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It's been a tough couple years.
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Questions raised
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Questions raised
What is the point of our work?
Why is it worthwhile?
What should we be doing?
What are our obstacles?
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Goal: start a conversation
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"if we are not careful, C++ can still fail"
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"if we are not careful, C++ can still fail"

"[principles are needed] to keep C++ alive, healthy and
progressing"
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What can C++ loose?
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What can C++ loose?

utility

Observation 1: other programming languages cannot
"take away" C++'s utility

Observation 2: legislation cannot reduce C++'s
capabilities
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So what can threaten C++'s
utility?
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So what can threaten C++'s
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9.1



So what can threaten C++'s
utility?

us
backwards compatibility mitigates this
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The surest way to sabotage a standard is to say yes to
everything
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The surest way to sabotage a standard is to say yes to
everything

"[a complex mess of incoherent ideas becomes]
insanity to the point of endangering the future of C++"
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How do we mitigate this risk and align the committee
to a greater good?
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Mission
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Some not-so-great missions
1. Make/keep C++ the best language in the world
2. Make C++ the only language people use
3. Make C++ the most popular language
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Consequences of this line of
thought

Misalignment. "competing" tools good for users,
but bad for mission
Ignorance. Why investigate when we're the best?
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22% of C++ users are also using Rust
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40% of C++ users want to use Rust
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Ignorance of Rust is ignorance of our users.
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Ignorance of Rust is ignorance of our users.

We need a more helpful mission

17.1



A mission: improve people's lives
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A mission: improve people's lives

for(const auto & i: vec) { // "Ah, that's nice!" x 5,000,000
   f(i);
}
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Social obstacles to overcome
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C++ as a personal and group identity
What language do you program in?
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C++ as a personal and group identity
What language do you program in?

Clouds reason
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C++ as a personal and group identity
What language do you program in?

Clouds reason
Deep seated fears
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Counterproductive rhetoric
fatal, fail, dead, and death
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Counterproductive rhetoric
fatal, fail, dead, and death

Living things have finite resources (users),
competition (other languages), and death
(obsolescence)
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Counterproductive rhetoric
fatal, fail, dead, and death

Living things have finite resources (users),
competition (other languages), and death
(obsolescence)
C++ is merely a tool that is sometimes useful!
Idea of "enemy" frustrates cooperation
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"I can think of few things more
depressing than people still using C++

in a million years" - Lisa Lippincott
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"I can think of few things more
depressing than people still using C++

in a million years" - Lisa Lippincott

-5,000,000: first homininans
-300,000: first homo sapians
-40,000: last non-sapian hominan died out
-12,000: agriculture
-5,000: writing
-500: modern English
-78: first computer
-38: first C++ release
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Personal opportunity vs. stewardship
Gain C++ expertise, mingle with celebrities, land a

proposal!
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Some numbers
5,000,000 C++ users
About the population of Ireland
>1 C++ programmer for every 2,000 people

25



Some numbers
5,000,000 C++ users
About the population of Ireland
>1 C++ programmer for every 2,000 people

"we are writing a standard for millions of programmers
to rely on for decades, a bit of humility is in order"
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No one is qualified for this
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Stewardship responsibilities
Reject proposals without understandable value
proposition
Resist social pressure when you're against
something
Build an informed opinion (read the paper, test the
feature, collaborate)
Say "yes" only when risk is minimal

You are a caretaker and guardian of something beyond
yourself!
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If you're writing a proposal, consider...
"[C++ is] trying to do too much too fast"
"[C++ needs] to become more restrained and
selective"
Experience reports on high-impact proposals are
more helpful than low-impact proposal papers
Help is available
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Technical obstacles to overcome
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Neophilia
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Neophilia risks
Failed expectations
Poor integration
Non-expert frustration with learning costs
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Neophilia risks
Failed expectations
Poor integration
Non-expert frustration with learning costs

"Keeping up with the Jonses is a disservice"

31.1



Expert bias
Underrepresentation of average programmers in
committee
Opportunity cost of expert features is improving
lives at scale
Expert friendly means smaller impact
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Know your numbers
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Query # files %

* 34.6M 100%

cout 9M 26%

int main( 8.3M 24%

std::vector 4.7M 14%

std::unordered_map 692k 2.0%

std::sort 379k 1.1%
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Query # files %

* 34.6M 100%

#include <thread> 281k 0.81%

std::integral_constant 5.6k 0.016%

std::pmr 1.7k 0.0049%

hazardptr OR hazard_ptr 848 0.0025%

std::launder 278 0.00080%

std::atomic<std::shared_ptr 42 0.000121%
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Get average engineer feedback
Is this something you would use? How o�en?
Is this ergonomic?
How hard is this to learn?
Is this worth another chapter in the C++ book?
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Complexity
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Complexity: hiring impact
Barrier to entry is too high
Fewer people want to learn C++ and fewer schools
want to teach it
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“C++ [is] in danger of losing coherency due to
proposals based on differing and sometimes mutually

contradictory design philosophies and differing
stylistic tastes.”

std::function -> std::copyable_function,
std::function_ref, and
std::move_only_function
Preference for new tagged/named parameters over
simple classes
Recent proposals contradicting Stephanov's regular
concept
...
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Aim for coherence
"Is this the common C++ style?" "Is this increasing
C++'s barrier to entry?"
Have study groups get early feedback from
evolution groups on feature desirability
Overcome reluctance to say "I don't think this
belongs in C++"
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Prioritize well
Don't deny the greater number of users time spent
on proposals that can improve their lives.
Avoid pet peeves
Say "no" more o�en and, if needed, repeatedly
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Opinions on moving ahead
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Memory safety
We're near the peak of inflated expectations
1.6% of CMake projects mention fsanitize
There are 31 Rust projects for each of these
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Memory safety - dangers
Opportunity cost
Assuming complexity and incoherence trying to
"keep up"
Missing out on memory-safe language interop
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Major C++ overhaul
So-called successor languages?
C++ 2.0
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C++ 2.0
New syntax isn't a priority for typical C++ developers
Users desire coherence in their C++ code bases
We aren't especially suited to make a C++ successor
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Our biggest opportunity to improve
people's lives:

Focus on C++ as it is today
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Some examples
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Command-line processing library
3.2% of GitHub C++ source files use a command-line
parser library
2.0% of GitHub C++ source files manually parse the
command line
Manual command-line parsing is as popular as
std::unordered_map
This could easily impact a million lives
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Simple JSON library
2.9% of GitHub C++ source files mention JSON (0.2%
for YAML and 3.5% for XML)
Consider the number of custom formats replaced
with JSON
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Hash containers
New techniques produce 2-6x speedups
Require API changes
Considerable energy/environmental impact
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There are many others...
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C++ Should Be C++
Mission: improve people's lives
Stewardship
Technical obstacles: neophilia, expert bias,
complexity/coherence
Focus on broad improvements like range-based for
loops

Let's discuss!

53


