated by instantiating the pattern
and replacing each pack expansion parameter with its ith element. Such an element, in the
context of the instantiation, is interpreted as follows:

• if the pack is a template parameter pack, the element is an id-expression (for a non-type
constant template parameter pack), a typedef-name (for a type template parameter pack
declared without template), or a template-name (for a type template template parameter
pack declared with template), designating the ith corresponding type or value template
argument;

• [...]

[...]

�? Partial specialization [temp.spec.partial]

�? General [temp.spec.partial.general]

[...]

A non-type constant argument is non-specialized if it is the name of a non-type constant
parameter. All other non-type constant arguments are specialized.

Within the argument list of a partial specialization, the following restrictions apply:

• The type of a template parameter corresponding to a specialized non-type constant
argument shall not be dependent on a parameter of the partial specialization.

[...]
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�? Function template overloading [temp.over.link]

[...]

When an expression that references a template parameter is used in the function parameter
list or the return type in the declaration of a function template, the expression that references
the template parameter is part of the signature of the function template. This is necessary to
permit a declaration of a function template in one translation unit to be linked with another
declaration of the function template in another translation unit and, conversely, to ensure
that function templates that are intended to be distinct are not linked with one another.
[ Example:

template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1

—end example ] [Note: Most expressions that use template parameters use non-type constant
template parameters, but it is possible for an expression to reference a type parameter. For
example, a template type parameter can be used in the sizeof operator. —end note ]

[...]

Two template-heads are equivalent if their template-parameter-lists have the same length,
corresponding template-parameters are equivalent and are both declared with type-constraint
s that are equivalent if either template-parameter is declared with a type-constraint, and if either
template-head has a requires-clause, they both have requires-clauses and the corresponding
constraint-expressions are equivalent. Two template-parameters are equivalent under the
following conditions:

• they declare template parameters of the same kind,

• if either declares a template parameter pack, they both do,

• if they declare non-type constant template parameters, they have equivalent types
ignoring the use of type-constraints for placeholder types, and

• if they declare template template parameters, their template parameters are equivalent.

[...]

�? Partial ordering of function templates [temp.func.order]

If multiple function templates share a name, the use of that name can be ambiguous because
template argument deduction [temp.deduct] may identify a specialization for more than one
function template. Partial ordering of overloaded function template declarations is used in the
following contexts to select the function template to which a function template specialization
refers:

• during overload resolution for a call to a function template specialization [over.match.best];

• when the address of a function template specialization is taken;
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• when a placement operator delete that is a function template specialization is selected
to match a placement operator new [basic.stc.dynamic.deallocation,expr.new];

• when a friend function declaration [temp.friend], an explicit instantiation [temp.explicit]
or an explicit specialization [temp.expl.spec] refers to a function template specialization.

Partial ordering selects which of two function templates is more specialized than the other by
transforming each template in turn (see next paragraph) and performing template argument
deduction using the function type. The deduction process determines whether one of the
templates is more specialized than the other. If so, the more specialized template is the
one chosen by the partial ordering process. If both deductions succeed, the partial ordering
selects the more constrained template (if one exists) as determined below.

To produce the transformed template, for each type, non-type constant, or template tem-
plate parameter (including template parameter packs [temp.variadic] thereof) synthesize a
unique type, value, or class template respectively and substitute it for each occurrence of that
parameter in the function type of the template.

[Editor’s note: Do we need to change anything here?]

[Note: The type replacing the placeholder in the type of the value synthesized for a non-type
constant template parameter is also a unique synthesized type. —end note ] Each function
template M that is a member function is considered to have a new first parameter of type
X(M), described below, inserted in its function parameter list. If exactly one of the function
templates was considered by overload resolution via a rewritten candidate [over.match.oper]
with a reversed order of parameters, then the order of the function parameters in its trans-
formed template is reversed. For a function template M with cv-qualifiers cv that is a member
of a class A:

[...]

�? General [temp.res.general]

A qualified or unqualified name is said to be in a type-only context if it is the terminal name of

• [...]

• a decl-specifier of the decl-specifier-seq of a

– [...]

– parameter-declaration in a lambda-declarator or requirement-parameter-list, unless
that parameter-declaration appears in a default argument, or

– parameter-declaration of a (non-type constant) template-parameter.

�? Locally declared names [temp.local]

Like normal (non-template) classes, class templates have an injected-class-name[class.pre].
The injected-class-name can be used as a template-name or a type-name. When it is used
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with a template-argument-list, as a template-argument for a template template-parameter
type-template-parameter ), or as the final identifier in the elaborated-type-specifier of a friend
class template declaration, it is a template-name that refers to the class template itself. Other-
wise, it is a type-name equivalent to the template-name followed by the template argument
list[temp.decls.general,temp.arg.general] of the class template enclosed in <>.

When the injected-class-name of a class template specialization or partial specialization is
used as a type-name, it is equivalent to the template-name followed by the template-arguments
of the class template specialization or partial specialization enclosed in <>.

[...]

�? Dependent types [temp.dep.type]

[...]

A template argument that is equivalent to a template parameter can be used in place of
that template parameter in a reference to the current instantiation. For a template type-
parameter, a template argument is equivalent to a template parameter if it denotes the same
type. For a non-type constant template parameter, a template argument is equivalent to a
template parameter if it is an identifier that names a variable that is equivalent to the template
parameter.

[...]

A type is dependent if it is

• a template parameter,

• denoted by a dependent (qualified) name,

• a nested class or enumeration that is a direct member of a class that is the current
instantiation,

• a cv-qualified type where the cv-unqualified type is dependent,

• a compound type constructed from any dependent type,

• an array type whose element type is dependent or whose bound (if any) is value-
dependent,

• a function type whose parameters include one or more function parameter packs,

• a function type whose exception specification is value-dependent,

• denoted by a dependent placeholder type,

• denoted by a dependent placeholder for a deduced class type,

• denoted by a simple-template-id in which either the template name is a template param-
eter or any of the template arguments names a template template parameter or is a
dependent type or an expression that is type-dependent or value-dependent or is a pack
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expansion, [ Footnote: This includes an injected-class-name[class.pre] of a class template
used without a template-argument-list. —end note ]

• a pack-index-specifier, or

• denoted by decltype(expression), where expression is type-dependent[temp.dep.expr].

[Note: Because typedefs do not introduce new types, but instead simply refer to other types,
a name that refers to a typedef that is a member of the current instantiation is dependent
only if the type referred to is dependent. —end note ]

�? Type-dependent expressions [temp.dep.expr]

Except as described below, an expression is type-dependent if any subexpression is type-
dependent.

this is type-dependent if the current class[expr.prim.this] is dependent[temp.dep.type].

An id-expression is type-dependent if it is a template-id that is not a concept-id and is dependent;
or if its terminal name is

• associated by name lookup with one or more declarations declared with a dependent
type,

• associated by name lookup with a non-type constant template-parameter declared with
a type that contains a placeholder type[dcl.spec.auto],

• associated by name lookup with a variable declared with a type that contains a place-
holder type[dcl.spec.auto] where the initializer is type-dependent,

• [...]

[...]

�? Value-dependent expressions [temp.dep.constexpr]

Except as described below, an expression used in a context where a constant expression is
required is value-dependent if any subexpression is value-dependent.

An id-expression is value-dependent if:

• it is a concept-id and any of its arguments are dependent,

• it is type-dependent,

• it is the name of a non-type constant template parameter,

• it names a static data member that is a dependent member of the current instantiation
and is not initialized in amember-declarator,

• it names a static member function that is a dependent member of the current instantia-
tion, or
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• it names a potentially-constant variable [expr.const] that is initialized with an expression
that is value-dependent.

[...]

�? Dependent template arguments [temp.dep.temp]

A type template-argument is dependent if the type it specifies is dependent.

A non-type constant template-argument is dependent if its type is dependent or the constant
expression it specifies is value-dependent.

Furthermore, a non-type constant template-argument is dependent if the corresponding
non-type constant template-parameter is of reference or pointer type and the template-argument
designates or points to a member of the current instantiation or a member of a dependent
type.

A template template-parameter is dependent if it names a template-parameter or its terminal
name is dependent.

[...]

�? Template argument deduction [temp.deduct]

�? General [temp.deduct.general]

[...]

[Note: Type deduction can fail for the following reasons:

• Attempting to instantiate a pack expansion containingmultiple packs of differing lengths.

• Attempting to create an array with an element type that is void, a function type, or a
reference type, or attempting to create an array with a size that is zero or negative.
[ Example:

template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array

—end example ]

• Attempting to use a type that is not a class or enumeration type in a qualified name.
[ Example:

template <class T> int f(typename T::B*);
int i = f<int>(0);

—end example ]

• Attempting to use a type in a nested-name-specifier of a qualified-id when that type does
not contain the specified member, or
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– the specified member is not a type where a type is required, or

– the specified member is not a template where a template is required, or

– the specified member is not a non-type constant where a non-type constant is
required.

[ Example:

template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*) {}
template <class T> void g(X<T::N>*) {}
template <class T> void h(Z<T::TT>*) {}
struct A {};
struct B { int Y; };
struct C {

typedef int N;
};
struct D {

typedef int TT;
};

int main() {
// Deduction fails in each of these cases:
f<A>(0); // A does not contain a member Y
f<B>(0); // The Y member of B is not a type
g<C>(0); // The N member of C is not a non-type constant
h<D>(0); // The TT member of D is not a template

}

—end example ]

• Attempting to create a pointer to reference type.

• Attempting to create a reference to void.

• Attempting to create “pointer to member of T” when T is not a class type. [ Example:

template <class T> int f(int T::*);
int i = f<int>(0);

—end example ]

• Attempting to give an invalid type to a non-type constant template parameter. [ Example:

template <class T, T> struct S {};
template <class T> int f(S<T, T{}>*); // #1
class X {

int m;
};
int i0 = f<X>(0); // #1 uses a value of non-structural type X as a non-type

constant template argument
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—end example ]

—end note ]

[...]

�? Deducing template arguments from a function call [temp.deduct.call]

Template argument deduction is done by comparing each function template parameter type
(call it P) that contains template-parameters that participate in template argument deduction
with the type of the corresponding argument of the call (call it A) as described below. If
removing references and cv-qualifiers from P gives std::initializer_list<P′> or P′[N] for
some P′ and N and the argument is a non-empty initializer list [dcl.init.list], then deduction is
performed instead for each element of the initializer list independently, taking P′ as separate
function template parameter types P′

i and the ith initializer element as the corresponding
argument. In the P′[N] case, if N is a non-type constant template parameter, N is deduced from
the length of the initializer list. Otherwise, an initializer list argument causes the parameter
to be considered a non-deduced context [temp.deduct.type].

[...]

�? Deducing template arguments from a type [temp.deduct.type]

Template arguments can be deduced in several different contexts, but in each case a type that
is specified in terms of template parameters (call it P) is compared with an actual type (call it
A), and an attempt is made to find template argument values (a type for a type parameter, a
value for a non-type constant template parameter, or a template for a template parameter)
that will make P, after substitution of the deduced values (call it the deduced A), compatible
with A.

In some cases, the deduction is done using a single set of types P and A, in other cases, there
will be a set of corresponding types P and A. Type deduction is done independently for each
P/A pair, and the deduced template argument values are then combined. If type deduction
cannot be done for any P/A pair, or if for any pair the deduction leads to more than one
possible set of deduced values, or if different pairs yield different deduced values, or if any
template argument remains neither deduced nor explicitly specified, template argument
deduction fails. The type of a type parameter is only deduced from an array bound if it is not
otherwise deduced.

A given type P can be composed from a number of other types, templates, and non-type
constant template argument values:

• A function type includes the types of each of the function parameters, the return type,
and its exception specification.

• A pointer-to-member type includes the type of the class object pointed to and the type
of the member pointed to.
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• A type that is a specialization of a class template (e.g., A<int>) includes the types, tem-
plates, and non-type constant template argument values referenced by the template
argument list of the specialization.

• An array type includes the array element type and the value of the array bound.

In most cases, the types, templates, and non-type constant template argument values that
are used to compose P participate in template argument deduction. That is, they may be used
to determine the value of a template argument, and template argument deduction fails if
the value so determined is not consistent with the values determined elsewhere. In certain
contexts, however, the value does not participate in type deduction, but instead uses the
values of template arguments that were either deduced elsewhere or explicitly specified. If
a template parameter is used only in non-deduced contexts and is not explicitly specified,
template argument deduction fails. [Note: Under ??, if P contains no template-parameters that
appear in deduced contexts, no deduction is done, so P and A need not have the same form.
—end note ]

The non-deduced contexts are:

• The nested-name-specifier of a type that was specified using a qualified-id.

• A pack-index-specifier or a pack-index-expression.

• The expression of a decltype-specifier.

• A non-type constant template argument or an array bound in which a subexpression
references a template parameter.

• [...]

[Editor’s note: Modify [temp.deduct.type]/p8 As follow]

A template type argument T, a template template argument denoting a class template or an
alias template TT, a template template argument denoting a variable template or a concept
VV, or a template non-type constant argument i can be deduced if P and A have one of the
following forms:

cvopt T
T*
T&
T&&
Topt [iopt ]
Topt (Topt ) noexcept(iopt )
Topt Topt ::*
TTopt <T>
TTopt <i>
TTopt <TT>
TTopt <>
TTopt <VV>

[...]
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Template arguments cannot be deduced from function arguments involving constructs other
than the ones specified above.

When the value of the argument corresponding to a non-type constant template parame-
ter P that is declared with a dependent type is deduced from an expression, the template
parameters in the type of P are deduced from the type of the value.

[Note: Except for reference and pointer types, a major array bound is not part of a function
parameter type and cannot be deduced from an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

void g() {
int v[10][20];
f1(v); // OK, i deduced as 20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // OK
f3(v); // OK, i deduced as 10

}

—end note ]

[...]

[Note: If, in the declaration of a function template with a non-type constant template param-
eter, the non-type constant template parameter is used in a subexpression in the function
parameter list, the expression is a non-deduced context as specified above. [ Example:

template <int i> class A { };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {

A<1> a1;
A<2> a2;
g(a1); // error: deduction fails for expression i+1
g<0>(a1); // OK
f(a1, a2); // OK

}

—end example ] —end note ]

[Editor’s note: Adjust the library wording as follow]

�? Alias template make_integer_sequence [intseq.make]

template<class T, T N>
using make_integer_sequence = integer_sequence<T, see below>;
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Mandates: N ≥ 0.

The alias template make_integer_sequence denotes a specialization of integer_sequence
with N non-type constant template arguments. The type make_integer_sequence<T, N>
is an alias for the type integer_sequence<T, 0, 1, ..., N-1>. [Note: make_integer_-
sequence<int, 0> is an alias for the type integer_sequence<int>. —end note ]

�? Random number engine class templates [rand.eng]

�? General [rand.eng.general]

Descriptions are provided in ?? only for engine operations that are not described in ?? or for
operations where there is additional semantic information. In particular, declarations for
copy constructors, for copy assignment operators, for streaming operators, and for equality
and inequality operators are not shown in the synopses.

Each template specified in ?? requires one or more relationships, involving the value(s) of
its non-type constant template parameter(s), to hold. A program instantiating any of these
templates is ill-formed if any such required relationship fails to hold.

�? Random number engine adaptor class templates [rand.adapt]

�? In general [rand.adapt.general]

Each template specified in this subclause ?? requires one or more relationships, involving the
value(s) of its non-type constant template parameter(s), to hold. A program instantiating any
of these templates is ill-formed if any such required relationship fails to hold.

[Editor’s note: Finally, get rid of ”non-type” in the compatibility annex]

�? templates [diff.cpp14.temp]

Change: Allowance to deduce from the type of a non-type constant template argument.
Rationale: In combination with the ability to declare non-type constant template arguments
with placeholder types, allows partial specializations to decompose from the type deduced
for the non-type constant template argument.
Effect on original feature: Valid C++ 2014 code may fail to compile or produce different
results in this revision of C++. For example:

template <int N> struct A;
template <typename T, T N> int foo(A<N> *) = delete;
void foo(void *);
void bar(A<0> *p) {

foo(p); // ill-formed; previously well-formed
}
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