
A view of 0 or 1 elements: views::maybe

Steve Downey (sdowney@gmail.com)

Document #: P1255R11
Date: 2024-01-12
Project: Programming Language C++
Audience: SG9, LEWG

Abstract

This paper proposes two range adaptors which produce a view with cardinality 0 or 1
— views::maybe a range adaptor that produces an owning view holding 0 or 1 elements of an object

— views::nullable which adapts nullable types—such as std::optional or pointer to object
types—into a range of the underlying type.

Contents

1 Before / After Table 2

2 Motivation 2

3 Lazy monadic pythagorean triples 4

4 Borrowed Range 5

5 Wait, There’s More 5

6 Design 8

7 Freestanding 8

8 Implementation 8

9 Proposal 8

10 Wording 8

11 Impact on the standard 18

References 20

Changes Since Last Version

— Changes since R10,
— Complete History in history section
— exposid formatting and ampersand escaping TeX formatting nits

Contents 1

mailto:sdowney@gmail.com

1 Before / After Table

auto opt = possible_value();
if (opt) {

// a few dozen lines ...
use(*opt); // is *opt Safe ?

}

for (auto&& opt :
views::nullable(possible_value())) {
// a few dozen lines ...
use(opt); // opt is Safe

}

std::optional o{7};
if (o) {

*o = 9;
std::cout << "o=" << *o << " prints 9\n";

}
std::cout << "o=" << *o << " prints 9\n";

std::optional o{7};
for (auto&& i : views::nullable(std::ref(o))) {

i = 9;
std::cout << "i=" << i << " prints 9\n";

}
std::cout << "o=" << *o << " prints 9\n";

std::vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1};
auto test = [](int i) -> std::optional<int> {

switch (i) {
case 1:
case 3:
case 7:
case 9:

return i;
default:

return {};
}

};

auto&& r = v | ranges::views::transform(test) |
ranges::views::filter(

[](auto x) { return bool(x); }) |
ranges::views::transform(

[](auto x) { return *x; }) |
ranges::views::transform([](int i) {

std::cout << i;
return i;

});
for (auto&& i : r) {
};

std::vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1};
auto test = [](int i) -> std::optional<int> {

switch (i) {
case 1:
case 3:
case 7:
case 9:

return i;
default:

return {};
}

};

auto&& r =
v | ranges::views::transform(test) |
ranges::views::transform(views::nullable) |
ranges::views::join |
ranges::views::transform([](int i) {

std::cout << i;
return i;

});
for (auto&& i : r) {
};

std::vector<int> v{2, 3, 4, 5, 6, 7, 8, 9, 1};

auto test = [](int i) -> maybe_view<int> {
switch (i) {
case 1:
case 3:
case 7:
case 9:

return maybe_view{i};
default:

return maybe_view<int>{};
}

};

auto&& r = v | ranges::views::transform(test) |
ranges::views::join |
ranges::views::transform([](int i) {

std::cout << i;
return i;

});
for (auto&& i : r) {
};

2 Motivation

In writing range transformation it is useful to be able to lift a value into a view that is either empty or contains
the value. For types that model nullable_object, constructing an empty view for disengaged values
and providing a view to the underlying value is useful as well. The adapter views::single fills a similar
purpose for non-nullable values, lifting a single value into a view, and views::empty provides a range of
no values of a given type. The type views::maybe can be used to unify single and empty into a single
type for further processing. This is, in particular, useful when translating list comprehensions.

2

std::vector<std::optional<int>> v{

std::optional<int>{42},

std::optional<int>{},

std::optional<int>{6 * 9}};

auto r = views::join(

views::transform(v, views::nullable));

for (auto i : r) {

std::cout << i; // prints 42 and 54

}

The nullable protocol that views::nullable adapts is inherently unsafe because it models unsafe
pointer semantics. If a nullable type is disengaged, using the derefence operator operator*() is is
undefined behavior. The allowed operations of views::nullable are all, in themselves, safe, and using
the adapter can lead to safer code.
An example is using views::nullable in a range based for loops, allowing the contained nullable value
to not be dereferenced within the body. This is of small value in small examples in contrast to testing the
nullable in an if statement, but with longer bodies the dereference is often far away from the test. This can
be a particular issue in doing code reviews where the test, if it exists, is not visible. Often the first line in the
body of the if is naming the dereferenced nullable, and lifting the dereference into the for loop eliminates
some boilerplate code, the same way that range based for loops do.
{

auto opt = possible_value();

if (opt) {

// a few dozen lines ...

use(*opt); // is *opt Safe ?

}

}

for (auto&& opt :

views::nullable(possible_value())) {

// a few dozen lines ...

use(opt); // opt is Safe

}

The view can be on a std::reference_wrapper, allowing the underlying nullable to be modified:
std::optional o{7};

for (auto&& i : views::nullable(std::ref(o))) {

i = 9;

std::cout << "i=" << i << " prints 9\n";

}

std::cout << "o=" << *o << " prints 9\n";

Of course, if the nullable is empty, there is nothing in the view to act on.

auto oe = std::optional<int>{};

for (int i : views::nullable(std::ref(oe)))

std::cout << "i=" << i

<< '\n'; // does not print

Converting an optional type into a view can make APIs that return optional types, such as lookup operations,
easier to work with in range pipelines.

3

std::unordered_set<int> set{1, 3, 7, 9};

auto flt = [=](int i) -> std::optional<int> {

if (set.contains(i))

return i;

else

return {};

};

for (auto i : ranges::iota_view{1, 10} |

ranges::views::transform(flt)) {

for (auto j : views::nullable(i)) {

for (auto k : ranges::iota_view(0, j))

std::cout << '\a';

std::cout << '\n';

}

}

3 Lazy monadic pythagorean triples

Eric Niebler’s Pythagorean triple example, using current C++ and proposed views::maybe.

// "and_then" creates a new view by applying a transformation

// to each element in an input range, and flattening the resulting

// range of ranges. A.k.a. monadic bind

inline constexpr auto and_then = [](auto&& r, auto fun) {

return decltype(r)(r)

| std::ranges::views::transform(std::move(fun))

| std::ranges::views::join;

};

// "yield_if" takes a bool and a value and returns

// a view of zero or one elements.

inline constexpr auto yield_if = [](bool b, auto x) {

return b ? maybe_view{std::move(x)} : maybe_view<decltype(x)>{};

};

4

void print_triples() {

using std::ranges::views::iota;

auto triples = and_then(iota(1), [](int z) {

return and_then(iota(1, z + 1), [=](int x) {

return and_then(iota(x, z + 1), [=](int y) {

return yield_if(x * x + y * y == z * z,

std::make_tuple(x, y, z));

});

});

});

// Display the first 10 triples

for (auto triple : triples | std::ranges::views::take(10)) {

std::cout << '(' << std::get<0>(triple) << ',' << std::get<1>(triple)

<< ',' << std::get<2>(triple) << ')' << '\n';

}

}

The implementation of yield_if is essentially the type unification of single and empty into maybe,
returning an empty on false, and a range containing one value on true. I plan to propose this function for
standardization in a following paper.
This code is essentially a mechanical translation of a list, or monadic, comprehension from Python or
Haskell. In Haskell there is a pure desugaring of comprehension to binds and �yield_if for comprehension
guard clauses. This is an open research area for C++, and again, not part of this proposal.

4 Borrowed Range

A borrowed_range is one whose iterators cannot be invalidated by ending the lifetime of the range.
The reference specializations of both nullable_view and maybe_view are borrowed. Iterators refer to
the underlying object directly.
No other maybe_view is necessarily a borrowed range, and is not tagged as such.
All instantiations of nullable_view over a pointer to object are borrowed ranges. The iterator refers to
the address of the object pointed to without involving any addresss in the view.
A nullable_view<shared_ptr>, however, is not a borrowed range, as it participates in ownership of
the shared_ptr and might invalidate the iterators if upon the end of its lifetime it is the last owner.
An example of code that is enabled by borrowed ranges, if unlikely code:

num = 42;

int k = *std::ranges::find(views::nullable(&num), num);

Providing the facility is not a significant cost, and conveys the semantics correctly, even if the simple
examples are not hugely motivating. In particular there is no real implementation impact, other than
providing template variable specializations for enable_borrowed_range.

5 Wait, There’s More

5.1 The Argument for a Vocabulary Type
The discussion around std::static_vector [P0843R4] has solidified for me that std::optional is not
a container, and making it one would be a mistake. There are too many operations that are problematic for
a component that holds at most a fixed number of elements, and existing generic code will not understand
that operations like push_back have commonly occuring failure modes.

5

Ranges are not containers. The operations for a fixed sized range are the same as for any range, as it is
not expected that ranges mutate that way. In practice maybe_view is a useful interface type in addition to
std::optional.
Just as there are use cases for having particular containers being returned from a function, there are use
cases for returning near primitive ranges as explicit types. Explicit types are much easier for compilers to
generate good code, and to further optimize that code. Themore limited interface of maybe_view seems to,
in practice, make intention clearer to the compiler, over std::optional, over adaptation or projection.
Saying what you mean directly is better.
A std::optional type says I will be checking if the value is engaged or disengaged, and possibly taking
alternative action based on that, and that I might use a std::optional<T> in contexts that I would use a
T, or that it might be used as a default parameter. The long list suggests that std::optional<T> is filling
too many roles. A maybe_view, or a nullable_view, says that independent check will not be made, the
value will have operations applied if present, and ignored otherwise. A concrete range type sets tighter
expectations.
Value types, which range types are, should, if they can, provide spaceship and equivalence operators. This
is straight forward to specify, and to implement for both maybe_view or nullable_view.

5.2 The Argument for Monadic Operations
The generic templated type maybe_view is a monad in the category of C++ types in exactly the same way
that std::optional and std::expected are. [P0798R8] The operations stay strictly within the generic
template type. Since it is a type that can be reasonably used on its own, it should, on its own, support all
reasonable uses of the type. This should include the function application patterns of functor and monad, in
exactly the same way they have been applied to std::optional. The member functions are much more
strongly typed than the monad in the range category, staying within the template type.
However, it is not feasible to give nullable_view the same monadic interface as it would require, for
example, construction of a type that dereferences to U to support transform over T -> U, but that is not
in general possible in the C++ type system. The additional level of indirection built in to nullable_view
makes this infeasible. The inconsistency of implementablity supports the direction from SG9 to separate
the templates by name, rather than just by concept.
Most range types should be treated much like lambda expressions, with unnameable types. Even where it is
possible to work out the type, that type may not be stable in the face of concept specialization based on the
rest of the types involved. However, maybe_view and nullable_view are primitive ranges, built out of
non-range types. It is natural to write functions, including lambdas, that return them, and staying within
the type system can improve correctness and diagnostics when the code strays. Providing the monadic
interface for the base and for the reference specialization of nullable_view is entirely straight-forward.
Looking at the test code for the reference implementation, we can see that usage for the non-reference
specialization is very similar:

maybe_view<int> mv{40};

auto r = mv.and_then([](int i) { return maybe_view{i + 2}; });

ASSERT_TRUE(!r.empty());

ASSERT_TRUE(r.size() == 1);

ASSERT_TRUE(r.data() != nullptr);

ASSERT_TRUE(*(r.data()) == 42);

ASSERT_TRUE(!mv.empty());

ASSERT_TRUE(*(mv.data()) == 40);

auto r2 = mv.and_then([](int) { return maybe_view<int>{}; });

ASSERT_TRUE(r2.empty());

ASSERT_TRUE(r2.size() == 0);

ASSERT_TRUE(r2.data() == nullptr);

ASSERT_TRUE(!mv.empty());

A test stanza for the T& case suggests more interesting applications, as transform will be applied to the
underlying referred to value.

6

int forty{40};

maybe_view<int&> mv{forty};

auto r9 = mv.transform([](int& i) {

int k = i;

i = 56;

return k * 2;

});

for (auto r: r9) {

ASSERT_EQ(r, 80);

}

for (auto v: mv) {

ASSERT_EQ(v, 56);

}

ASSERT_EQ(forty, 56);

Introducing a new optionalish type may provide a way out of the std::optional<T&> quagmire. There is
no risk of broken code or changes in SFINAE in template instantiation. The type maybe_view is not useful as
a default parameter or a substitute for its underlying type. It behaves the sameway that std::reference_-
wrapper has for more than a decade. Maybe as a name is common in the area for these sorts of types, it is
not innovative.
In order to affect the underlying referenced type, not only do we need to use maybe_view<int&> explicitly,
the function passed to transformmust take the underlying type by reference. A significant amount of
ceremony is required. Since the general direction has been and continues to be in favor of value oriented
programming, making mutation require a context in a lonely place is appropriate.

5.3 The Argument for Reference Specialization
Having worked with the reference_wrapper support for some time, the ergonomics are somewhat
lacking. In addition, many of the Big Dumb Business Objects that are the result of lookups, or filters, and
are thus good candidates for optionality, are also not good at move operations, having dozens of individual
members that are a mix of primitives, strings, and sub-BDOs, resulting in complex move constructors. In
addition, many old and well tested functions will mutate these objects, rather than making copies, using a
more object oriented than value oriented style.
For these reasons, supporting the common case of reference semantics ergonomically is important. Fold-
ing the implementation of reference_wrapper into a template specialization for T& provides good er-
gonomics. Neither maybe_view or nullable_view support assignment from the underlying type, so
the only question for semantics is assignment from another instance of the same type. The semantics
of std::reference_wrapper are well established and correct, where the implementation pointer is
reassigned, putting the assignee into the same state as the assigned. The same semantics are adopted for
maybe_view or nullable_view.
The range adaptors, views::maybe and views::nullable, only produce the non-reference specializa-
tion. As range code is strongly rooted in value semantics, providing reference semantics without ceremony
seems potentially dangerous. If the pattern becomes common, providing an instance of the function object
with a distinct name would be non-breaking for anyone.
The owning view maybe_view is not a container, and does not try to support the full container interface.
As a range with a fixed upper size, emplace and push back operations are problematic. Not supplying them
is not problematic.
This means that all of the operations on maybe_view and nullable_view are directly safe. To construct
a non-safe operation is possible, but looks unsafe in code. For example:
maybe_view<int> o1{42};

assert(*(o1.data()) == 42));

Dereferencing the result of data() without a check for null is of course unsafe, but in a way that should be
visible to both programmers and tools.

7

6 Design

For maybe_view, the design is a hybrid of empty_view and single_view, with the straightforward
extension for reference type, holding a pointer to an existing object. For nullable_view we have the
same semantics of zero or one objects, only based on if the underlying nullable object does or does not have
a value.

7 Freestanding

Both maybe_view and nullable_view naturally meet the requirements for freestanding. The expos-
itory use of optional does not interfere with the ability of maybe_view to meet the requirements of
freestanding.

8 Implementation

A publicly available implementation at https://github.com/steve-downey/view_maybe. There are
no particular implementation difficulties or tricks. The declarations are essentially what is quoted in the
Wording section and the implementations are described as effects.
The implementation, for exposition purposes, uses std::optional to hold the value for maybe_view.
Implementations, to reduce the overhead of debugging implementations should probably hoist the storage
and flag in a typical optional into maybe_view, in which case the flag should be checked first on reads with
acquire/release atomic semantics, and last on writes, so as to provide a synchronization points. Although
this note may be in the close neighborhood of teaching my grandmother to suck eggs.

9 Proposal

Add two range adaptor objects
— views::maybe a range adaptor that produces an owning view holding 0 or 1 elements of an object.
— views::nullable a range adaptor over a nullable_object producing a view into the nullable

object.
A nullable_object object is one that is both contextually convertible to bool and for which the type
produced by dereferencing is an equality preserving object. Non void pointers, std::optional, and
the proposed std::expected [P0323R9] types all model nullable_object. Function pointers do not,
as functions are not objects. Iterators do not generally model nullable, as they are not required to be
contextually convertible to bool.
The generic typesstd::maybe_view andstd::nullable_view, which areproducedbyviews::maybe
and views::nullable, respectively, are further specialized over reference types, such that operations on
the iterators of the range modify the object the range is over, if and only if the object exists.

10 Wording

Modify 26.2 Header <ranges> synopsis

�? .1 Header <ranges> synopsis [ranges.syn]
// �? . �? .1, maybe view
template<move_constructible T>

requires see below;

class maybe_view; // freestanding

template<class T>

constexpr bool

enable_borrowed_range<maybe_view<T*>> = true; // freestanding

8

https://github.com/steve-downey/view_maybe

template<class T>

constexpr bool

enable_borrowed_range<maybe_view<reference_wrapper<T>> = true; // freestanding

template<class T>

constexpr bool

enable_borrowed_range<maybe_view<T&>> = true; // freestanding

namespace views {

inline constexpr unspecified maybe = unspecified; // freestanding
}

// �? . �? .2, nullable view
template<move_constructible T>

requires see below;

class nullable_view; // freestanding

template<class T>

constexpr bool

enable_borrowed_range<nullable_view<T*>> = true; // freestanding

template<class T>

constexpr bool

enable_borrowed_range<nullable_view<reference_wrapper<T>> = true; // freestand-
ing

template<class T>

constexpr bool

enable_borrowed_range<nullable_view<T&>> = true; // freestanding

namespace views {

inline constexpr unspecified nullable = unspecified; // freestanding
}

�? . �? .1 Maybe View [range.maybe]
�? . �? .1.1 Overview [range.maybe.overview]

1 maybe_view produces a view that contains 0 or 1 objects.
2 The name views::maybe denotes a customization point object (??). Given a subexpression E, the expres-

sion views::maybe(E) is expression-equivalent to maybe_view<decay_t<decltype((E))>>(E).
[Example 1:

int i{4};

for (int i : views::maybe(4))

cout << i; // prints 4

maybe_view<int> m2{};

for (int k : m2)

cout << k; // Does not execute

— end example]

�? . �? .1.2 Class template maybe_view [range.maybe.view]

template <typename Value>

class maybe_view;

9

template <typename Value>

class maybe_view : public ranges::view_interface<maybe_view<Value>> {

private:

std::optional<Value> value_; // exposition only

public:

constexpr maybe_view() = default;

constexpr explicit maybe_view(const Value& value) requires copy_constructible<T>;

constexpr explicit maybe_view(Value&& value);

template <class... Args>

requires constructible_from<T, Args...>

constexpr maybe_view(std::in_place_t, Args&&... args);

constexpr Value* begin() noexcept;

constexpr const Value* begin() const noexcept;

constexpr Value* end() noexcept;

constexpr const Value* end() const noexcept;

constexpr size_t size() const noexcept;

constexpr Value* data() noexcept;

constexpr const Value* data() const noexcept;

friend constexpr auto operator<=>(const maybe_view& lhs,

const maybe_view& rhs) {

return lhs.value_ <=> rhs.value_;

}

friend constexpr bool operator==(const maybe_view& lhs,

const maybe_view& rhs) {

return lhs.value_ == rhs.value_;

}

template <typename F>

constexpr auto and_then(F&& f) &;

template <typename F>

constexpr auto and_then(F&& f) &&;

template <typename F>

constexpr auto and_then(F&& f) const&;

template <typename F>

constexpr auto and_then(F&& f) const&&;

template <typename F>

constexpr auto transform(F&& f) &;

template <typename F>

constexpr auto transform(F&& f) &&;

template <typename F>

constexpr auto transform(F&& f) const&;

template <typename F>

constexpr auto transform(F&& f) const&&;

template <typename F>

constexpr auto or_else(F&& f) &&;

template <typename F>

constexpr auto or_else(F&& f) const&;

};

constexpr explicit maybe_view(Value const& maybe);

1 Effects: Initializes value_ with maybe.

10

constexpr explicit maybe_view(Value&& maybe);

2 Effects: Initializes value_ with std::move(maybe).

template<class... Args>

constexpr maybe_view(in_place_t, Args&&... args);

3 Effects: Initializes value_ as if by value_{in_place, std::forward<Args>(args)...}.

constexpr T* begin() noexcept;

constexpr const T* begin() const noexcept;

4 Effects: Equivalent to: return data();

constexpr T* end() noexcept;

constexpr const T* end() const noexcept;

5 Returns: data() + size();.

static constexpr size_t size() noexcept;

6 Effects: Equivalent to:
return bool(value_);

constexpr T* data() noexcept;

constexpr const T* data() const noexcept;

7 Returns: std::addressof(*@value_@);

constexpr auto operator<=>(const maybe_view& lhs, const maybe_view& rhs)

8 Returns: lhs.value_ <=> rhs.value_;

constexpr auto operator==(const maybe_view& lhs, const maybe_view& rhs)

9 Returns: lhs.value_ == rhs.value_;

template <typename F>

constexpr auto and_then(F&& f) &;

10 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&>;

if (value_) {

return std::invoke(std::forward<F>(f), *value_);

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto and_then(F&& f) &&;

11 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&&>;

if (value_) {

return std::invoke(std::forward<F>(f), std::move(*value_));

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto and_then(F&& f) const&;

12 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&>;

if (value_) {

return std::invoke(std::forward<F>(f), *value_);

11

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto and_then(F&& f) const&&;

13 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&&>;

if (value_) {

return std::invoke(std::forward<F>(f), std::move(*value_));

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto transform(F&& f) &;

14 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f), *value_)}

: maybe_view<U>{};

template <typename F>

constexpr auto transform(F&& f) &&;

15 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f),

std::move(*value_))}

: maybe_view<U>{};

template <typename F>

constexpr auto transform(F&& f) const&;

16 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f), *value_)}

: maybe_view<U>{};

template <typename F>

constexpr auto transform(F&& f) const&&;

17 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f),

std::move(*value_))}

: maybe_view<U>{};

template <typename F>

constexpr auto or_else(F&& f) &&;

18 Effects: Equivalent to:
using U = std::invoke_result_t<F>;

return value_ ? *this : std::forward<F>(f)();

12

template <typename F>

constexpr auto or_else(F&& f) const&;

19 Effects: Equivalent to:
using U = std::invoke_result_t<F>;

return value_ ? std::move(*this) : std::forward<F>(f)();

template <typename Value>

class maybe_view<Value&> : public ranges::view_interface<maybe_view<Value&>> {

private:

Value* value_ ; // exposition only

public:

constexpr maybe_view();

constexpr explicit maybe_view(Value& value);

constexpr explicit maybe_view(Value&& value) = delete;

constexpr Value* begin() noexcept;

constexpr const Value* begin() const noexcept;

constexpr Value* end() noexcept;

constexpr const Value* end() const noexcept;

constexpr size_t size() const noexcept;

constexpr Value* data() noexcept;

constexpr const Value* data() const noexcept;

friend constexpr auto operator<=>(const maybe_view& lhs,

const maybe_view& rhs);

friend constexpr bool operator==(const maybe_view& lhs,

const maybe_view& rhs);

template <typename F>

constexpr auto and_then(F&& f) &;

template <typename F>

constexpr auto and_then(F&& f) &&;

template <typename F>

constexpr auto and_then(F&& f) const&;

template <typename F>

constexpr auto and_then(F&& f) const&&;

template <typename F>

constexpr auto transform(F&& f) &;

template <typename F>

constexpr auto transform(F&& f) &&;

template <typename F>

constexpr auto transform(F&& f) const&;

template <typename F>

constexpr auto transform(F&& f) const&&;

template <typename F>

constexpr maybe_view or_else(F&& f) &&;

template <typename F>

constexpr maybe_view or_else(F&& f) const&;

};

13

constexpr explicit maybe_view();

20 Effects: Initializes value_ with nullptr

constexpr explicit maybe_view(Value maybe);

21 Effects: Initializes value_ with addressof(maybe)

constexpr T* begin() noexcept;

constexpr const T* begin() const noexcept;

22 Effects: Equivalent to: return data();

constexpr T* end() noexcept;

constexpr const T* end() const noexcept;

23 Returns: data() + size();.

static constexpr size_t size() noexcept;

24 Effects: Equivalent to:
return bool(value_);

constexpr T* data() noexcept;

constexpr const T* data() const noexcept;

25 Effects: Equivalent to:
if (!value_)

return nullptr;

return std::addressof(*value_);

friend constexpr auto operator<=>(const maybe_view& lhs,

const maybe_view& rhs);

26 Returns:
(bool(lhs.value_) && bool(rhs.value_))

? (*lhs.value_ <=> *rhs.value_)

: (bool(lhs.value_) <=> bool(rhs.value_));

friend constexpr auto operator==(const maybe_view& lhs,

const maybe_view& rhs);

27 Returns:
(bool(lhs.value_) && bool(value_))

? (*lhs.value_ == *rhs.value_)

: (bool(lhs.value_) == bool(rhs.value_));

template <typename F>

constexpr auto and_then(F&& f) &;

28 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&>;

if (value_) {

return std::invoke(std::forward<F>(f), *value_);

} else {

return std::remove_cvref_t<U>();

}

14

template <typename F>

constexpr auto and_then(F&& f) &&;

29 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&&>;

if (value_) {

return std::invoke(std::forward<F>(f), std::move(*value_));

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto and_then(F&& f) const&;

30 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&>;

if (value_) {

return std::invoke(std::forward<F>(f), *value_);

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto and_then(F&& f) const&&;

31 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&&>;

if (value_) {

return std::invoke(std::forward<F>(f), std::move(*value_));

} else {

return std::remove_cvref_t<U>();

}

template <typename F>

constexpr auto transform(F&& f) &;

32 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f), *value_)}

: maybe_view<U>{};

template <typename F>

constexpr auto transform(F&& f) &&;

33 Effects: Equivalent to:
using U = std::invoke_result_t<F, Value&&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f),

std::move(*value_))}

: maybe_view<U>{};

template <typename F>

constexpr auto transform(F&& f) const&;

34 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f), *value_)}

: maybe_view<U>{};

15

template <typename F>

constexpr auto transform(F&& f) const&&;

35 Effects: Equivalent to:
using U = std::invoke_result_t<F, const Value&&>;

return (value_) ? maybe_view<U>{std::invoke(std::forward<F>(f),

std::move(*value_))}

: maybe_view<U>{};

template <typename F>

constexpr auto or_else(F&& f) &&;

36 Effects: Equivalent to:
using U = std::invoke_result_t<F>;

return value_ ? *this : std::forward<F>(f)();

template <typename F>

constexpr auto or_else(F&& f) const&;

37 Effects: Equivalent to:
using U = std::invoke_result_t<F>;

return value_ ? std::move(*this) : std::forward<F>(f)();

�? . �? .2 Nullable View [range.nullable]
�? . �? .2.1 Overview [range.nullable.overview]

1 nullable_view is a range adaptor that produces a view with cardinality 0 or 1. It adapts object types
which model the exposition only concept nullable_object_val or nullable_object_ref.

2 The name views::nullable denotes a customization point object (??). Given a subexpression E, the ex-
pressionviews::nullable(E) is expression-equivalent tonullable_view<decay_t<decltype((E))>>(E).

�? . �? .2.2 Class template nullable_view [range.nullable.view]
[Example 1:

std::optional o{4};

for (int k : nullable_view m{o})

cout << k; // prints 4

—end example]

�? . �? .2.3 Class template nullable_view [range.nullable.view]

template <typename Nullable>

requires(copyable_object<Nullable> &&

(nullable_object_val<Nullable> || nullable_object_ref<Nullable>))

class nullable_view<Nullable>

: public ranges::view_interface<nullable_view<Nullable>> {

private:

using T = std::remove_reference_t<

std::iter_reference_t<typename std::unwrap_reference_t<Nullable>>>;

movable-box<Nullable> value_; // exposition only (see ??)

public:

constexpr nullable_view() = default;

constexpr explicit nullable_view(Nullable const& nullable);

16

constexpr explicit nullable_view(Nullable&& nullable);

template <class... Args>

requires std::constructible_from<Nullable, Args...>

constexpr nullable_view(std::in_place_t, Args&&... args);

constexpr auto begin() noexcept;

constexpr auto begin() const noexcept;

constexpr auto end() noexcept;

constexpr auto end() const noexcept;

constexpr size_t size() const noexcept;

constexpr auto data() noexcept;

constexpr const auto data() const noexcept;

friend constexpr auto operator<=>(const nullable_view& l,

const nullable_view& r);

friend constexpr bool operator==(const nullable_view& l,

const nullable_view& r);

};

template <typename Nullable>

requires(copyable_object<Nullable> &&

(nullable_object_val<Nullable> || nullable_object_ref<Nullable>))

class nullable_view<Nullable&>

: public ranges::view_interface<nullable_view<Nullable>> {

private:

using T = std::remove_reference_t<

std::iter_reference_t<typename std::unwrap_reference_t<Nullable>>>;

Nullable* value_;

public:

constexpr nullable_view() : value_(nullptr){};

constexpr explicit nullable_view(Nullable& nullable);

constexpr explicit nullable_view(Nullable&& nullable) = delete;

constexpr T* begin() noexcept;

constexpr const T* begin() const noexcept;

constexpr T* end() noexcept;

constexpr const T* end() const noexcept;

constexpr size_t size() const noexcept;

constexpr T* data() noexcept;

constexpr const T* data() const noexcept;

};

constexpr explicit nullable_view();

1 Effects: Initializes value_ with nullptr

constexpr explicit nullable_view(Nullable nullable);

2 Effects: Initializes value_ with addressof(nullable)

constexpr T* begin() noexcept;

constexpr const T* begin() const noexcept;

3 Effects: Equivalent to: return data();

17

constexpr T* end() noexcept;

constexpr const T* end() const noexcept;

4 Returns: data() + size();.

static constexpr size_t size() noexcept;

5 Effects: Equivalent to:
if (!value_)

return 0;

Nullable& m = *value_;

if constexpr (is_reference_wrapper_v<Nullable>) {

return bool(m.get());

} else {

return bool(m);

}

constexpr T* data() noexcept;

constexpr const T* data() const noexcept;

6 Effects: Equivalent to:
if (!value_)

return nullptr;

const Nullable& m = *value_;

if constexpr (is_reference_wrapper_v<Nullable>) {

return m.get() ? std::addressof(*(m.get())) : nullptr;

} else {

return m ? std::addressof(*m) : nullptr;

}

�? . �? .3 Feature-test macro [version.syn]
Add the following macro definition to [version.syn], header <version> synopsis, with the value selected by
the editor to reflect the date of adoption of this paper:

#define __cpp_lib_ranges_maybe 20XXXXL // also in <ranges>, <tuple>, <utility>

11 Impact on the standard

A pure library extension, affecting no other parts of the library or language.
The proposed changes are relative to the current working draft [N4910].

Document history

— Changes since R10,
— Complete History in history section
— exposid formatting and ampersand escaping TeX formatting nits

— Changes since R9,
— Fix Borrowed Ranges post naming split
— Clarify safety concerns

— Changes since R8,
— Give maybe and nullable distinct template names
— Propose T& specializations
— Propose monadic interface for maybe_view
— Wording++
— Freestanding

18

— Changes since D7, presented to SG9 on 2022.07.11
— Layout issues
— References include paper source
— Citation abbreviation form to ‘abstract’
— ‘nuulable’ typo fix
— Markdown backticks to tcode
— ToC depth and chapter numbers for Ranges
— No technical changes to paper — all presentation

— Changes since R7
— Update all Wording.
— Convert to standards latex macros for wording.
— Removed discussion of list comprehension desugaring - will move to yield_if paper.

— Changes since R6
— Extend to all object types in order to support list comprehension
— Track working draft changes for Ranges
— Add discussion of _borrowed_range_
— Add an example where pipelines use references.
— Add support for proxy references (explore std::pointer_traits, etc).
— Make std::views::maybe model std::ranges::borrowed_range if it’s not holding the object by value.
— Add a const propagation section discussing options, existing precedent and proposing the option

that the author suggests.
— Changes since R5

— Fix reversed before/after table entry
— Update to match C++20 style [@N4849] and changes in Ranges since [@P0896R3]
— size is now size_t, like other ranges are also
— add synopsis for adding to ‘<ranges>‘ header
— Wording clean up, formatting, typesetting
— Add implementation notes and references

— Changes since R4
— Use std::unwrap_reference
— Remove conditional ‘noexcept‘ness
— Adopted the great concept renaming

— Changes since R3
— Always Capture
— Support reference_wrapper

— Changes since R2
— Reflects current code as reviewed
— Nullable concept specification
— Remove Readable as part of the specification, use the useful requirements from Readable
— Wording for views::maybe as proposed
— Appendix A: wording for a view_maybe that always captures

— Changes since R1
— Refer to views::all

19

— Use wording ’range adaptor object’
— Changes since R0

— Remove customization point objects
— Concept ‘Nullable‘, for exposition
— Capture rvalues by decay copy
— Remove maybe_view as a specified type

References

[N4910] Thomas Köppe. N4910: Working draft, standard for programming language c++. https://wg21.
link/n4910, 3 2022.

[P0323R9] JF Bastien and Vicente Botet. P0323R9: std::expected. https://wg21.link/p0323r9, 8 2019.

[P0798R8] Sy Brand. P0798R8: Monadic operations for std::optional. https://wg21.link/p0798r8, 10
2021.

[P0843R4] Gonzalo Brito Gadeschi. P0843R4: static_vector. https://wg21.link/p0843r4, 1 2020.

[viewmayb27:online] Steve Downey. A view of 0 or 1 elements: views::maybe. https://github.com/
steve-downey/view_maybe/blob/master/papers/view-maybe.tex, 07 2022. (Accessed
on 08/15/2022).

20

https://wg21.link/n4910
https://wg21.link/n4910
https://wg21.link/p0323r9
https://wg21.link/p0798r8
https://wg21.link/p0843r4
https://github.com/steve-downey/view_maybe/blob/master/papers/view-maybe.tex
https://github.com/steve-downey/view_maybe/blob/master/papers/view-maybe.tex

	Before / After Table
	Motivation
	Lazy monadic pythagorean triples
	Borrowed Range
	Wait, There's More
	The Argument for a Vocabulary Type
	The Argument for Monadic Operations
	The Argument for Reference Specialization

	Design
	Freestanding
	Implementation
	Proposal
	Wording
	Impact on the standard
	References

