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Deprecating function 

Abstract 
This paper proposes deprecating function (and associated entities) as it has unresolvable API 
design issues and has recently been superseded by copyable_function.


Revisions 
R0: Initial version


Motivation 
C++11 added function, a type-erased function wrapper that can represent any copyable callable 
matching a given function signature. Since its introduction, there have been identified several 
issues with its design (see [N4159]) – including the famous constness-bug:


As function was incompatible (and could not be made compatible) with non-copyable functors, 
[P0288] introduced move_only_function. The design of which not only drops the copyable 
requirement but also fixes bugs present in function, removes RTTI dependence and adds 
support for const-, noexcept- and ref-qualifiers.


Semi-concurrently [P0792] introduced function_ref as a non-owning reference to a functor. Like 
move_only_function it does not depend on RTTI and supports const- and noexcept-qualifiers .
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After move_only_function was approved for C++23 and with function_ref targeting C++26, 
there were serious inconsistencies between the polymorphic function wrappers of the standard 
library. Whilst some of the new features  could have been back-ported to function, it was 3

impossible to reach feature parity without an API break. To improve the situation, [P2548] 
introduced copyable_function (design consistent with move_only_function) as a replacement 
of function.


//the constness bug of std::function: 

//consider: 
auto lambda = [&]() mutable { … }; 
l(); ✔  
const auto & r{lambda}; 
r(); ❌  //lambda::operator() is mutable => can’t be called via const &! 

//but: 
function<void(void)> func{lambda}; 
func(); ✔  
const auto & cref{func}; 
cref(); ✔⚡  //func::operator() is const => can invoke mutable lambda through const &! 
             // this breaks the fundamental guarantee that concurrently calling const member functions is safe!
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 There is no support for ref-qualifiers as function_ref itself is a reference type.2

 Primarily noexcept- and ref-qualifier support.3

1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com
http://wg21.link/N4159
https://wg21.link/P0288
https://wg21.link/P0792
https://wg21.link/P2548


With the adoption of copyable_function for C++26 there remains little reason to keep function 
in the blessed part of the standard library. Furthermore it has been pointed out multiple times 
(both by [P3023] and externally) that the current state of polymorphic function wrappers in the 
standard library is complicated - growing from one to four distinct classes within two standard 
cycles. Deprecating function would lead to a more unified standard library design.


Why now? (Isn’t it too soon?) 
Going forward our message to users should be clear: “Avoid function for new code! Instead use 
the appropriate ‘modern’ polymorphic function wrappers.” Deprecating function in the same 
standard cycle as the introduction of copyable_function will reduce confusion. Such timing is 
not entirely novel, it happened before in C++11 with the introduction of unique_ptr and the 
deprecation of auto_ptr.


Impact on the Standard 
Several classes are moved to Annex D without a change in functionality.


Proposed Wording 
Wording for the deprecation of function and ancillary entities will be provided in a future revision.
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