
© ISO/IEC P1709r5

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P1709r5 — Graph Library
Date: 2022-12-06
Reply to: Phil Ratzloff (phil.ratzloff@sas.com),

Andrew Lumsdaine (lumsdaine@gmail.com)

Contributors: Richard Dosselmann (University of Regina)
Michael Wong (Codeplay)
Matthew Galati (Amazon)
Jens Maurer
Jesun Firoz
Kevin Deweese
Muhammad Osama (AMD, Inc)

Audience: SG6, SG14, LEWG, LWG
Source: github.com/stdgraph/graph-v2

Contents

Contents 1

1 Overview 4
1.1 Goals and Priorities . 4
1.2 Examples . 4
1.3 What this proposal is not . 5
1.4 Impact on the Standard . 5
1.5 Interaction wtih Other Papers . 5
1.6 Implementation Experience . 5
1.7 Usage Experience . 5
1.8 Deployment Experience . 6
1.9 Performance Considerations . 6
1.10 Prior Art . 6
1.11 Alternatives . 6
1.12 Feature Test Macro . 6
1.13 Freestanding . 6
1.14 Namespaces . 6

2 Introduction 7
2.1 Motivation . 7
2.2 Example: Six Degrees of Kevin Bacon . 7
2.3 Graph Background . 8
2.4 Bipartite Graphs . 11
2.5 Partitioned Graphs . 12
2.6 From Data to Graph . 12

3 Algorithms 14
3.1 Introduction . 14
3.2 Algorithm Concepts . 14
3.3 Shortest Paths . 15
3.4 Clustering . 20
3.5 Communities . 20
3.6 Components . 21
3.7 Directed Acyclic Graphs . 23
3.8 Maximal Independent Set . 24

1

https://github.com/stdgraph/graph-v2

© ISO/IEC P1709r5

3.9 Link Analysis . 25
3.10 Minimum Spanning Tree . 25
3.11 Other Algorithms . 26

4 Operators 27
4.1 Degree . 27
4.2 Sort . 27
4.3 Relabel . 28
4.4 Transpose . 28
4.5 Join . 28

5 Views 29
5.1 Return Types (Descriptors) . 29
5.2 Copyable Descriptors . 31
5.3 Common Types and Functions for “Search” . 32
5.4 vertexlist Views . 33
5.5 incidence Views . 33
5.6 neighbors Views . 33
5.7 edgelist Views . 34
5.8 Depth First Search Views . 34
5.9 Breadth First Search Views . 34
5.10 Topological Sort Views . 35

6 Graph Container Interface 36
6.1 Naming Conventions . 36
6.2 Concepts . 36
6.3 Traits . 36
6.4 Types . 36
6.5 Classes and Structs . 36
6.6 Functions . 37
6.7 Unipartite, Bipartite and Multipartite Graph Representation . 39
6.8 Loading Graph Data . 39
6.9 Using Existing Graph Data Structures . 41

7 Graph Container Implementation 43
7.1 compressed graph . 43
References . 45

Bibliography 45

2

© ISO/IEC P1709r5

Revision History
P1709R5

Extensions and refinements to r4

— Added basic * versions for depth first search, breadth first search and topoloical sort views. Also shortended the view
names to use bfs and dfs to avoid long names.

— Replace adjacency_list with index_adjacency_list concept in algorithms to simplify the definitions.

— Updated Shortest Paths algorithms with final definitions.

— Added Topological Sort algorithm description.

— Added summary table for compressed_graph .

— Added and updated algorithm descriptions.

— Added Graph Operators chapter.

P1709R4

This was a major redesign that incorporated all the experience and input from the past four years.

— Revisit the algorithms to be considered.

— Reduce the scope to focus on an adjacency list with outgoing edges, edge list, and remove mutable interface functions.

— Replace directed and undirected concepts with overridable types of unordered edge for a graph type.

— Simplify the Graph Container types and functions. In particular, const and non-const variations were consolidated to a
single definition to handle both cases when appropriate.

— All Graph Container Interface functions are customization points.

— Introduce Views, inspired by NWGraph design, resulting in simpler and cleaner interfaces to traverse a graph, and
simplifying the container interface design.

— Add support for bipartite and multipartite graphs.

— Replace the two container implementations with compressed graph, based on the Compressed Sparse Row matrix, a
commonly used data structure for high-performance graphs.

P1709R3

A simple status revision to say a major change is coming soon.

P1709R2

Define the uniform API for undirected and directed algorithms (an extended API also exists for directed graphs). Added
concepts for undirected, directed and bidirected graphs. Refined DFS and BFS range definitions from prototype experience.
Refined shortest paths and transitive closure algorithms from input and prototype experience.

P1709R1

Rewrite with a focus on a purely functional design, emphasizing the algorithms and graph API. Also added concepts and
ranges into the design. Addressed concerns from Cologne review to change to functional design.

P1709R0

Focus on object-oriented API for data structures and example code for a few algorithms.

3

© ISO/IEC P1709r5

Chapter1 Overview
Graphs, used in ML and other scientific domains, as well as industrial and general programming, do not presently exist in the
C++ standard. In ML, a graph forms the underlying structure of an artificial neural network (ANN). In a game, a graph can
be used to represent the map of a game world. In business environments, graphs arise as entity relationship diagrams (ERD)
or data flow diagrams (DFD). In the realm of social media, a graph represents a social network.

This document proposes the addition of graph algorithms, graph views, graph container interface and a graph container
implementation to the C++ library to support machine learning (ML), as well as other applications. ML is a large and
growing field, both in the research community and industry, that has received a great deal of attention in recent years. This
paper presents an interface of the proposed algorithms, views, graph functions and containers.

1.1 Goals and Priorities

— Follow the separation of algorithms, ranges, views and containers established by the standard library.

— Graph algorithms have the following characteristics

— Support syntax that is simple, expressive and easy to understand. This should not compromise the ability to write
high-performance algorithms.

— Vertices are required to be in random access containers with an integral vertex id in this proposal.

— Graph views provide common traversals of a graph’s vertices and edges that is more concise and consistant than using the
graph container interface directly. They include simple traversals like vertexlist (all vertices in the graph) and incidence
edges (edges on a vertex), as well as more complex traversals like depth-first and breath-first searches.

— All free functions are customization point objects in the Graph Container Interface and Views, unless noted otherwise.
Reasonable default implementations are provided whenever possible.

— The Graph Container Interface provides a consistent interface that can be used by algorithms and views. It has the
following characteristics:

— The interface models an adjacency graph container, which is an outer range of vertices with an inner range of
outgoing (a.k.a. incidence) edges on each vertex.

— Definition of concepts, types, type traits, type aliases, and functions used by algorithms and views.

— Type traits will be defined that can be overridden for each graph container to give additional hints that can be
used by algorithms to refine their behavior, such as adjacency matrix and unordered edge.

— Support of optional user-defined value types on an edge, vertex and/or the graph itself.

— Support bipartite and multipartite graphs, as long as the underlying graph supports it. If the underlying graph
doesn’t support either, it is considered unipartite with a single partition.

— Allow for useful extensions of the graph data model in future proposals or in external graph implementations.

— Define an Edge List interface, required by some algorithms, that can be used by user-defined ranges for algorithms that
require them.

— Provide an initial suite of useful functionality that includes algorithms, views, container interface, and at least one model
container implementation.

1.2 Examples

The following code demonstrates how a simple graph can be created as a range of ranges, using the standard containers.

std::vector<std::string> actors { "Tom Cruise", "Kevin Bacon", "Hugo Weaving",
"Carrie-Anne Moss", "Natalie Portman", "Jack Nicholson",
"Kelly McGillis", "Harrison Ford", "Sebastian Stan",
"Mila Kunis", "Michelle Pfeiffer", "Keanu Reeves",
"Julia Roberts" };

using G = std::vector<std::vector<int>>;

§ 1.2 4

© ISO/IEC P1709r5

auto target_id(const G& g, edge_reference_t<G> uv) {return get<0>(uv);}
G costar_adjacency_list{

{1, 5, 6}, {7, 10, 0, 5, 12}, {4, 3, 11}, {2, 11}, {8, 9, 2, 12}, {0, 1}, {7, 0},
{6, 1, 10}, {4, 9}, {4, 8}, {7, 1}, {2, 3}, {1, 4} };

int main() {
std::vector<int> bacon_number(size(actors));

// 1 -> Kevin Bacon
for (auto&& [uid,vid] : basic_sourced_edges_bfs(costar_adjacency_list, 1)) {
bacon_number[vid] = bacon_number[uid] + 1;

}

for (int i = 0; i < size(actors); ++i) {
std::cout << actors[i] << " has Bacon number " << bacon_number[i] << std::endl;

}
}

target_id(g,uv) defines the required function to get a target id for an edge in the graph G . Other functions can also be
overridden to allow a developer to adapt their own graph data structures to the library.

1.3 What this proposal is not

This paper limits itself to adjacency graphs and edgelists only. An adjacency graph is an outer range of vertices with an inner
range of outgoing edges on each vertex. An edgelist is a view of edges, which is either all the edges in the adjacency graph or
a projection of a user-defined range.

Parallel versions of the algorithms are not included for several reasons. The executors proposal in P2300r5 [1] is expected to
introduce new and better ways to do parallel algorithms beyond that used in the parallel STL algorithms and we would like to
wait for finalization of that proposal before committing to parallel implementations. Secondly, many graph algorithms don’t
benefit from parallel implementations so there is less need to offer an implementation. Lastly, it will help limit the size of this
proposal which is already looking to be large without it. It is expected that future proposals will be submitted for parallel graph
algorithms.

Incoming edges on a vertex are not included, though it is hoped that a future proposal will be made for them.

The algorithms and views in this proposal expect that vertex ids are densly assigned in a random access range, but it does not
exclude the possibility of sparsely-defined vertex ids stored in containers like std::map or std::unordered_map in future
proposals.

The algorithms and views in this proposal expect that vertex ids are integal, but it does not exclude non-integral or user-defined
types in future proposals.

Hypergraphs are not supported.

1.4 Impact on the Standard

This proposal is a pure library extension.

1.5 Interaction wtih Other Papers

There is no interaction with other proposals to the standard.

1.6 Implementation Experience

The github github.com/stdgraph repository contains an implementation for this proposal.

1.7 Usage Experience

There is no current use of the library. There are plans to begin using it in the next year in a commercial setting.

§ 1.7 5

https://github.com/stdgraph

© ISO/IEC P1709r5

1.8 Deployment Experience

There is no current deployment experience of the library. There are plans for this to follow the usage experience.

1.9 Performance Considerations

The algorithms are being ported from NWGraph to the github.com/stdgraph implementation used for this proposal. Perfor-
mance analysis from those algorithms can be found in the peer-reviewed papers for NWGraph [2, 3].

1.10 Prior Art

boost::graph has been an important C++ graph implementation since 2001. It was developed with the goal of providing a
modern (at the time) generic library that addressed all the needs someone would want of a graph library. It is still a viable
library used today, attesting to the value it brings.

However, boost::graph was written using C++98 in an “expert-friendly” style, adding many abstractions and using sophisticated
tempate metaprogramming, making it difficult to use by a casual developer.

(Andrew is a co-author of boost::graph.)

NWGraph ([4] and [2]) was published in 2022 by Lumsdaine et al, bringing additional experience gained since creating
boost::graph, to create a modern graph library using C++20 for its implementation that was more accessible to the average
developer.

While NWGraph made important strides to introduce the idea of the graph as a range-of-ranges and implemented many im-
portant algorithms, there are some areas it didn’t address that come a practical use in the field. For instance, it didn’t have
a well-defined API for graph data structures that could be applied to existing graphs, and there wasn’t a uniform approach to
properties.

This proposal takes the best of NWGraph, with previous work done for P1709 to define a Graph Container Interface, to provide
a library that embraces performance, ease-of-use and the ability to use the algorithms and views on externally defined graph
containers.

1.11 Alternatives

There are no known alternative graph library we’re aware of that meets the same requirements and uses concepts and ranges
from C++20.

1.12 Feature Test Macro

The __cpp_lib_graph feature test macro is recommended to represent all features in this proposal including algorithms,
views, concepts, traits, types, functions and graph container(s).

1.13 Freestanding

We believe this library can be used in a freestanding C++ implementation.

1.14 Namespaces

Graph containers and their views and algorithms are not interchangeable with existing containers and algorithms. Additionally,
there are some domain-specific terms that may clash with existing or future names, such as degree and partition_id . For
these reasons, we recommend their own namespaces as follows. This assumption is used in this proposal.

std::graph

std::graph::views

Alternative locations for the above respective namespaces could also be as follows:

std::ranges

std::ranges::views

§ 1.14 6

https://github.com/stdgraph

© ISO/IEC P1709r5

Chapter2 Introduction
2.1 Motivation

The original STL revolutionized the way that C++ programmers could apply algorithms to different kinds of containers, by
defining generic algorithms, realized via function templates. A hierarchy of iterators were the mechanism by which algorithms
could be made generic with respect to different kinds of containers, Named requirements specified the valid expressions and
associated types that algorithms required of their arguments. As of C++20, we now have both ranges and concepts, which now
provide language-based mechanisms for specifying requirements for generic algorithms.

As powerful as the algorithms in the standard library are, the underlying basis for them is a range (or iterator pair), which
inherently can only specify a one-dimensional container. Iterator pairs (equiv. ranges) specify a begin() and an end() and
can move between those two limits in various ways, depending on the type of iterator. As a result, important classes of problems
that programmers are regularly faced with use structures that are not one-dimensional containers, and so the standard library
algorithms can’t be directly used. Multi-dimensional arrays are an example of one such kind of data structure. Matrices do have
the nice property that they (typically) have the ability to be “raveled”, i.e., the data underlying the matrix can still be treated
as a one-dimensional container. Multi-dimensional arrays also have the property that, even though they can be thought of as
hierarchical containers, the hierarchy is uniform—an N-dimensional array is a container of N-1 dimensional arrays.

Another important problem domain that does not fit into the category of one-dimensional ranges is that of graph algorithms
and data structures. Graphs are a powerful abstraction for modeling relationships between entities in a given problem domain,
irrespective of what the actual entities are, and irrespective of what the actual relationships are. In that sense, graphs are,
by there very nature, generic. Graphs are a fundamental abstraction in computer science, and are ubiquitous in real-world
applications.

Any problem concerned with connectivity can be modeled as a graph. Just a small set of examples include Internet routing,
circuit partitioning and layout, finding the best route to take to a destination on map. There are also relationships between
entities that are inferred from large sets of data, for example the graph of consumers who have purchased the same product, or
who have viewed the same movie. Yet more interesting structures arise (hypergraphs or k-partite graphs) can arise when we
want to model relationships between diverse types of data, such as the graph of consumers, the products they have purchased,
and the vendors of the products. And, of course, graphs play a critical role in multiple aspects of machine learning.

On the flip side of graph structures are the graph algorithms that are widely used for problems such as the above. Well-known
graph algorithms include breadth-first search, Dijkstra’s algorithm, connected components, and so on. Because graphs can
come from so many different problem domains, they will also be represented with many different kinds of data structures. To
make graph algorithms as usable as possible across arbitrary representation requires application of the same principles that
were used in the original STL: a collection of related algorithms from a problem domain (in our case, graphs), minimizing
the requirements imposed by the algorithms on their arguments, systematically organizing the requirements, and realizing this
framework of requirements in the form of concepts.

There are also many uses of graphs that would not be met by a standard set of algorithms. A standardized interface for graphs is
eminently useful in such situations as well. In the most basic case, it would provide a well-defined framework for development.
But in keeping with the foundational goal of generic programming to enable reuse, it would also empower users to develop
and deploy their own reusable graph components. In the best case, such algorithms would be available to the broader C++
programmer community.

Because graphs are so ubiquitous and so important to modern software systems, a standardized library of graph algorithms and
data structures would have enormous benefit to the C++ development community. This proposal contains the specification of
such a library, developed using the principles above.

2.2 Example: Six Degrees of Kevin Bacon

A classic example of the use of a graph algorithm is the game “The Six Degrees of Kevin Bacon.” The game is played by
connecting actors to each other through movies they have appeared in together. The goal is to find the smallest number of
movies that connect a given actor to Kevin Bacon. That number is called the “Bacon number” of the actor. Kevin Bacon
himself has a Bacon number of 0. Since Kevin Bacon appeared with Tom Cruise in “A Few Good Men”, Tom Cruise has a
Bacon number of 1.

§ 2.2 7

© ISO/IEC P1709r5

The following program computes the Bacon number for a small selection of actors.

std::vector<std::string> actors { "Tom Cruise", "Kevin Bacon", "Hugo Weaving",
"Carrie-Anne Moss", "Natalie Portman", "Jack Nicholson",
"Kelly McGillis", "Harrison Ford", "Sebastian Stan",
"Mila Kunis", "Michelle Pfeiffer", "Keanu Reeves",
"Julia Roberts" };

using G = std::vector<std::vector<int>>;
auto target_id(const G& g, edge_reference_t<G> uv) {return get<0>(uv);}
G costar_adjacency_list{

{1, 5, 6}, {7, 10, 0, 5, 12}, {4, 3, 11}, {2, 11}, {8, 9, 2, 12}, {0, 1}, {7, 0},
{6, 1, 10}, {4, 9}, {4, 8}, {7, 1}, {2, 3}, {1, 4} };

int main() {
std::vector<int> bacon_number(size(actors));

// 1 -> Kevin Bacon
for (auto&& [uid,vid] : basic_sourced_edges_bfs(costar_adjacency_list, 1)) {
bacon_number[vid] = bacon_number[uid] + 1;

}

for (int i = 0; i < size(actors); ++i) {
std::cout << actors[i] << " has Bacon number " << bacon_number[i] << std::endl;

}
}

Output:

Tom Cruise has Bacon number 1
Kevin Bacon has Bacon number 0
Hugo Weaving has Bacon number 3
Carrie-Anne Moss has Bacon number 4
Natalie Portman has Bacon number 2
Jack Nicholson has Bacon number 1
Kelly McGillis has Bacon number 2
Harrison Ford has Bacon number 1
Sebastian Stan has Bacon number 3
Mila Kunis has Bacon number 3
Michelle Pfeiffer has Bacon number 1
Keanu Reeves has Bacon number 4
Julia Roberts has Bacon number 1

In graph parlance, we are creating a graph where the vertices are actors and the edges are movies. The number of movies that
connect an actor to Kevin Bacon is the shortest path in the graph from Kevin Bacon to that actor. In the example above, we
compute shortest paths from Kevin Bacon to all other actors and print the results. Note, however, that actor-actor relationships
are not how data about actors is available in the wild (from IMDB, for example). Rather, two types of relationships available
are actor-movie and movie-actor. See Section ?? below.

2.3 Graph Background

For clarity, we briefly review some of the basic terminology of graphs. We use commonly accepted terminology for graph data
structures and algorithms and adopt the particular terminology used in the textbook by Cormen, Leiserson, Rivest, and Stein
(“CLRS”) [5].

2.3.1 Basic Terminology

To model the relationships between entities, a graph G comprises two sets: a vertex set V , whose elements correspond to the
entities, and an edge set E, whose elements are pairs corresponding to elements in V that have some relationship with each
other. That is, if u and v are members of V that have some relationship that we wish to capture, then there is a pair {u, v} in E.
We can express that together V and E define a graph as G = {V,E}.

§ 2.3.1 8

© ISO/IEC P1709r5

Two examples of graph models are shown in Figures ?? and ??, which respectively model a network of routes between and an
electronic circuit. The figures show the domain-specific data to be modeled and the sets V and E for each graph. Also shown
for each graph is a node and link diagram, a commonly-used graphical1 notation.

SEA
MSP
SLC

DTW
ATL
BOS

MSP DTW
SEASLC

MSP SLC
BOS SLC
SEA BOS
BOS ATL
SEA MSP
BOS DTW

850
1357
1981
3835
4016
1523
2704
1191

SEA

MSP

BOS

SLC

DTW

ATL

850

1357

1981

3835

1523
2704

1191

Airport Distance (km)
<latexit sha1_base64="Qs4lx608We42x+Xrxviq/GN8r3M=">AAADgHicjVJdb9MwFHUTYFv46uCRBywmqj2UkkxCSBVIG6OChyGK+jVUV5XjusWq7US2gzRFedj7XuFn8c7v4AeA00UsoWNwFUv3XJ977slNwpgzbXz/e81xr12/sbG55d28dfvO3fr2vaGOEkXogEQ8Usch1pQzSQeGGU6PY0WxCDkdhcvD/H70mSrNItk3JzGdCLyQbM4INrY03a79RCFdMJlipfBJlirCM+8NbMCX9qAUDpuwA1EGERojLTDnesliLKJEmok3vOAhgc0nJdJe5yBr/kbvet0S6h0dltDr/qiEDvpHJfTqfS/769TOxVSvNLk6K1e3Cs0KpWogt7qiIOQ1GqiN2lfo5a1rernNSyiX61U3U7zhVXr5Sv5bL3f7D71iJfbxEJWz4otP6zt+y18FXE+CItnZ/3j27bT242F3WmdoFpFEUGkIx1qPAz82E6tmGOHUaieaxpgs8YKObSqxoHqSrv7UDD62lRmcR8oeaeCqWu5IeSL0E3tvPWee9Rb86WQ9Ge61gmct/4M1+QKcxyZ4AB6BXRCA52AfvAVdMADEmTtnzhfnq+u4u+5TNzinOrWi5z6ohNv+BaiXFBk=</latexit>

G = {V, E}
V = {SEA, MSP, SLC, DTW, ATL, BOS}
E = {{MSP, DTW}, {SLC, SEA},

{MSP, SLC}, {BOS, SLC},
{SEA, BOS}, {BOS, ATL},
{SEA, MSP}, {BOS, DTW}}

(a) An undirected graph representing airline routes between cities. Shown are the list of airports (the
vertices) and the list of routes between them (the edges). Also shown are a node and link diagram and the
set-based description.

AC

Vdd

n0 n1 n2
Vout

R2

C0

C1 R3
R0

R1

L1
0

n0

n2

Vdd

n1

Vout

<latexit sha1_base64="5u07uPE3WD0tnunKt0+HDPe2B+4=">AAAEEniclVPPa9swFFbt/eiyX2l33EUsLKQQgl1GN0oHhVG2YweLW4hMkGUlFZFkI8mDYPw39NJ/ZZcdNsauO+22/2ayYzInbdftgeB773vve08PKUo508bzfm047q3bd+5u3mvdf/Dw0eP21nagk0wROiQJT9RphDXlTNKhYYbT01RRLCJOT6LZm5I/+UiVZon8YOYpDQWeSjZhBBsbGm85PRTRKZM5VgrPi1wRXrQgfAu78LU9KIdBHx5BVECERkgLzLmesRSLJJMmtJkLC/7kI4HNmRK5V/SXOIjjhieblPSbzm6zKMlMcWPno2XnZah3bSe402/Sq2N5FY3QUqfbRfto/ybZUqQs7F1zi5r+F11vdRVr016xnJ3+f8t6f5WtdmR3XqsgKuP6ZbTG7Y438CqDl4Ffgw6o7Xjc/onihGSCSkM41nrke6kJrZxhhNOihTJNU0xmeEpHFkosqA7z6kkX8LmNxHCSKHukgVW0WZFjofVcRDazHF2vc2XwKm6UmcmrMGcyzQyVZNFoknFoElj+DxgzRYnhcwswUczOCskZVpgY+4vKJfjrV74Mgt2BvzfYe/+ic3hQr2MTPAXPQA/44CU4BO/AMRgC4pw7n5wvzlf3wv3sfnO/L1KdjbrmCVgx98dvn9Q2ww==</latexit>

G = {V, E}
V = {0, Vdd, n0, n1, n2, Vout}
E = {(n0, n1), (Vdd, 0),

(n0, Vdd), (n2, Vdd),
(0, n2), (n2, Vout),
(0, n0), (n2, n1)}

(b) A directed graph representing an electronic circuit. Shown in the circuit diagram are the labeled circuit nodes
(the vertices) and the circuit elements connecting the nodes (the edges). Since circuit elements are oriented, we use
a directed graph to model the circuit. Also shown are a node and link diagram and the set-based description.

Figure 2.1 — Graph models of an airline route system and of an electronic circuit.

2.3.2 Graph Representation: Enumerating the Vertices

To reason about graphs, and to write algorithms for them, we require a representation of the graph. We note that a graph and its
representation are not the same thing. It is therefore essential that we be precise about this distinction as we develop a software
library of graph algorithms and data structures2.

The representations that we will be using are familiar ones: adjacency matrix, edge list, and adjacency list. We begin with
a process that is so standard that we typically don’t even notice it, but it forms the foundation of graph representations: we
enumerate the vertices. That is, we assign an index to each element of V and write V = {v0, v1, . . . vn−1}. Based on
that enumeration, elements of E are expressed in the form {vi, vj}. Similarly, we can enumerate the edges, and write E =
{e0, e1, . . . em−1}, though the enumeration of E does not play a role in standard representations of graphs. The number of
elements in V is denoted by |V | and the number of elements in E is denoted by |E|.
We summarize some remaining terminology about vertices and edges.

— An edge ek may be directed, denoted as the ordered pair ek = (vi, vj), or it may be undirected, denoted as the (unordered)
set ek = {vi, vj}. The edges in E are either all directed or all undirected, corresponding respectively to a directed graph
or to an undirected graph.

— If the edge set E of a directed graph contains an edge ek = (vi, vj), then vertex vj is said to be adjacent to vertex vi. The
edge ek is an out-edge of vertex vi and an in-edge of vertex vj . Vertex vi is the source of edge ek, while vj is the target
of edge ek.

— If the edge set E of an undirected graph contains an edge ek = {vi, vj}, then ek is said to be incident on the vertices vi
and vj . Moreover, vertex vj is adjacent to vertex vi and vertex vi is adjacent to vertex vj . The edge ek is an out-edge of
both vi and vj and it is an in-edge of both vi and vj .

— The neighbors of a vertex vi are all the vertices vj that are adjacent to vi. The set of all of the neighbors is the neighbor-
hood of vi.

1An unfortunate collision of terminology.
2In fact, if we are to be completely precise, the library we are proposing is one of algorithms and data structures for graph representations. We will make

concessions to commonly accepted terminology, while precisely defining that terminology.

§ 2.3.2 9

© ISO/IEC P1709r5

— A path as a sequence of vertices v0, v1, . . . , vk−1 such that there is an edge from v0 to v1, an edge from v1 to v2, and so
on. That is, a path is a set of edges (vi, vi+1) ∈ E for i = 0, 1, . . . , k − 2.

2.3.3 Adjacency-Based Representations

We begin our development of graph representations with the almost universally-accepted definition of the adjacency matrix
representation of a graph. The adjacency matrix representation of a graph G is a |V | × |V | matrix A = (aij) such that,
respectively for a directed or undirected graph

aij =

{
1 if (vi, vj) ∈ E
0 otherwise aij = aji =

{
1 if (vi, vj) ∈ E
0 otherwise

That is, aij = 1 if and only if vj is adjacent to vi in the original graph G (hence the name “adjacency matrix“). Here we can
see why we said that the initial enumeration of V is foundational to representations: The adjacency matrix is based solely on
the indices used in that enumeration. It does not contain the vertices or edges themselves.

As a data structure to use for algorithms, the adjacency matrix is not very efficient, neither in terms of storage (which, at
|V | × |V | is prohibitive), nor for computation. Instead of storing the entire adjacency matrix, we can simply store the index
values of its non-zero elements. A sparse coordinate adjacency matrix is a container C of pairs (i, j) for every aij in A. At first
glance, it may seem that we have simply created a data structure C that has a pair (i, j) if E in the original graph has an edge
from vi to vj . This is true in the directed case. However, in the undirected case, if there is an edge between vi and vj , then vi is
adjacent to vj and vj is adjacent to vi. In other words, if there is an edge between vi and vj in an undirected graph, then both
the entries aij and aji are equal to 13 — and therefore for a single edge between vi and vj , C contains two index pairs: (i, j)
and (j, i). The sparse coordinate representation is commonly known as edge list. However, we caution the reader that C does
not store edges, but rather indices and that, in the case that it represents an undirected graph, there is not a 1-1 correspondence
between the edges in E and the contents of C.

Although the sparse coordinate adjacency matrix is much more efficient in terms of storage than the original adjacency matrix, it
isn’t as efficient as it could be. Much more importantly, it is not useful for the types of operations used by most graph algorithms,
which need to be able to get the set of neighbors of a given vertex in constant time. To support this type of operation, we use a
compressed sparse adjacency matrix, which is an array J with |V | entries, where each J [i] is a linear container of indices {j}
such that vj is a neighbor of vi in G. That is j is contained in J [i] if and only if there is an edge (vi, vj) in E (or, equivalently,
if there is a pair (i, j) in C or, equivalently, if aij = 1)4. We note that if (vi, vj) is an edge in an undirected graph, J [i] will
contain j and J [j] will contain i. The common name for this data structure is adjacency list. Although this name is problematic
(for instance, it is not actually a list), it is so widely used that we also use it here—but we mean specifically that an “adjacency
list” is the compressed sparse adjacency matrix representation of a graph5. Again we emphasize the distinction between a
graph and its representation: An adjacency list J is not the same as the graph G—it is a representation of G.

Illustrations of the adjacency-matrix representations of the airline route graph and the electronic circuit graph are shown in
Figures ?? and ??, respectively.

2
0
1
3
5
4

SLC
SEA
MSP
DTW
BOS
ATL

(a) An enumeration of
the airport graph given
in 2.1a.

<latexit sha1_base64="1hoyjL+Pxw3n2H6Xy3Mqwq+glp0=">AAAC5nicbVLLbtNAFB27PMrwaChLNiOqVKwiO20om0qlbFgWibSVYjcaT66TUcdja+a6UmSlezYsQIgta1Z8Czs+BomJE6Wk5kpndHTOfcwrKZS0GAS/PX/jzt179zcf0IePHj/Zaj3dPrV5aQT0Ra5yc55wC0pq6KNEBeeFAZ4lCs6Sy7dz/+wKjJW5/oDTAuKMj7VMpeDopGHrzxt2yCIFKQ5olMBY6gp5UipuZpWoY0bbAWMsdOg67DnsO/SoW3advABbIowi1mYBXYlrCbUZ0kbVTWX3pm3T3KNr4rq535wZrmb2aAR6tDoajYwcTzAetnaCTlAHa5JwSXaOLnavL378PD4Ztn5Fo1yUGWgUils7CIMC44oblEKB61taKLi45GMYOKp5Bjau6measbZTRizNjYNGVqv/VlQ8s3aaJS4z4zixt725+D9vUGL6Oq6kLkoELRaD0lIxzNn8zdlIGhCopo5wYaTbKxMTbrhA9zOou4Tw9pGb5LTbCV91eu/dbRyTRWyS5+QFeUlCckCOyDtyQvpEeML76H32vvgT/5P/1f+2SPW9Zc0zshb+97+jaMOM</latexit>

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1 1

1 1
1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) The adjacency matrix represen-
tation of the graph given in Fig-
ure 2.1a, using the enumeration
given in Figure 2.2a.

5

5

2

4

2

0

5 3

0

1

1

5

2

3

01 5

5

2

4

2

0

53

0

1

1

5

2

3

0 1
<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

<latexit sha1_base64="Ah9GC8B10eUvNcXFy3BDuKoxQk4=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYRCswp1ItLAI2FhGMB+QHGFvby9Zs7d77M4FQsh/sLFQxNb/Y+e/cZNcoYkPBh7vzTAzL0wFN+h5387a+sbm1nZhp7i7t39wWDo6bhqVacoaVAml2yExTHDJGshRsHaqGUlCwVrh8G7mt0ZMG67kI45TFiSkL3nMKUErNbujSKHplcpexZvDXSV+TsqQo94rfXUjRbOESaSCGNPxvRSDCdHIqWDTYjczLCV0SPqsY6kkCTPBZH7t1D23SuTGStuS6M7V3xMTkhgzTkLbmRAcmGVvJv7ndTKMb4IJl2mGTNLFojgTLip39robcc0oirElhGpub3XpgGhC0QZUtCH4yy+vkuZlxa9Wqg9X5dptHkcBTuEMLsCHa6jBPdShARSe4Ble4c1Rzovz7nwsWtecfOYE/sD5/AHNM49H</latexit>...

(c) The coordinate
sparse adjacency matrix
representation (shown
split into two columns).

51

04

0
1
2
3
4
5

32

2

2
0

50 1
51

5
3

(d) The compressed sparse adjacency ma-
trix representation.

Figure 2.2 — Adjacency matrix representations of the airport graph model.

§ 2.3.3 10

© ISO/IEC P1709r5

5

4

3

2

1

0

n2

Vout

n1

Vdd

n0

0

(a) An enumeration of
the circuit graph given in
2.1b.

<latexit sha1_base64="VqOLaZbh6DafMzmfcMOrV3nlLxU=">AAAC5nicfVLLbhMxFPUMr2JeAZZsLKpUrKJx2gALkIpgwYJFkUhTKTOKPM6dxKrHM7LvIEWjfEA3LECILb/AF/AP7PgYJJxJSUsHcaVjH51zr69faamVwyj6GYSXLl+5em3rOr1x89btO5279w5dUVkJQ1nowh6lwoFWBoaoUMNRaUHkqYZRevxy5Y/eg3WqMO9wUUKSi5lRmZICvTTp/HrBnrNYQ4ZjGqcwU6ZGkVZa2GUtm1jSbsQY4x59j12PPY8B9cOOl3ea+Q94HLMui+iZcD6pMTltVZ2Zfdo2Nubu/8y9dk++MQc0BjPdHI3GVs3mmEw621EvaoK1CT8l2/sj9+r7m28nB5POj3hayCoHg1IL58Y8KjGphUUlNfh1KwelkMdiBmNPjcjBJXXzTEvW9cqUZYX1MMga9XxFLXLnFnnqM3OBc3fRW4n/8sYVZk+TWpmyQjBy3SirNMOCrd6cTZUFiXrhiZBW+b0yORdWSPQ/g/pL4BeP3CaH/R5/3Bu89bfxjKxjizwgD8kjwskTsk9ekwMyJDKQwUnwMfgUzsMP4efwyzo1DE5r7pO/Ivz6Gw08w1U=</latexit>

A =

1 1
1 1

1

1 1 1

(b) The adjacency matrix represen-
tation of the graph given in Fig-
ure 2.1b, using the enumeration
given in Figure 2.3a.

5
0
5
1
2
1

4
5
2
2
0
3

5
0

3
1

(c) The coordinate
sparse adjacency matrix
representation.

51

0

34

0
1
2
3
4
5

32

2

(d) The compressed sparse adjacency ma-
trix representation.

Figure 2.3 — Adjacency matrix representations of the circuit graph model.

2

3

0

Hugo Weaving

Carrie-Ann Moss

Tom Cruise

Kelly McGillis

Natalie Portman

Kevin Bacon

5

4

1

(a) Table of actors.

V for Vendetta

A Few Good Men

Black Swan

Top Gun
2

0

3

1

The Matrix4

(b) Table of movies.

A Few Good Men

The Matrix
V for Vendetta, The Matrix

Black Swan, V for Vendetta

Top Gun, A Few Good Men

Natalie Portman

Kevin Bacon
Tom Cruise

Carrie-Ann Moss
Hugo Weaving

Top GunKelly McGillis

(c) A table of actors and movies they have
appeared in.

A Few Good Men

The Matrix

V for Vendetta
Top Gun

Tom Cruise, Kevin Bacon
Kelly McGillis, Tom Cruise

Carrie-Ann Moss, Hugo Weaving

Hugo Weaving, Natalie Portman
Black Swan Natalie Portman

(d) A table of movies with starring actors.

Figure 2.4 — Illustrative simplification of IMDB actor and movie data.

2.4 Bipartite Graphs

So far, we have been considering graphs where edges in E are pairs of vertices, which are taken from a single set V . We refer
to such a graph as a unipartite graph. But consider again the Kevin Bacon example. The source for the information comprising
the Kevin Bacon data is the Internet Movie Database (IMDB). However, the IMDB does not contain any explicit information
about the relationships between actors. Rather it contains files of tabular data, one of which contains an entry for each movie
with the list of actors that have appeared in that movie, and another of which contains an entry for each actor with the list of
movies that actor has appeared in (“movie-actor” and “actor-movie” tables, respectively). Such tables are shown in Figure 2.4.6

Thus, a graph, as we have defined it, cannot model the IMDB.

There is a small generalization we can make to the definition of graph that will result in a suitable abstraction for modeling
the IMDB. In particular, we need one set of vertices corresponding to actors, another set of vertices corresponding to movies,
and then a set of edges corresponding to the relationships between actors and movies. There are two kinds of relationships to
consider actors in movies or movies starring actors. To be well-defined, the edge set may only contain one kind of relationship.
To capture this kind of model, we define a structurally bipartite graph H = {U, V,E}, where vertex sets U and V are
enumerated U = {u0, u1, . . . , un0} and V = {v0, v1, . . . vn1}, and the edge set E consists of pairs (ui, vj) where ui is in U
and vj is in V .

The adjacency matrix representation of a structurally bipartite graph is a |U | × |V | matrix A = (aij) such that,

aij =

{
1 if (vi, vj) ∈ E
0 otherwise

From this adjacency matrix representation we can readily construct coordinate and compressed sparse representations. The
only structural difference between the representations of a structurally bipartite graph and that of a unipartite graph is that of
vertex cardinality. That is, in a unipartite graph, edges map from V to V , and hence the values in the left hand column and in
the right hand column of a coordinate representation would be in the same range: [0, |V |). However, for a structurally bipartite
graph, this is no longer the case. Although the coordinate representation still consists of pairs of vertex indices, the range of
values in the left hand column is [0, |U |), while in the right hand column it is [0, |V |). Similarly, the compressed representation
will have |U | entries, but the values stored in each entry may range from [0, |V |). We note that these are constraints on values,
not on structure.

3That is, the adjacency matrix is symmetric.
4The compressed sparse adjacency matrix is identical to the compressed sparse row format from linear algebra
5We concede that “adjacency list” rolls off the tongue much more easily than “compressed sparse adjacency matrix representation of a graph.”
6This is a greatly simplified version of the CSV files that actually comprise the IMDB. The full set of files is available for non-commercial use at https:

//datasets.imdbws.com.

§ 2.4 11

https://datasets.imdbws.com
https://datasets.imdbws.com

© ISO/IEC P1709r5

0 0

1 5
10

11
2 2

3 4
42

33
24

10
1
2
3
4

5
0

1
2 4

43
2

(a) Coordinate and compressed sparse adjacency repre-
sentations for movies with their starring actors.

0 1

1 0
00

22
2 4

4 3
43

24
15

00
1
2
3
4

0
1

2
2 4
4
3

5 1
2

(b) Coordinate and compressed sparse adjacency repre-
sentations for actors and the movies they have appeared
in.

Figure 2.5 — Sparse adjacency representations (edge lists and adjacency lists) for IMDB actor and movie data.

We distinguish a structurally bipartite graph from simply a bipartite graph because the former applies separate enumerations to
U and V . In customary graph terminology, a bipartite graph is one in which the vertices can be partitioned into two disjoint
sets, such that all of the edges in the graph only connect vertices from one set to vertices of the other set. However, although the
vertices are partitioned, they are still taken from the same original vertex set V and have a single enumeration. Whether a graph
can be partitioned in this way is a run-time property inherent to the graph itself (which can be discovered with an appropriate
algorithm). This is not a natural way to model separate categories of entities, such as movies and actors, where entities are
categorized completely independently of each other and it is therefore most appropriate to have independent enumerations for
them. A structurally bipartite graph explicitly captures distinct vertex categories.

2.5 Partitioned Graphs

In contrast to structurally bipartite graphs, there are certainly cases where one would want to maintain two categories of entities,
or otherwise distinguish the vertices, from the same vertex set. In that case, we would use a partitioned graph, which we define
as G = {V,E}, where the vertex set V consists of non-overlapping subsets, i.e., V = {V0, V1, . . .} which we enumerate as
V0 = {v0, v1, . . . , vn0−1}, V1 = {vn0, . . . , vn1−1} and so on. Each Vi is a partition of V . The total enumeration of V is
V = {v0, v1, . . . , vn−1}. Just as each Vi is a partition of V , the enumeration of each Vi is a partitioning of the enumeration of
V .

The edge set E still consists of edges (vi, vj) (or {vi, vj} where, in general, vi and vj may come from any partition.

We note that partitioned graphs are not restricted to two partitions—a partitioned graph can represent an arbitrary number of
partitions, i.e., a multipartite graph (a graph with multiple subsets of vertices such that edges only go between subsets). While
partitioned graphs can be used to model multipartite graphs, partitioned graphs are not necessarily multipartite; edges can
comprise vertices within a partition as well as well as across partitions.

2.6 From Data to Graph

2.6.1 Columnar Data

Here we show how one might create an unlabeled edge list from a table of data stored in a CSV file. The following loads a
list of directed edges from a CSV file (the values in each row are assumed to be separated by whitespace)7. The elements of
the first column are considered to be the source vertices and the elements of the second column are the destination vertices. If
the edges also had properties, the third column would contain the property values. In this example, the edges are loaded into a
vector of tuples, which meets the requirements of a (presumed) sparse_coordinate concept.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
while (input >> src >> dst) {

edges.emplace_back (src, dst);
}

7We take a broad view of what a comma is.

§ 2.6.1 12

© ISO/IEC P1709r5

Similarly, we could load a list of undirected edges from a CSV file into a sparse_coordinate structure. Note that, as
discussed above, the coordinate sparse adjacency matrix representation (aka an edge list), contains an entry (i, j) as well as an
entry (j, i) for each undirected edge {vi, vj}. Hence, we add both (src, dst) and (dst, src) to edges.

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t, double>
edges;

auto input = std::ifstream ("input.csv");
vertex_id_t src, dst;
double val;
while (input >> src >> dst >> val) {

edges.emplace_back (src, dst, val);
edges.emplace_back (dst, src, val);

}

These examples are meant to be illustrative and not necessarily comprehensive (nor efficient). There are, of course, many ways
to define containers that meet the requirements of the edge list concept and many ways to create an edge list from columnar
data.

2.6.2 Converting an Edge List to an Adjacency List

The following creates a compressed sparse representation (an adjacency list) from a coordinate sparse representation. The
adjacency list is represented as a std::vector<std::vector<vertex_id_t>>;

auto sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t>;
// Read the edges
auto sparse_compressed adj_list = std::vector<std::vector<vertex_id_t>>;
for (auto [src, dst] : edges) {
if (src >= adj_list.size()) {
adj_list.resize(src + 1);

}
adj_list[src].push_back (dst);

}

We note that the sparse_coordinate representation is agnostic as to whether it was originally created based on directed
edges or undirected edges. An optimization to the sparse coordinate representation would be to use a packed coordinate
representation, which would only maintain a single entry for each undirected edge. In that case, we would need to have two
complementary insertions into the adjacency list for each entry in the packed coordinate representation.

The following example illustrates the use of a packed coordinate format to construct an adjacency list with an edge property.

auto packed_sparse_coordinate edges = std::vector<std::tuple<vertex_id_t, vertex_id_t,
double>>;

// Read the edges
auto compressed_sparse adj_list = std::vector<std::vector<std::tuple<vertex_id_t, double

>>>(edges.num_vertices();
for (auto [src, dst, val] : edges) {
adj_list[src].push_back (dst, val);
adj_list[dst].push_back (src, val);

}

§ 2.6.2 13

© ISO/IEC P1709r5

Chapter3 Algorithms
Our proposed set of algorithms are grouped into Tier 1, Tier 2, and Tier 3. All Tier 1 algorithms are included in this proposal
and summarized in the lists below. Other tiers are outlined in the section 3.11 Other Algorithms.

Shortest Paths

— Breadth-First search

— Dijkstra’s algorithm

— Bellman-Ford

Clustering

— Triangle counting

Communities

— Label propagation

Components

— Articulation points

— Connected components

— Biconnected components

— Strongly connected components

Directed Acyclic Graphs

— Topological sort

Maximal Independent Set

— Maximal independent set

Link Analysis

— Jaccard coefficient

Minimal Spanning Tree

— Kruskal Minimal Spanning Tree

— Prim Minimal Spanning Tree

3.1 Introduction

Basic characteristics of the algorithms shown below are summarized in tables of the following form:

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

The parts of the table have the following meaning:

— Complexity The complexity of the algorithm based on the number of vertices (V) and edges (E).

— Throws? Will the algorithm throw at all? If so, look at the Throws section after the function prototypes for details.

— Multi-edge? Does the algorithm act as expected if more than one edge with the same direction exists between the same
two vertices?

— Cycles? Does the algorithm act act as expected if a vertex (or edge) is part of a cycle?

— Directed? Is the algorithm only for directed graphs, or can it also be used for undirected graphs that have complimentary
edges, with different directions, between two vertices.

3.2 Algorithm Concepts

The abstraction that is used for describing and analyzing almost all graph algorithms is the adjacency list. Naturally then
implementations of graph algorithms in C++ will operate on a data structure representing an adjacency list. And generic
algorithms will be written in terms of concepts that capture the essential operations that a concrete data structure must provide
in order to be used as an abstraction of an adjacency list.

Most fundamentally (as illustrated above), an adjacency list is a collection of vertices, each of which has a collection of outgoing
edges. In terms of existing C++ concepts, we can consider an adjacency list to be a range of ranges (or, more specifically, a
random access range of forward ranges). The outer range is the collection of vertices, and the inner ranges are the collections
of outgoing edges.

template <class G, class WF, class DistanceValue, class Compare, class Combine>
concept basic_edge_weight_function = // e.g. weight(uv)

is_arithmetic_v<DistanceValue> &&
strict_weak_order<Compare, DistanceValue, DistanceValue> &&
assignable_from<add_lvalue_reference_t<DistanceValue>,

invoke_result_t<Combine, DistanceValue, invoke_result_t<WF, edge_reference_t<G>>>>;

template <class G, class WF, class DistanceValue>
concept edge_weight_function = // e.g. weight(uv)

§ 3.2 14

© ISO/IEC P1709r5

is_arithmetic_v<invoke_result_t<WF, edge_reference_t<G>>> &&
basic_edge_weight_function<G,

WF,
DistanceValue,
less<DistanceValue>,
plus<DistanceValue>>;

3.3 Shortest Paths

3.3.1 Unweighted Shortest Paths: Breadth-First Search

3.3.1.1 Breadth-First Search, Single Source, Initialization

template <class DistanceValue>
constexpr auto breadth_first_search_invalid_distance() {
return numeric_limits<DistanceValue>::max(); // exposition only

}

template <class DistanceValue>
constexpr auto breadth_first_search_zero() { return DistanceValue(); } // exposition only

template <class Distances>
constexpr void init_breadth_first_search(Distances& distances) {
// exposition only
ranges::fill(distances,

breadth_first_search_invalid_distance<ranges::range_value_t<Distances>>());
}

template <class Predecessors>
constexpr void init_breadth_first_search(Predecessors& predecessors) {
// exposition only
size_t i = 0;
for(auto& pred : predecessors)
pred = i++;

}

Effects:

— Each predecessors[i] is initialized to i.

3.3.1.2 Breadth-First Search, Single Source

Compute the breadth-first path and associated distance from vertex source to all reachable vertices in graph .

Complexity
O((|E|+ |V |) log |V |)

Throws? Yes Cycles? No
Multi-edge? No Directed? Yes

Note that complexity may be O(|E|+ |V | log |V |) for certain implementations.

template <index_adjacency_list G,
ranges::random_access_range Distances,
ranges::random_access_range Predecessors,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>>

void breadth_first_search(
G&& g, // graph
vertex_id_t<G> source, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from source in number of edges
Predecessors& predecessors, // out: predecessor[uid] of uid in path

§ 3.3.1.2 15

© ISO/IEC P1709r5

Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>>
void breadth_first_search(

G&& g, // graph
vertex_id_t<G> seed, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from seed in number of edges
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) 0 <= source < num_vertices(graph).

—(1.2) distances will be initialized with init_breadth_first_search.

—(1.3) predecessors will be initialized with init_breadth_first_search.
2 Effects:

—(2.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the lowest number of
edges from source to vertex i. Otherwise distances[i]will contain breadth_first_search_invalid_distance
().

—(2.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

3 Throws: out_of_range is thrown when source is not in the range 0 <= source < num_vertices(graph) .

3.3.2 Weighted Shortest Paths

3.3.2.1 Shortest Paths Initialization

template <class DistanceValue>
constexpr auto shortest_path_invalid_distance() {
return numeric_limits<DistanceValue>::max(); // exposition only

}

template <class DistanceValue>
constexpr auto shortest_path_zero() { return DistanceValue(); } // exposition only

template <class Distances>
constexpr void init_shortest_paths(Distances& distances) {
// exposition only
ranges::fill(distances,

shortest_path_invalid_distance<ranges::range_value_t<Distances>>());
}

template <class Distances, class Predecessors>
constexpr void init_shortest_paths(Distances& distances, Predecessors& predecessors) {
// exposition only
init_shortest_paths_distances(distances);
size_t i = 0;
for(auto& pred : predecessors)
pred = i++;

}

1 Effects: :

—(1.1) init_shortest_paths(distances) sets all elements in distance to shortest_path_invalid_distance
()

§ 3.3.2.1 16

© ISO/IEC P1709r5

—(1.2) init_shortest_paths(distances,predecessors) does the same as shortest_path_invalid_distance
(distances) and sets predecessors[i] = i for i < size(predecessors).

2 Returns:

—(2.1) shortest_path_invalid_distance() returns a sentinel value for an invalid distance, typically numeric_limits
<DistanceValue>::max() for numeric types.

—(2.2) shortest_path_zero() returns a value for for a zero-length path, typically 0 for numeric types.

3.3.2.2 Dijkstra Single Source Shortest Paths and Shortest Distances

Compute the shortest path and associated distance from vertex source to all reachable vertices in graph using non-negative
weights.

Complexity
O((|E|+ |V |) log |V |)

Throws? Yes Cycles? No
Multi-edge? No Directed? Yes

Note that complexity may be O(|E|+ |V | log |V |) for certain implementations.

The following functions are split into the common and general cases, where the general cases allow the caller to specify
Compare and Combine functions (e.g. less and add). Concepts and types from std::ranges don’t include the namespace
prefix for brevity and clarity of purpose.

template <index_adjacency_list G,
ranges::random_access_range Distances,
ranges::random_access_range Predecessors,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
edge_weight_function<G, WF, ranges::range_value_t<Distances>>

void dijkstra_shortest_paths(
G&& g, // graph
vertex_id_t<G> source, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from source
Predecessors& predecessors, // out: predecessor[uid] of uid in path
WF&& weight =

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
edge_weight_function<G, WF, ranges::range_value_t<Distances>>

void dijkstra_shortest_distances(
G&& g, // graph
vertex_id_t<G> seed, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from seed
WF&& weight =

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
ranges::random_access_range Predecessors,
class Compare,
class Combine,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,

§ 3.3.2.2 17

© ISO/IEC P1709r5

class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>

void dijkstra_shortest_paths(
G&& g, // graph
vertex_id_t<G> source, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from source
Predecessors& predecessors, // out: predecessor[uid] of uid in path
Compare&& compare,
Combine&& combine,
WF&& weight = // default weight(uv) -> 1

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
class Compare,
class Combine,
class WF = std::function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>

void dijkstra_shortest_distances(
G&& g, // graph
vertex_id_t<G> seed, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from seed
Compare&& compare,
Combine&& combine,
WF&& weight = // default weight(uv) -> 1

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

1 Mandates:

—(1.1) The weight function w must return a non-negative value.
2 Preconditions:

—(2.1) 0 <= source < num_vertices(graph).

—(2.2) distances will be initialized with init_shortest_paths.

—(2.3) predecessors will be initialized with init_shortest_paths.
3 Effects:

—(3.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance from source

to vertex i. Otherwise distances[i] will contain shortest_path_invalid_distance().

—(3.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

4 Throws: out_of_range is thrown when source is not in the range 0 <= source < num_vertices(graph) .
5 Remarks: Bellman-Ford Shortest Paths allows negative weights with the consequence of greater complexity.

3.3.2.3 Bellman-Ford Single Source Shortest Paths and Shortest Distances

Compute the shortest path and associated distance from vertex source to all reachable vertices in graph .

Complexity
O(|E| · |V |)

Throws? Yes Cycles? No
Multi-edge? No Directed? Yes

§ 3.3.2.3 18

© ISO/IEC P1709r5

The following functions are split into the common and general cases, where the general cases allow the caller to specify
Compare and Combine functions (e.g. less and add). Concepts and types from std::ranges don’t include the namespace
prefix for brevity and clarity of purpose.

template <index_adjacency_list G,
ranges::random_access_range Distances,
ranges::random_access_range Predecessors,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
edge_weight_function<G, WF, ranges::range_value_t<Distances>>

void bellman_ford_shortest_paths(
G&& g, // graph
vertex_id_t<G> source, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from source
Predecessors& predecessors, // out: predecessor[uid] of uid in path
WF&& weight =

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator())

template <index_adjacency_list G,
ranges::random_access_range Distances,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
edge_weight_function<G, WF, ranges::range_value_t<Distances>>

void bellman_ford_shortest_distances(
G&& g, // graph
vertex_id_t<G> seed, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from seed
WF&& weight =

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
ranges::random_access_range Predecessors,
class Compare,
class Combine,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, ranges::range_value_t<Predecessors>> &&
basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>

void bellman_ford_shortest_paths(
G&& g, // graph
vertex_id_t<G> source, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from source
Predecessors& predecessors, // out: predecessor[uid] of uid in path
Compare&& compare,
Combine&& combine,
WF&& weight = // default weight(uv) -> 1

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

template <index_adjacency_list G,
ranges::random_access_range Distances,
class Compare,

§ 3.3.2.3 19

© ISO/IEC P1709r5

class Combine,
class WF = function<ranges::range_value_t<Distances>(edge_reference_t<G>)>,
class Allocator = allocator<vertex_id_t<G>>
>

requires is_arithmetic_v<ranges::range_value_t<Distances>> &&
basic_edge_weight_function<G, WF, ranges::range_value_t<Distances>, Compare, Combine>

void bellman_ford_shortest_distances(
G&& g, // graph
vertex_id_t<G> seed, // starting vertex id
Distances& distances, // out: Distances[uid] of uid from seed
Compare&& compare,
Combine&& combine,
WF&& weight = // default weight(uv) -> 1

[](edge_reference_t<G> uv) { return ranges::range_value_t<Distances>(1); },
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) 0 <= source < num_vertices(graph).

—(1.2) distance will be initialized with init_shortest_paths.

—(1.3) predecessors will be initialized with init_shortest_paths.
2 Effects:

—(2.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance from source

to vertex i. Otherwise distances[i] will contain shortest_path_invalid_distance().

—(2.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

3 Throws: out_of_range is thrown when source is not in the range 0 <= source < num_vertices(graph) .
4 Remarks:

—(4.1) Unlike Dijkstra’s algorithm, Bellman-Ford allows negative edge weights. Performance constraints limit this to
smaller graphs.

3.4 Clustering

3.4.1 Triangle Counting

Compute the number of triangles in a graph.

Complexity
O(N3)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G>
size_t triangle_count(G&& g);

1 Returns: Number of triangles
2 Remarks: To avoid duplicate counting, only directed triangles of a certain orientation will be detected. If vertex_id(u

)< vertex_id(v)< vertex_id(w) , count triangle if graph contains edges uv, vw, uw .

3.5 Communities

3.5.1 Label Propagation

Propagate vertex labels by setting each vertex’s label to the most popular label of its neighboring vertices. Every vertex voting
on its new label represents one iteration of label propagation. Vertex voting order is randomized every iteration. The algorithm
will iterate until label convergence, or optionally for a user specified number of iterations. Convergence occurs when no vertex
label changes from the previous iteration. O(M) complexity is based on the complexity of one iteration, with number of
iterations required for convergence considered small relative to graph size.

§ 3.5.1 20

© ISO/IEC P1709r5

Some label propagation implementations use vertex ids as an initial labeling. This is not supported here because the label type
can be more generic than the vertex id type. User is responsible for meaningful initial labeling.

Complexity
O(M)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G,
ranges::random_access_range Label,
class Gen = default_random_engine,
class T = size_t>

void label_propagation(G&& g,
Label& label,
Gen&& rng = default_random_engine {},
T max_iters = numeric_limits<T>::max());

1 Preconditions:

—(1.1) label contains initial vertex labels.

—(1.2) rng is a random number generator for vertex voting order.

—(1.3) max_iters is the maximum number of iterations of the label propagation, or equivalently the maximum distance
a label will propagate from its starting vertex.

2 Effects: label[uid] is the label assignments of vertex id uid discovered by label propagation.3 Remarks: User is
responsible for initial vertex labels.

Complexity
O(M)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G,
ranges::random_access_range Label,
class Gen = default_random_engine
class T = size_t>

void label_propagation(G&& g,
Label& label,
ranges::range_value_t<Label>& empty_label
Gen&& rng = default_random_engine {},
T max_iters = numeric_limits<T>::max());

4 Preconditions:

—(4.1) label contains initial vertex labels.

—(4.2) empty_label defines a label that is considered empty and will not be propagated.

—(4.3) rng is a random number generator for vertex voting order.

—(4.4) max_iters is the maximum number of iterations of the label propagation, or equivalently the maximum distance
a label will propagate from its starting vertex.

5 Effects: label[uid] is the label assignments of vertex id uid discovered by label propagation.6 Remarks: User is
responsible for initial vertex labels.

3.6 Components

3.6.1 Articulation Points

Find articulation points, or cut vertices, which when removed disconnect the graph into multiple components. Time complexity
based on Hopcroft-Tarjan algorithm.

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

§ 3.6.1 21

© ISO/IEC P1709r5

template <index_adjacency_list G, class Iter, class Allocator = allocator<vertex_id<G>>>
requires output_iterator<Iter, vertex_id_t<G>>
void articulation_points(G&& g, Iter cut_vertices, Allocator alloc = Allocator());

1 Preconditions:

—(1.1) Output iterator cut_vertices can be assigned vertices of type vertex_id_t<G> when dereferenced.
2 Effects:

—(2.1) Output iterator cut_vertices contains articulation point vertices, those which removed increase the number of
components of g.

3.6.2 BiConnected Components

Find the biconnected components, or maximal biconnected subgraphs of a graph, which are components that will remain
connected if a vertex is removed. Time complexity based on Hopcroft-Tarjan algorithm.

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G,
ranges::forward_range OuterContainer,
class Allocator = allocator<vertex_id<G>>

requires ranges::forward_range<ranges::range_value_t<OuterContainer>> &&
integral<ranges::forward_range_t<ranges::forward_range_t<OuterContainer>>>

void biconnected_components(G&& g,
OuterContainer& components,
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) components is a container of containers. The inner container stores vertex ids.
2 Effects:

—(2.1) components contains groups of biconnected components.

3.6.3 Connected Components

Find weakly connected components of a graph. Weakly connected components are subgraphs where a path exists between all
pairs of vertices when ignoring edge direction.

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? No

template <index_adjacency_list G,
ranges::random_access_range Component,
class Allocator = allocator<vertex_id<G>>

void connected_components(G&& g,
Component& component,
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) size(component)>= num_vertices(g).
2 Effects:

—(2.1) component[v] is the connected component id of vertex v.

—(2.2) There is at least one Connected Component, with compondent id of 0, for num_vertices(g)> 0.

§ 3.6.3 22

© ISO/IEC P1709r5

3.6.4 Strongly Connected Components

3.6.4.1 Kosaraju’s SCC

Find strongly connected components of a graph using Kosaraju’s algorithm. Strongly connected components are subgraphs
where a path exists between all pairs of vertices.

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G,
index_adjacency_list GT,
ranges::random_access_range Component,
class Allocator = allocator<vertex_id<G>>

void strongly_connected_components(G&& g,
GT&& g_t,
Component& component,
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) g_t is the transpose of g. Edge uv in g implies edge vu in g_t. num_vertices(g) equals num_vertices(g_t).

—(1.2) size(component)>= num_vertices(g).
2 Effects:

—(2.1) component[v] is the strongly connected component id of vertex v.

3.6.4.2 Tarjan’s SCC

Find strongly connected components of a graph using Tarjan’s algorithm. Strongly connected components are subgraphs where
a path exists between all pairs of vertices.

Complexity
O(|E|+ |V |)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <adjacency_list G,
ranges::random_access_range Component,
class Allocator = allocator<vertex_id<G>>>

requires ranges::random_access_range<vertex_range_t<G>> && integral<vertex_id_t<G>>
void strongly_connected_components(G&& g,

Component& component
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) size(component)>= num_vertices(g).
2 Effects:

—(2.1) component[v] is the strongly connected component id of v.

3.7 Directed Acyclic Graphs

3.7.1 Topological Sort, Single Source

A linear ordering of vertices such that for every directed edge (u,v) from vertex u to vertex v, u comes before v in the ordering.

3.7.1.1 Initialization

template <class Predecessors>
constexpr void init_topological_sort(Predecessors& predecessors) {
// exposition only

§ 3.7.1.1 23

© ISO/IEC P1709r5

size_t i = 0;
for(auto& pred : predecessors)
pred = i++;

}

Effects:

— Each predecessors[i] is initialized to i.

3.7.1.2 Topological Sort, Single Source

Complexity
O((|E|+ |V |))

Throws? Yes Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G,
class Predecessors,
class Allocator = allocator<vertex_id_t<G>>

void topological_sort(const G& graph,
vertex_id_t<G> source,
Predecessors& predecessors,
Allocator alloc = Allocator());

1 Preconditions:

—(1.1) 0 <= source < num_vertices(graph).

—(1.2) predecessors will be initialized with init_topological_sort.
2 Effects:

—(2.1) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

3 Throws: out_of_range is thrown when source is not in the range 0 <= source < num_vertices(graph) .

3.8 Maximal Independent Set

3.8.1 Maximal Independent Set

Find a maximally independent set of vertices in a graph starting from a seed vertex. An independent vertex set indicates no pair
of vertices in the set are adjacent.

Complexity
O(|E|)

Throws? No Cycles? No
Multi-edge? No Directed? No

template <index_adjacency_list G, class Iter>
requires output_iterator<Iter, vertex_id_t<G>>
void maximal_independent_set(G&& g, Iter mis, vertex_id_t<G> seed);

1 Preconditions:

—(1.1) 0 <= seed < num_vertices(graph).

—(1.2) mis output iterator can be assigned vertices of type vertex_id_t<G> when dereferenced.
2 Effects:

—(2.1) Output iterator mis contains maximal independent set of vertices containing seed, which is a subset of vertices
(graph).

§ 3.8.1 24

© ISO/IEC P1709r5

3.9 Link Analysis

3.9.1 Jaccard Coefficient

Calculate the Jaccard coefficient of a graph

Complexity
O(|N |3)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <index_adjacency_list G, typename OutOp, typename T = double>
requires is_invocable_v<OutOp, vertex_id_t<G>&, vertex_id_t<G>&, edge_reference_t<G>, T>
void jaccard_coefficient(G&& g, OutOp out);

1 Preconditions:

—(1.1) out is an operator for setting the resulting Jaccard coefficient. This function is expected to be of the form out(

vertex_id_t<G> uid, vertex_id_t<G> vid, edge_t<G> uv, T val).
2 Effects:

—(2.1) For every pair of neighboring vertices (uid, vid), the function out is called, passing the vertex ids, the edge uv
between them, and the calculated Jaccard coefficient.

3.10 Minimum Spanning Tree

3.10.1 Kruskal Minimum Spanning Tree

Find the minimum weight spanning tree of a graph using Kruskal’s algorithm.

Complexity
O(|E|)

Throws? No Cycles? No
Multi-edge? No Directed? Yes

template <edgelist::edgelist E, edgelist::edgelist T>
void kruskal(E&& e, T&& t);

template <edgelist::edgelist E, edgelist::edgelist T, CompareOp>
void kruskal(E&& e, T&& t, CompareOp compare);

1 Preconditions:

—(1.1) e is an edgelist.

—(1.2) compare operator is a valid comparison operation on two edge values of type edge_value_t<EL> which returns
a bool.

2 Effects:

—(2.1) Edgelist t contains edges representing a spanning tree or forest, which minimize the comparison operator. When
compare is <, t represents a minimum weight spanning tree.

3.10.2 Prim Minimum Spanning Tree

Find the minimum weight spanning tree of a graph using Prim’s algorithm.

Complexity
O(|E|log|V |)

Throws? No Cycles? No
Multi-edge? No Directed? No

template <index_adjacency_list G,
ranges::random_access_range Predecessor,
ranges::random_access_range Weight>

void prim(G&& g, Predecessor& predecessor, Weight& weight, vertex_id_t<G> seed = 0);

template <index_adjacency_list G,

§ 3.10.2 25

© ISO/IEC P1709r5

ranges::random_access_range Predecessor,
ranges::random_access_range Weight,
class CompareOp>

void prim(G&& g,
Predecessor& predecessor,
Weight& weight,
CompareOp compare,
ranges::range_value_t<Weight> init_dist,
vertex_id_t<G> seed = 0);

1 Preconditions:

—(1.1) 0 <= seed < num_vertices(g).

—(1.2) Size of weight and predecessor is greater than or equal to num_vertices(g).

—(1.3) compare operator is a valid comparison operation on two edge values of type edge_value_t<G> which returns a
bool.

2 Effects:

—(2.1) predecessor[v] is the parent vertex of v in a tree rooted at seed and weight[v] is the value of the edge between
v and predecessor[v] in the tree. When compare is < and init_dist==+inf, predecessor represents a
minimum weight spanning tree.

—(2.2) If predecessor and weight are not initialized by user, and the graph is not fully connected, predecessor[v]
and weight[v] will be undefined for vertices not in the same connected component as seed.

3.11 Other Algorithms

Additional algorithms that were considered but not included in this proposal are identified in Table 3.1. It is assumed that future
proposals will include them, with a recommendation of each Tier being in its own proposal. Tier X algorithms are variations of
shortest paths algorithms that complement the Single Source, Multiple Target algorithms in this proposal.

The Shortest Paths Driver is an idea of having a unified interface that chooses the best Shortest Path algorithm based on
characteristics like non-negative edge weight, multi-threading, etc.

Tier 2 Tier 3 Tier X
All Pairs Shortest Paths Jones Plassman Single Source, Single Target: Shortest Paths Driver
Floyd-Warshall Cores: k-cores Single Source, Single Target: BFS
Johnson Cores: k-truss Single Source, Single Target: Dijkstra
Centrality: Betweenness Centrality Subgraph Isomorphism Single Source, Single Target: Bellman-Ford
Coloring: Greedy Single Source, Single Target: Delta Stepping
Communities: Louvain
Connectivity: Minimum Cuts Multiple Source: Shortest Paths Driver
Transitive Closure Multiple Source: BFS
Flows: Edmunds Karp Multiple Source: Dijkstra
Flows: Push Relabel Multiple Source: Bellman-Ford
Flows: Boykov Kolmogorov Multiple Source: Delta Stepping

Multiple Source, Single Target: Shortest Paths Driver
Multiple Source, Single Target: BFS
Multiple Source, Single Target: Dijkstra
Multiple Source, Single Target: Bellman-Ford
Multiple Source, Single Target: Delta Stepping

Table 3.1 — Other Algorithms

§ 3.11 26

© ISO/IEC P1709r5

Chapter4 Operators
4.1 Degree

Degree of a vertex in graph theory refers to the number of edges that are incident to the vertex. Although the proposal provides
customization point interface to access a degree of an individual vertex, a degree operator allows one to build a range of degrees
of all vertices within a graph.

template <index_adjacency_list G,
ranges::random_access_range D>

requires is_integral_v<ranges::range_value_t<P>>
void degrees(const G& graph, D& degrees_per_vertex) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected.
2 Effects: Output iterator degrees_per_vertex contains the degree of each vertex in the graph, accessible through

degrees_per_vertex[uid], where uid is the vertex_id. The caller must assure size(degrees_per_vertex)>=
size(vertices(graph)).3 Complexity: O(|V |) where V is the number of vertices in the graph.

4.2 Sort

Sort operator comes in many different variants, allows to sort the input graph based on the source vertex, target vertex, the degree
of the vertex or by the weight on the edges. Also relevant, topological_sort, which returns a nonunique permutation of the
vertices of a directed acyclic graph such that an edge from u to v implies that u appears before v in the topological sort order.

4.2.1 Sort by Source Vertex

template <index_adjacency_list G>
void sort_by_source(G&& graph) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.
2 Effects: graph, which is now sorted by the source vertices in the graph.

4.2.2 Sort by Target Vertex

template <index_adjacency_list G>
void sort_by_target(G&& graph) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.
2 Effects: graph, which is now sorted by the target vertices in the graph.

4.2.3 Sort by Degree

template <index_adjacency_list G>
void sort_by_degree(G&& graph) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.
2 Effects: graph, which is now sorted by the vertex degree.

§ 4.2.3 27

© ISO/IEC P1709r5

4.2.4 Sort by Edge Weight

template <index_adjacency_list G, class W>
requires weight_function<W, edge_t<G>>
void sort_by_weight(G&& graph, W&& w) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.

—(1.2) w The edge value function.
2 Effects: graph, which is now sorted by the edge weight.

4.3 Relabel

Relabels the vertices of the graph according to a given mapping or to integers.

template <index_adjacency_list G>
void relabel(G&& graph, const std::map</*?*/, /*?*/>& mapping) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.

—(1.2) mapping is a std::map, a dictionary with old labels as keys and new labels as values. If a partial mapping is
provided (i.e. mapping.size()< size(vertices(graph))), then only the specified vertices are relabeled.

2 Effects: graph: the vertices of the graph are relabeled starting based on the mapping provided.

template <index_adjacency_list G>
void relabel_to_integers(G&& graph) {}

3 Preconditions:

—(3.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.
4 Effects: graph: the vertices of the graph are relabeled starting from 0 to size(vertices(graph)).

4.4 Transpose

Transpose returns a graph with edges reversed. For an adjacency graph, it is obtained by switching the outer range of vertices
with an inner range of incidence edges on each vertex.

template <index_adjacency_list G>
void transpose(G&& graph) {}

1 Preconditions:

—(1.1) graph is an index_adjacency_list, which can be directed or undirected. The same API extends for edgelist.
2 Effects: graph: the graph is transposed such that the edges for each vertex are reversed.

4.5 Join

Combining of two graphs based on common vertices. The join operation (or Sparse General Matrix-Matrix Multiplication) is a
useful operators for implementing graph algorithms. The result would be a new graph where the edges are determined by the
multiplication of the adjacency containers.

template <index_adjacency_list A, index_adjacency_list B,
index_adjacency_list C>

1 Preconditions:

—(1.1) a, b and c are index_adjacency_list graphs, which can be directed or undirected.
2 Effects: c: the resulting graph where the entry (u, v) in the result represents the number of common neighbors between

vertex u in Graph A and vertex v in Graph B.

§ 4.5 28

© ISO/IEC P1709r5

Chapter5 Views
The views in this section provide common ways that algorithms use to traverse graphs. They are a simple as iterating through
the set of vertices, or more complex ways such as depth-first search and breadth-first search. The also provide a consistent and
reliable way to access related elements using the View Return Types, and guaranteeing expected values, such as that the target
is really the target on unordered edges.

5.1 Return Types (Descriptors)

Views return one of the types in this section, providing a consistent set of values. They are templated so that the view can
adjust the actual values returned to be appropriate for its use. The three types, vertex_descriptor, edge_descriptor

and neighbor_descriptor , define the data model used by the algorithms.

The following examples show the general design and how it’s used. While it focuses on vertexlist to iterate over all vertices, it
applies to all descriptors and view functions.

// the type of uu is vertex descriptor<vertex id t<G>, vertex reference t<G>, void>
for(auto&& uu : vertexlist(g)) {
vertex_id<G> id = uu.id;
vertex_reference_t<G> u = uu.vertex;
// ... do something interesting

}

Structured bindings make it simpler.

for(auto&& [id, u] : vertexlist(g)) {
// ... do something interesting

}

A function object can also be passed to return a value from the vertex. In this case, vertexlist(g) returns vertex_descriptor
<vertex_id_t<G>, vertex_reference_t<G>, decltype(vvf(u))> .

// the type returned by vertexlist is
// vertex descriptor<vertex id t<G>,
// vertex reference t<G>,
// decltype(vvf(vertex reference t<G>))>
auto vvf = [&g](vertex_reference_t<G> u) { return vertex_value(g,u); };
for(auto&& [id, u, value] : vertexlist(g, vvf)) {
// ... do something interesting

}

A simpler version also exists if all you need is a vertex id. The vertex value function takes a vertex id instead of a vertex
reference.

for(auto&& [uid] : basic_vertexlist(g)) {
// ... do something interesting

}

auto vvf = [&g](vertex_id_t<G> uid) { return vertex_value(g,uid); };
for(auto&& [uid, value] : basic_vertexlist(g,vvf)) {
// ... do something interesting

}

5.1.0.1 struct vertex_descriptor<VId, V, VV>

vertex_descriptor is used to return vertex information. It is used by vertexlist(g) , vertices_breadth_first_search
(g,u) , vertices_dfs(g,u) and others. The id member always exists.

§ 5.1.0.1 29

© ISO/IEC P1709r5

template <class VId, class V, class VV>
struct vertex_descriptor {
using id_type = VId; // e.g. vertex id t<G>
using vertex_type = V; // e.g. vertex reference t<G> or void
using value_type = VV; // e.g. vertex value t<G> or void

id_type id;
vertex_type vertex;
value_type value;

};

Specializations are defined with V=void or VV=void to suppress the existance of their associated member variables, giving the
following valid combinations in Table 5.1 . For instance, the second entry, vertex_descriptor<VId, V> has two members
{id_type id; vertex_type vertex;} and value_type is void .

Template Arguments Members
vertex_descriptor<VId, V, VV> id vertex value

vertex_descriptor<VId, V, void> id vertex

vertex_descriptor<VId, void, VV> id value

vertex_descriptor<VId, void, void> id

Table 5.1 — vertex_descriptor Members

A useful type alias for copying vertex values (excluding the vertex reference) is also available.

template <class VId, class VV>
using copyable_vertex_t = vertex_descriptor<VId, void, VV>; // id, value

5.1.0.2 struct edge_descriptor<VId, Sourced, E, EV>

edge_descriptor is used to return edge information. It is used by incidence(g,u), edgelist(g), edges_breadth_first_search

(g,u), edges_dfs(g,u) and others. When Sourced=true , the source_id member is included with type VId . The
target_id member always exists.

template <class VId, bool Sourced, class E, class EV>
struct edge_descriptor {
using source_id_type = VId; // e.g. vertex id t<G> when SourceId==true, or void
using target_id_type = VId; // e.g. vertex id t<G>
using edge_type = E; // e.g. edge reference t<G> or void
using value_type = EV; // e.g. edge value t<G> or void

source_id_type source_id;
target_id_type target_id;
edge_type edge;
value_type value;

};

Specializations are defined with Sourced=true|false , E=void or EV=void to suppress the existance of the associated
member variables, giving the following valid combinations in Table 5.2 . For instance, the second entry, edge_descriptor<
VId,true,E> has three members {source_id_type source_id; target_id_type target_id; edge_type edge

;} and value_type is void .

A useful type alias for copying edge values (excluding the edge reference) is also available.

template <class VId, class EV>
using copyable_edge_t = edge_descriptor<VId, true, void, EV>; // source id,target id[,value]

§ 5.1.0.2 30

© ISO/IEC P1709r5

Template Arguments Members
edge_descriptor<VId, true, E, EV> source_id target_id edge value

edge_descriptor<VId, true, E, void> source_id target_id edge

edge_descriptor<VId, true, void, EV> source_id target_id value

edge_descriptor<VId, true, void, void> source_id target_id

edge_descriptor<VId, false, E, EV> target_id edge value

edge_descriptor<VId, false, E, void> target_id edge

edge_descriptor<VId, false, void, EV> target_id value

edge_descriptor<VId, false, void, void> target_id

Table 5.2 — edge_descriptor Members

5.1.0.3 struct neighbor_descriptor<VId, Sourced, V, VV>

neighbor_descriptor is used to return information for a neighbor vertex, through an edge. It is used by neighbors(g,u)
. When Sourced=true , the source_id member is included with type source_id_type . The target_id member always
exists.

template <class VId, bool Sourced, class V, class VV>
struct neighbor_descriptor {
using source_id_type = VId; // e.g. vertex id t<G> when Sourced==true, or void
using target_id_type = VId; // e.g. vertex id t<G>
using vertex_type = V; // e.g. vertex reference t<G> or void
using value_type = VV; // e.g. vertex value t<G> or void

source_id_type source_id;
target_id_type target_id;
vertex_type target;
value_type value;

};

Specializations are defined with Sourced=true|false , E =void or EV =void to suppress the existance of the associated mem-
ber variables, giving the following valid combinations in Table 5.3 . For instance, the second entry, neighbor_descriptor
<VId,true,E> has three members {source_id_type source_id; target_id_type target_id; vertex_type

target;} and value_type is void .

Template Arguments Members
neighbor_descriptor<VId, true, E, EV> source_id target_id target value

neighbor_descriptor<VId, true, E, void> source_id target_id target

neighbor_descriptor<VId, true, void, EV> source_id target_id value

neighbor_descriptor<VId, true, void, void> source_id target_id

neighbor_descriptor<VId, false, E, EV> target_id target value

neighbor_descriptor<VId, false, E, void> target_id target

neighbor_descriptor<VId, false, void, EV> target_id value

neighbor_descriptor<VId, false, void, void> target_id

Table 5.3 — neighbor_descriptor Members

5.2 Copyable Descriptors

5.2.1 Copyable Descriptor Types

Copyable descriptors are specializations of the descriptors that can be copied. More specifically, they don’t include a vertex or
edge reference. copyable_vertex_t<G> shows the simple definition.

template <class VId, class VV>

§ 5.2.1 31

© ISO/IEC P1709r5

using copyable_vertex_t = vertex_descriptor<VId, void, VV>; // id, value

Type Definition
copyable_vertex_t<T,VId,VV> vertex_descriptor<VId, void, VV>

copyable_edge_t<T,Vid,EV> edge_descriptor<VId, true, void, EV>>

copyable_neighbor_t<Vid,VV> neighbor_descriptor<VId, true, void, VV>

Table 5.4 — Descriptor Concepts

5.2.2 Copyable Descriptor Concepts

Given the copyable types, it’s useful to have concepts to determine if a type is a desired copyable type.

Concept Definition
copyable_vertex<T,VId,VV> convertible_to<T, copyable_vertex_t<VId, VV>>

copyable_edge<T,Vid,EV> convertible_to<T, copyable_edge_t<VId, EV>>

copyable_neighbor<T,Vid,VV> convertible_to<T, copyable_neighbor_t<VId, VV>>

Table 5.5 — Descriptor Concepts

5.3 Common Types and Functions for “Search”

The Depth First, Breadth First, and Topological Sort searches share a number of common types and functions.

Here are the types and functions for cancelling a search, getting the current depth of the search, and active elements in the
search (e.g. number of vertices in a stack or queue).

// enum used to define how to cancel a search
enum struct cancel_search : int8_t {
continue_search, // no change (ignored)
cancel_branch, // stops searching from current vertex
cancel_all // stops searching and dfs will be at end()

};

// stop searching from current vertex
template<class S)
void cancel(S search, cancel_search);

// Returns distance from the seed vertex to the current vertex,
// or to the target vertex for edge views
template<class S>
auto depth(S search) -> integral;

// Returns number of pending vertices to process
template<class S>
auto size(S search) -> integral;

Of particular note, size(dfs) is typically the same as depth(dfs) and is simple to calculate. breadth first search requires
extra bookkeeping to evaluate depth(bfs) and returns a different value than size(bfs) .

The following example shows how the functions could be used, using dfs for one of the depth first search views. The same
functions can be used for all all search views.

auto&& g = ...; // graph
auto&& dfs = vertices_dfs(g,0); // start with vertex id=0
for(auto&& [vid,v] : dfs) {
// No need to search deeper?
if(depth(dfs) > 3) {
cancel(dfs,cancel_search::cancel_branch);

§ 5.3 32

© ISO/IEC P1709r5

continue;
}

if(size(dfs) > 1000) {
std::cout << "Big depth of " << size(dfs) << ’\n’;

}

// do useful things
}

5.4 vertexlist Views

vertexlist views iterate over a range of vertices, returning a vertex_descriptor on each iteration. Table 5.6 shows the
vertexlist functions overloads and their return values. first and last are vertex iterators.

vertexlist views require a vvf(u) function, and the basic_vertexlist views require a vvf(uid) function.

Example Return
for(auto&& [uid,u] : vertexlist(g)) vertex_descriptor<VId,V,void>

for(auto&& [uid,u,val] : vertexlist(g,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [uid,u] : vertexlist(g,first,last)) vertex_descriptor<VId,V,void>

for(auto&& [uid,u,val] : vertexlist(g,first,last,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [uid,u] : vertexlist(g,vr)) vertex_descriptor<VId,V,void>

for(auto&& [uid,u,val] : vertexlist(g,vr,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [uid] : basic_vertexlist(g)) vertex_descriptor<VId,void,void>

for(auto&& [uid,val] : basic_vertexlist(g,vvf)) vertex_descriptor<VId,void,VV>

for(auto&& [uid] : basic_vertexlist(g,first,last)) vertex_descriptor<VId,void,void>

for(auto&& [uid,val] : basic_vertexlist(g,first,last,vvf)) vertex_descriptor<VId,void,VV>

for(auto&& [uid] : basic_vertexlist(g,vr)) vertex_descriptor<VId,void,void>

for(auto&& [uid,val] : basic_vertexlist(g,vr,vvf)) vertex_descriptor<VId,void,VV>

Table 5.6 — vertexlist View Functions

5.5 incidence Views

incidence views iterate over a range of adjacent edges of a vertex, returning a edge_descriptor on each iteration. Table
5.7 shows the incidence function overloads and their return values.

Since the source vertex u is available when calling an incidence function, there’s no need to include sourced versions of the
function to include source_id in the output.

incidence views require a evf(uv) function, and basic_incidence views require a evf(eid) function.

Example Return
for(auto&& [vid,uv] : incidence(g,uid)) edge_descriptor<VId,false,E,void>

for(auto&& [vid,uv,val] : incidence(g,uid,evf)) edge_descriptor<VId,false,E,EV>

for(auto&& [vid] : basic_incidence(g,uid)) edge_descriptor<VId,false,void,void>

for(auto&& [vid,val] : basic_incidence(g,uid,evf)) edge_descriptor<VId,false,void,EV>

Table 5.7 — incidence View Functions

5.6 neighbors Views

neighbors views iterate over a range of edges for a vertex, returning a vertex_descriptor of each neighboring target
vertex on each iteration. Table 5.8 shows the neighbors function overloads and their return values.

Since the source vertex u is available when calling a neighbors function, there’s no need to include sourced versions of the
function to include source_id in the output.

§ 5.6 33

© ISO/IEC P1709r5

neighbors views require a vvf(u) function, and the basic_neighbors views require a vvf(uid) function.

Example Return
for(auto&& [vid,v] : neighbors(g,uid)) neighbor_descriptor<VId,false,V,void>

for(auto&& [vid,v,val] : neighbors(g,uid,vvf)) neighbor_descriptor<VId,false,V,VV>

for(auto&& [vid] : basic_neighbors(g,uid)) neighbor_descriptor<VId,false,void,void>

for(auto&& [vid,val] : basic_neighbors(g,uid,vvf)) neighbor_descriptor<VId,false,void,VV>

Table 5.8 — neighbors View Functions

5.7 edgelist Views

edgelist views iterate over all edges for all vertices, returning a edge_descriptor on each iteration. Table 5.9 shows the
edgelist function overloads and their return values.

edgelist views require a evf(uv) function, and basic_edgelist views require a evf(eid) function.

Example Return
for(auto&& [uid,vid,uv] : edgelist(g)) edge_descriptor<VId,true,E,void>

for(auto&& [uid,vid,uv,val] : edgelist(g,evf)) edge_descriptor<VId,true,E,EV>

for(auto&& [uid,uv] : basic_edgelist(g)) edge_descriptor<VId,true,void,void>

for(auto&& [uid,uv,val] : basic_edgelist(g,evf)) edge_descriptor<VId,true,void,EV>

Table 5.9 — edgelist View Functions

5.8 Depth First Search Views

Depth First Search views iterate over the vertices and edges from a given seed vertex, returning a vertex_descriptor or
edge_descriptor on each iteration when it is first encountered, depending on the function used. Table 5.10 shows the
functions and their return values.

While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator<

bool> . It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

vertices_dfs views require a vvf(u) function, and the basic_vertices_dfs views require a vvf(uid) function.
edges_dfs views require a evf(uv) function. basic_sourced_edges_dfs views require a evf(eid) function. A
basic_edges_dfs view with a evf is not available because evf(eid) requires that the source_id is available.

Example Return
for(auto&& [vid] : basic_vertices_dfs(g,seed)) vertex_descriptor<VId,void,void>

for(auto&& [vid,val] : basic_vertices_dfs(g,seed,vvf)) vertex_descriptor<VId,void,VV>

for(auto&& [vid,v] : vertices_dfs(g,seed)) vertex_descriptor<VId,V,void>

for(auto&& [vid,v,val] : vertices_dfs(g,seed,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [vid] : basic_edges_dfs(g,seed)) edge_descriptor<VId,false,void,void>

for(auto&& [vid,val] : basic_edges_dfs(g,seed,evf)) edge_descriptor<VId,false,void,EV>

for(auto&& [vid,uv] : edges_dfs(g,seed)) edge_descriptor<VId,false,E,void>

for(auto&& [vid,uv,val] : edges_dfs(g,seed,evf)) edge_descriptor<VId,false,E,EV>

for(auto&& [uid,vid] : basic_sourced_edges_dfs(g,seed)) edge_descriptor<VId,true,void,void>

for(auto&& [uid,vid,val] : basic_sourced_edges_dfs(g,seed,evf)) edge_descriptor<VId,true,void,EV>

for(auto&& [uid,vid,uv] : sourced_edges_dfs(g,seed)) edge_descriptor<VId,true,E,void>

for(auto&& [uid,vid,uv,val] : sourced_edges_dfs(g,seed,evf)) edge_descriptor<VId,true,E,EV>

Table 5.10 — depth first search View Functions

5.9 Breadth First Search Views

Breadth First Search views iterate over the vertices and edges from a given seed vertex, returning a vertex_descriptor

or edge_descriptor on each iteration when it is first encountered, depending on the function used. Table 5.11 shows the
functions and their return values.

§ 5.9 34

© ISO/IEC P1709r5

While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator<

bool> . It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

vertices_bfs views require a vvf(u) function, and the basic_vertices_bfs views require a vvf(uid) function.
edges_bfs views require a evf(uv) function.

basic_sourced_edges_bfs views require a evf(eid) function. A basic_edges_bfs view with a evf is not available
because evf(eid) requires that the source_id is available.

Example Return
for(auto&& [vid] : basic_vertices_bfs(g,seed)) vertex_descriptor<VId,void,void>

for(auto&& [vid,val] : basic_vertices_bfs(g,seed,vvf)) vertex_descriptor<VId,void,VV>

for(auto&& [vid,v] : vertices_bfs(g,seed)) vertex_descriptor<VId,V,void>

for(auto&& [vid,v,val] : vertices_bfs(g,seed,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [vid] : basic_edges_bfs(g,seed)) edge_descriptor<VId,false,void,void>

for(auto&& [vid,val] : basic_edges_bfs(g,seed,evf)) edge_descriptor<VId,false,void,EV>

for(auto&& [vid,uv] : edges_bfs(g,seed)) edge_descriptor<VId,false,E,void>

for(auto&& [vid,uv,val] : edges_bfs(g,seed,evf)) edge_descriptor<VId,false,E,EV>

for(auto&& [uid,vid] : basic_sourced_edges_bfs(g,seed)) edge_descriptor<VId,true,void,void>

for(auto&& [uid,vid,val] : basic_sourced_edges_bfs(g,seed,evf)) edge_descriptor<VId,true,void,EV>

for(auto&& [uid,vid,uv] : sourced_edges_bfs(g,seed)) edge_descriptor<VId,true,E,void>

for(auto&& [uid,vid,uv,val] : sourced_edges_bfs(g,seed,evf)) edge_descriptor<VId,true,E,EV>

Table 5.11 — breadth first search View Functions

5.10 Topological Sort Views

Topological Sort views iterate over the vertices and edges from a given seed vertex, returning a vertex_descriptor or
edge_descriptor on each iteration when it is first encountered, depending on the function used. Table 5.12 shows the
functions and their return values.

While not shown in the examples, all functions have a final, optional allocator parameter that defaults to std::allocator<

bool> . It is used for containers that are internal to the view. The <bool> argument has no particular meaning.

vertices_topological_sort views require a vvf(u) function, and the basic_vertices_topological_sort views
require a vvf(uid) function. edges_topological_sort views require a evf(uv) function.

Example Return
for(auto&& [vid] : basic_vertices_topological_sort(g,seed)) vertex_descriptor<VId,void,void>

for(auto&& [vid,val] : basic_vertices_topological_sort(g,seed,vvf)) vertex_descriptor<VId,void,VV>

for(auto&& [vid,v] : vertices_topological_sort(g,seed)) vertex_descriptor<VId,V,void>

for(auto&& [vid,v,val] : vertices_topological_sort(g,seed,vvf)) vertex_descriptor<VId,V,VV>

for(auto&& [vid] : basic_edges_topological_sort(g,seed)) edge_descriptor<VId,false,void,void>

for(auto&& [vid,val] : basic_edges_topological_sort(g,seed,evf)) edge_descriptor<VId,false,void,EV>

for(auto&& [vid,uv] : edges_topological_sort(g,seed)) edge_descriptor<VId,false,E,void>

for(auto&& [vid,uv,val] : edges_topological_sort(g,seed,evf)) edge_descriptor<VId,false,E,EV>

for(auto&& [uid,vid] : basic_sourced_edges_topological_sort(g,seed)) edge_descriptor<VId,true,void,void>

for(auto&& [uid,vid,val] : basic_sourced_edges_topological_sort(g,seed,evf)) edge_descriptor<VId,true,void,EV>

for(auto&& [uid,vid,uv] : sourced_edges_topological_sort(g,seed)) edge_descriptor<VId,true,E,void>

for(auto&& [uid,vid,uv,val] : sourced_edges_topological_sort(g,seed,evf)) edge_descriptor<VId,true,E,EV>

Table 5.12 — topological sort View Functions

§ 5.10 35

© ISO/IEC P1709r5

Chapter6 Graph Container Interface
The Graph Container Interface defines the primitive concepts, traits, types and functions used to define and access an adacency
graph, no matter its internal design and organization. Thus, it is designed to reflect all forms of adjacency graphs including a
vector of lists, CSR-based graph and adjacency matrix, whether they are in the standard or external to the standard.

All algorithms in this proposal require that vertices are stored in random access containers and that vertex_id_t<G> is
integral, and it is assumed that all future algorithm proposals will also have the same requirements.

The Graph Container Interface is designed to support a wider scope of graph containers than required by the views and al-
gorithms in this proposal. This enables for future growth of the graph data model (e.g. incoming edges on a vertex), or as a
framework for graph implementations outside of the standard. For instance, existing implementations may have requirements
that cause them to define features with looser constraints, such as sparse vertex ids, non-integral vertex ids, or storing vertices
in associative bi-directional containers (e.g. std::map or std::unordered map). Such features require specialized implementa-
tions for views and algorithms. The performance for such algorithms will be sub-optimal, but is preferrable to run them on the
existing container rather than loading the graph into a high-performance graph container and then running the algorithm on it,
where the loading time can far outweigh the time to run the sub-optimal algorithm. To achieve this, care has been taken to make
sure that the use of concepts chosen is appropriate for algorithm, view and container.

6.1 Naming Conventions

Table 6.1 shows the naming conventions used throughout this document.

6.2 Concepts

Table 6.2 summarizes the concepts in the Graph Container Interface, allowing views and algorithms to verify a graph imple-
mentation has the expected requirements for an adjacency_list or sourced_adjacency_list .

Sourced edges have a source id on them in addition to a target id. A sourced_adjacency_list has sourced edges.

Indexed adjacency lists reflect a common use case where vertices are kept in a random access container and have an integral id.

6.3 Traits

Table 6.3 summarizes the type traits in the Graph Container Interface, allowing views and algorithms to query the graph’s
characteristics.

6.4 Types

Table 6.4 summarizes the type aliases in the Graph Container Interface. These are the types used to define the objects in a graph
container, no matter its internal design and organization. Thus, it is designed to be able to reflect all forms of adjacency graphs
including a vector of lists, compressed graph and adjacency matrix.

The type aliases are defined by either a function specialization for the underlying graph container, or a refinement of one of
those types (e.g. an iterator of a range). Table 6.5 describes the functions in more detail.

graph_value(g) , vertex_value(g,u) and edge_value(g,uv) can be optionally implemented, depending on whether
the graph container supports values on the graph, vertex and edge types.

There is no contiguous requirement for vertex_id from one partition to the next, though in practice they will often be assigned
contiguously. Gaps in vertex_id s between partitions should be allowed.

6.5 Classes and Structs

The graph_error exception class is available, inherited from runtime_error . While any function may use it, it is only
anticipated to be used by the load functions at this time. No additional functionality is added beyond that provided by
runtime_error .

§ 6.5 36

© ISO/IEC P1709r5

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only) vertex.
v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex id.
vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be ei-
ther the user-defined value on a vertex, or a value
returned by a function object (e.g. VVF) that is
related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only) vertex.

first,last vi is the target vertex.
VVF vvf Vertex Value Function: vvf(u) → vertex value, or

vvf(uid) → vertex value, depending on require-
ments of the consume algorithm or view.

VProj vproj Vertex descriptor projection function: vproj(x)
→ vertex_descriptor<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u to
v . vw is an edge from vertices v to w .

EId edge_id_t<G> eid,uvid Edge id, a pair of vertex ids.
EV edge_value_t<G> val Edge Value, value or reference. This can be ei-

ther the user-defined value on an edge, or a value
returned by a function object (e.g. EVF) that is
related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is an

iterator for an edge from vertices u to v . vwi is
an iterator for an edge from vertices v to w .

EVF evf Edge Value Function: evf(uv) → edge value, or
evf(eid) → edge value, depending on the require-
ments of the consuming algorithm or view.

EProj eproj Edge descriptor projection function: eproj(x)

→ edge_descriptor<VId,Sourced,EV> .
PER partition_edge_range_t<G> Partition Edge Range for edges of a partition ver-

tex.

Table 6.1 — Naming Conventions for Types and Variables

6.6 Functions

Table 6.5 summarizes the functions in the Graph Container Interface. These are the primitive functions used to access an
adacency graph, no matter its internal design and organization. Thus, it is designed to be able to reflect all forms of adjacency
graphs including a vector of lists, CSR-based graph and adjacency matrix.

Functions that have n/a for their Default Implementation must be defined by the author of a Graph Container implementation.

Value functions (graph_value(g) , vertex_value(g,u) and edge_value(g,uv)) can be optionally implemented, de-
pending on whether the graph container supports values on the graph, vertex and edge types. They return a single value and can

§ 6.6 37

© ISO/IEC P1709r5

Concept Definition
vertex_range<G> vertices(g) returns a sized, forward range; vertex_id(g,ui) exists
targeted_edge<G> target_id(g,uv) and target(g,uv) exist
adjacency_list<G> Extends vertex_range<G> by adding edges(g,u) and edges(g,uid) that

returns a forward range
sourced_edge<G> source_id(g,uv) and source(g,uv) exist
sourced_adjacency_list<G> adjacency_list<G> and sourced_edge<G, edge_t<G>> and

edge_id(g,uv) exists
index_vertex_range<G> Extends vertex_range<G> by requiring vertices(g) return a

random access range and vertex_id(g) return an integer
index_adjacency_list<G> Extends adjacency_list<G> by requiring vertices(g) return a

random access range and vertex_id(g) return an integer

Table 6.2 — Graph Container Interface Concepts

Trait Type Comment
has_degree<G> concept Is the degree(g,u) function available?
has_find_vertex<G> concept Are the find_vertex(g,_) functions

available?
has_find_vertex_edge<G> concept Are the find_vertex_edge(g,_) functions

available?
has_contains_edge<G> concept Is the contains_edge(g,uid,vid) function

available?
define_unordered_edge<G,E> : false_type struct Specialize for edge implementation to derive

from true_type for unordered edges
is_unordered_edge<G,E> struct conjunction<define_unordered_edge<E

>, is_sourced_edge<G, E>>

is_unordered_edge_v<G,E> type alias
unordered_edge<G,E> concept
is_ordered_edge<G,E> struct negation<is_unordered_edge<G,E>>

is_ordered_edge_v<G,E> type alias
ordered_edge<G,E> concept
define_adjacency_matrix<G> : false_type struct Specialize for graph implementation to derive

from true_type for edges stored as a square
2-dimensional array

is_adjacency_matrix<G> struct
is_adjacency_matrix_v<G> type alias
adjacency_matrix<G> concept

Table 6.3 — Graph Container Interface Type Traits

be scaler, struct, class, union, or tuple. These are abstract types used by the GVF, VVF and EVF function objects to retrieve
values used by algorithms. As such it’s valid to return the ”enclosing” owning class (graph, vertex or edge), or some other
embedded value in those objects.

vertex_id_t<G> is defined by the type returned by vertex_id(g) and it defaults to the difference type of the underlying
container used for vertices (e.g int64 t for 64-bit systems). This is sufficient for all situations. However, there are often space
and performance advantages if a smaller type is used, such as int32 t or even int16 t. It is recommended to consider overriding
this function for optimal results, assuring that it is also large enough for the number of possible vertices and edges in the
application. It will also need to be overridden if the implementation doesn’t expose the vertices as a range.

find_vertex(g,uid) is constant complexity because all algorithms in this proposal require that vertex_range_t<G> is
a random access range.

If the concept requirements for the default implementation aren’t met by the graph container the function will need to be
overridden.

Edgelists are assumed to be either be an edgelist view of an adjacency graph, or a standard range with source id and target id

§ 6.6 38

© ISO/IEC P1709r5

Type Alias Definition Comment
graph_reference_t<G> add_lvalue_reference<G>

graph_value_t<G> decltype(graph_value(g)) optional
vertex_range_t<G> decltype(vertices(g))

vertex_iterator_t<G> iterator_t<vertex_range_t<G>>

vertex_t<G> range_value_t<vertex_range_t<G>>

vertex_reference_t<G> range_reference_t<vertex_range_t<G>>

vertex_id_t<G> decltype(vertex_id(g))

vertex_value_t<G> decltype(vertex_value(g)) optional
vertex_edge_range_t<G> decltype(edges(g,u))

vertex_edge_iterator_t<G> iterator_t<vertex_edge_range_t<G>>

edge_t<G> range_value_t<vertex_edge_range_t<G>>

edge_reference_t<G> range_reference_t<vertex_edge_range_t<G>>

edge_value_t<G> decltype(edge_value(g)) optional
The following is only available when the optional source_id(g,uv) is defined for the edge

edge_id_t<G> edge_descriptor<vertex_id_t<G>,true,void,void>

partition_id_t<G> decltype(partition_id(g,u)) optional
partition_vertex_range_t<G> vertices(g,pid) optional
partition_edge_range_t<G> edges(g,u,pid) optional

Table 6.4 — Graph Container Interface Type Aliases

values. There is no need for additional functions when a range is used.

6.7 Unipartite, Bipartite and Multipartite Graph Representation

partition_count(g) returns the number of partitions, or partiteness, of the graph. It has a range of 1 to n, where 1 identifies
a unipartite graph, 2 is a bipartite graph, and a value of 2 or more can be considered a multipartite graph.

If a graph data structure doesn’t support partitions then it is unipartite with one partition and partite functions will reflect that.
For instance, partition_count(g) returns a value of 1, and vertices(g,0) (vertices in the first partition) will return a
range that includes all vertices in the graph.

A partition identifies a type of a vertex, where the vertex value types are assumed to be uniform in each partition. This creates a
dilemma because the existing vertex_value(g,u) returns a single type based template parameter for the vertex value type.
Supporting multiple types can be addressed in different ways using C++ features. The key to remember is that the actual value
used by algorithms is done by calling a function object that retrieves the value to be used. That function is specific to the graph
data structure, using the partition to determine how to get the appropriate value.

— std::variant : The lambda returns the appropriate variant value based on the partition.

— Base class pointer: The lambda can call a member function to return the value based on the partition.

— void* : The lambda can cast the pointer to a concrete type based on the partition, and then return the appropriate value.

edges(g,uid,pid) and edges(g,ui,pid) filter the edges where the target is in the partition pid passed. This isn’t
needed for bipartite graphs.

6.8 Loading Graph Data

The load functions are used to load vertex and edge data into a graph. They may throw a graph_error exception.

All graph data structures need to implement load_graph , load_vertices and load_edges . Whether load_vertices
or load_edges can be called multiple times, or after load_graph is called, is dependent on the underlying graph data
structure. load_partition only needs to be implemented if a graph supports partitions.

Projections are used to convert values in the input range to the expected copyable type. In the following load_vertices pro-
totype, vproj(ranges::range_value_t<VRng>&) → vertex_descriptor<vertex_id_t<G>, vertex_value_t<G

>> . If there is no vertex value stored in the graph then vertex_value_t<G> will be void and the resulting vertex_descriptor

§ 6.8 39

© ISO/IEC P1709r5

Function Return Type Complexity Default Implementation
graph_value(g) graph_value_t<G> constant n/a, optional
partition_count(g) vertex_id_t<G> constant 1
vertices(g) vertex_range_t<G> constant g if random_access_range<G> , n/a otherwise
num_vertices(g) integral constant size(vertices(g))

find_vertex(g,uid) vertex_iterator_t<G> constant begin(vertices(g))+ uid

if random_access_range<vertex_range_t<
G>>

vertex_id(g,ui) vetex_id_t<G> constant (size_t)(ui - begin(vertices(g)))

Override to define a different vertex_id_t<G>
type (e.g. int32 t).

vertex_value(g,u) vertex_value_t<G> constant n/a, optional
vertex_value(g,uid) vertex_value_t<G> constant vertex_value(g,*find_vertex(g,uid)) ,

optional
degree(g,u) integral constant size(edges(g,u)) if

sized_range<vertex_edge_range_t<G>>

degree(g,uid) integral constant size(edges(g,uid)) if
sized_range<vertex_edge_range_t<G>>

partition_id(g,u) partition_id_t<G> constant 0
partition_id(g,uid) partition_id_t<G> constant partition_id(g,*find_vertex(g,uid))

vertices(g,pid) partition_vertex_range_t<G> constant vertices(g)

num_vertices(g,pid) integral constant size(vertices(g))

edges(g,u) vertex_edge_range_t<G> constant u if forward range<vertex_t<G>> , n/a
otherwise

edges(g,uid) vertex_edge_range_t<G> constant edges(g,*find_vertex(g,uid))

target_id(g,uv) vertex_id_t<G> constant n/a
target(g,uv) vertex_t<G> constant *(begin(vertices(g))+ target_id(g,

uv)) if
random_access_range<vertex_range_t<G

>> && integral<target_id(g,uv)>

edge_value(g,uv) edge_value_t<G> constant uv if forward_range<vertex_t<G>> , n/a
otherwise, optional

find_vertex_edge(g,u,vid) vertex_edge_t<G> linear find(edges(g,u), [](uv)target_id(g,

uv)==vid;})

find_vertex_edge(g,uid,vid) vertex_edge_t<G> linear find_vertex_edge(g,*find_vertex(g,

uid),vid)

contains_edge(g,uid,vid) bool constant uid < size(vertices(g))&& vid < size

(vertices(g)) if
is_adjacency_matrix_v<G> .

linear find_vertex_edge(g,uid)!= end(edges(

g,uid)) otherwise.
edges(g,u,pid) partition_edge_range_t<G> linear edges(g,u)

edges(g,uid,pid) partition_edge_range_t<G> linear edges(g,uid)

The following are only available when the optional source_id(g,uv) is defined for the edge
source_id(g,uv) vertex_id_t<G> constant n/a, optional
source(g,uv) vertex_t<G> constant *(begin(vertices(g))+ source_id(g,uv

)) if
random_access_range<vertex_range_t<G

>> && integral<target_id(g,uv)>

edge_id(g,uv) edge_id_t<G> constant edge_descriptor<vertex_id_t<G>,true,

void,void>{source_id(g,uv),target_id

(g,uv)}

Table 6.5 — Graph Container Interface Functions

will have a single id member. If vproj(ranges::range_value_t<VRng>&) is the same as vertex_descriptor<

vertex_id_t<G>, vertex_value_t<G>> then VProj = identity can be used.

template <adjacency_list G, ranges::forward_range VRng, class VProj = identity>
requires copyable_vertex<invoke_result<VProj, ranges::range_value_t<VRng>>,

vertex_id_t<G>, vertex_value_t<G>>
constexpr void load_vertices(G&, const VRng& vrng, VProj vproj);

The same pattern is applied using ERng and EProj for edges.

§ 6.8 40

© ISO/IEC P1709r5

For graphs with vertex values, load_vertices should be called before load_edges .

Whether load_vertices or load_edges can be called multiple times is graph-dependent.

For graphs with partititions, load_partition must be called to load vertices for each partition pid . pid values must
be contiguous and their vertices should be loaded contiguously. empty(vrng) may be empty if there are no vertices in the
partition.

Function Return Type Complexity Default Implementation
load_graph(g, erng, vrng, eproj=identity(), vproj=identity()) void V + E n/a
load_vertices(g, vrng, vproj=identity()) void V n/a
load_partition(g, pid, vrng, vproj=identity()) void V(p) load_vertices is called if partitions are not

supported; there will be a single partition.
load_edges(g, erng, eproj=identity(), vertex_count=0) void E n/a

Table 6.6 — Graph Load Functions

6.9 Using Existing Graph Data Structures

Reasonable defaults have been defined for the GCI functions to minimize the amount of work needed to adapt an existing graph
data structure to be used by the views and algorithms.

There are two cases supported. The first is for the use of standard containers to define the graph and the other is for a broader
set of more complicated implementations.

6.9.1 Using Standard Containers for the Graph Data Structure

For example this we’ll use G = vector<forward_list<tuple<int,double>>> to define the graph, where g is an in-
stance of G . tuple<int,double> defines the target id and weight property respectively. We can write loops to go through
the vertices, and edges within each vertex, as follows.

using G = vector<forward_list<tuple<int,double>>>;
auto target_id(const G& g, edge_t<const G>& uv) { return get<0>(uv); }
auto weight = [&g](edge_t& uv) { return get<1>(uv); }

G g;
load_graph(g, ...); // load some data

// Using GCI functions
for(auto&& [uid, u] : vertices(g)) {
for(auto&& [vid, uv]: edges(g,u)) {
auto w = weight(uv);
// do something...

}
}

Note that target_id(g,uv) was the only CPO function overriden; all other functions were automatically defined based on
the rules shown in Table 6.7.

Function or Value Concrete Type
vertices(g) vector<forward_list<tuple<int,double>>> (when random_access_range<G>)
u forward_list<tuple<int,double>>

edges(g,u) forward_list<tuple<int,double>> (when random_access_range<vertex_range_t<G>>)
uv tuple<int,double>

edge_value(g,uv) tuple<int,double> (when random_access_range<vertex_range_t<G>>)

Table 6.7 — Types When Using Standard Containers

6.9.2 Using Other Graph Data Structures

For other graph data structures more function overrides are required. The following table identifies the common function
overrides anticipated for most cases, keeping in mind that all functions in Table 6.5 can be overridden.

§ 6.9.2 41

© ISO/IEC P1709r5

Function Comment
vertices(g)

edges(g,u)

target_id(g,uv)

edge_value(g,uv) If edges have value(s) in the graph
vertex_value(g,u) If vertices have value(s) in the graph
graph_value(g) If the graph has value(s)

When edges have the optional source id on an edge
source_id(g,uv)

When the graph supports multiple partitions
partition_count(g)

partition_id(g,u)

vertices(g,u,pid)

Table 6.8 — Common CPO Function Overrides

§ 6.9.2 42

© ISO/IEC P1709r5

Chapter7 Graph Container Implementation
7.1 compressed graph

The compressed graph is a high-performance graph container that uses Compressed Sparse Row format to store its vertices,
edges and associated values. Once constructed, vertices and edges cannot be added or deleted but values on vertices and edges
can be modified.

The following listing shows the prototype for the compressed_graph . Only the members shown for compressed_graph
are public. No other member functions or types are exposed as part of the standard. All other types are only accessible through
the types and functions in the Graph Container Interface. Multiple partitions (multi-partite) can be defined by passing the
number of partitions in a constructor.

When a value type template argument (EV, VV, GV) is void then no extra overhead is incurred for it. The selection of the VId
template argument impacts the inter storage requirements. If you have a small graph where the number of vertices is less than
256, and the number of edges is less than 256, then a uint8_t would be sufficient.

Implements load_graph ? Yes Can append vertices? No vertex id assignment: Contiguous
Implements load_vertices ? Yes Can append vertices? No Vertices range: Contiguous
Implements load_edges ? Yes Edge range: Contiguous
Implements load_partition ? Yes

Vertices and edges cannot be appended to an existing partition, but they can be added to a new partition.

template <class EV = void, // Edge Value type
class VV = void, // Vertex Value type
class GV = void, // Graph Value type
integral VId = uint32_t, // vertex id type
integral EIndex = uint32_t, // edge index type
class Alloc = allocator<uint32_t>> // for internal containers

class compressed_graph {
public:

compressed_graph();
compressed_graph(size_t num_partitions); // multi-partite
compressed_graph(const compressed_graph&);
compressed_graph(compressed_graph&&);
{tilde}compressed_graph();

compressed_graph& operator=(const compressed_graph&);
compressed_graph& operator=(compressed_graph&&);

}

§ 7.1 43

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_%28CSR%2C_CRS_or_Yale_format%29

© ISO/IEC P1709r5

Acknowledgements
Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the Standards Coun-
cil of Canada. Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented
Global Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department of Energy’s
Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute under Contract DE-AC06-
76RL01830. The authors wish to further thank the members of SG19 for their contributions.

§ 7.1 44

© ISO/IEC P1709r5

Bibliography
[1] Dominiak, Evtushenko, Baker, Teodorescu, Howes, K. Shoop, M. Garland, E. Niebler, and B. Lel-

bach, “P2300r5 std::execution.” "https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
p2300r5.html".

[2] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski, “Nwgraph:
A library of generic graph algorithms and data structures in c++20.” "https://drops.dagstuhl.de/opus/
volltexte/2022/16259/".

[3] A. Azad, M. M. Aznaveh, S. Beamer, M. P. Blanco, J. Chen, L. D’Alessandro, R. Dathathri, T. Davis, K. Deweese, J. Firoz,
H. A. Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine, T. Manlaibaatar, T. G. Mattson, S. McMillan,
R. Peri, K. Pingali, U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation of graph analytics frameworks using the
gap benchmark suite,” in 2020 IEEE International Symposium on Workload Characterization (IISWC), pp. 216–227, 2020.

[4] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski, “Nwgraph library
code.” "https://github.com/pnnl/NWGraph".

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The MIT Press, 4 ed., 2022.

[6] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley
Professional, Dec. 2001.

§ 7.1 45

"https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html"
"https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://github.com/pnnl/NWGraph"

	Contents
	Overview
	Goals and Priorities
	Examples
	What this proposal is not
	Impact on the Standard
	Interaction wtih Other Papers
	Implementation Experience
	Usage Experience
	Deployment Experience
	Performance Considerations
	Prior Art
	Alternatives
	Feature Test Macro
	Freestanding
	Namespaces

	Introduction
	Motivation
	Example: Six Degrees of Kevin Bacon
	Graph Background
	Bipartite Graphs
	Partitioned Graphs
	From Data to Graph

	Algorithms
	Introduction
	Algorithm Concepts
	Shortest Paths
	Clustering
	Communities
	Components
	Directed Acyclic Graphs
	Maximal Independent Set
	Link Analysis
	Minimum Spanning Tree
	Other Algorithms

	Operators
	Degree
	Sort
	Relabel
	Transpose
	Join

	Views
	Return Types (Descriptors)
	Copyable Descriptors
	Common Types and Functions for ``Search''
	vertexlist Views
	incidence Views
	neighbors Views
	edgelist Views
	Depth First Search Views
	Breadth First Search Views
	Topological Sort Views

	Graph Container Interface
	Naming Conventions
	Concepts
	Traits
	Types
	Classes and Structs
	Functions
	Unipartite, Bipartite and Multipartite Graph Representation
	Loading Graph Data
	Using Existing Graph Data Structures

	Graph Container Implementation
	compressed_graph
	References

	Bibliography

