C++ Should Be C++

D3023R1
David Sankel, Adobe

Acknowledgments

Papers Feedback
e Direction for ISO C++ e Niall Douglas
(P2000R4) e Inbal Levi
e Thriving in a Crowded e Bjarne Stroustrup
and Changing World e Herb Sutter

e How can you be so
certain? (P1962R0)

e Operating principles for
evolving C++ (P0559R0)

Reflector discussion

Axel Naumann e Oliver Hunt

Balog Pal e Patrice Roy

Corentin Jabot e Peter Dimov

Harald Achitz e René Ferdinand Rivera
Howard Hinnant Morell

Jarrad Waterloo e Ville Voutilainen

JF Bastien

It's been a tough couple years.

Questions raised

Questions raised

e What s the point of our work?

Questions raised

e What s the point of our work?
e Why is it worthwhile?

5.2

Questions raised

e What s the point of our work?
e Why is it worthwhile?
e What should we be doing?

5.3

Questions raised

e

nat is the point of our work?
ny is it worthwhile?
nat should we be doing?

nat are our obstacles?

54

Goal:

"if we are not careful, C++ can still fail"

"if we are not careful, C++ can still fail"

"[principles are needed] to keep C++ alive, healthy and
progressing"

7.1

What can C++ loose?

What can C++ loose?

What can C++ loose?

Observation 1: other programming languages cannot
"take away" C++'s utility

8.2

What can C++ loose?

Observation 1: other programming languages cannot
"take away" C++'s utility

Observation 2: legislation cannot reduce C++'s
capabilities

8.3

So what can threaten C++'s
utility?

So what can threaten C++'s
utility?

So what can threaten C++'s
utility?

backwards compatibility mitigates this

The surest way to sabotage a standard is to say yes to
everything

10

The surest way to sabotage a standard is to say yes to
everything

"[a complex mess of incoherent ideas becomes]
insanity to the point of endangering the future of C++"

10.1

How do we mitigate this risk and align the committee
to a greater good?

11

Mission

Some not-so-great missions

1. Make/keep C++ the best language in the world
2. Make C++ the only language people use
3. Make C++ the most popular language

13

Consequences of this line of
thought

e Misalignment. "competing" tools good for users,
but bad for mission
e Ignorance. Why investigate when we're the best?

14

22% of C++ users are also using Rust

15

40% of C++ users want to use Rust

16

Ignorance of Rust is ignorance of our users.

17

Ignorance of Rust is ignorance of our users.

We need a more helpful mission

171

A mission: improve people's lives

A mission: improve people's lives

(const & i: vec) {
f(1);

" ' ' !:)IraHPnllzl?itls@

Peace
9 Corps

Social obstacles to overcome

C++ as a personal and group identity

What language do you program in?

21

C++ as a personal and group identity

What language do you program in?

e Clouds reason

21.1

C++ as a personal and group identity

What language do you program in?

e Clouds reason
e Deep seated fears

21.2

Counterproductive rhetoric
fatal, fail, dead, and death

22

Counterproductive rhetoric
fatal, fail, dead, and death

e Living things have finite resources (users),
competition (other languages), and death
(obsolescence)

221

Counterproductive rhetoric
fatal, fail, dead, and death

e Living things have finite resources (users),
competition (other languages), and death
(obsolescence)

e C++is merely a tool that is sometimes useful!

22.2

Counterproductive rhetoric
fatal, fail, dead, and death

e Living things have finite resources (users),
competition (other languages), and death

(obsolescence)
e C++is merely a tool that is sometimes useful!

e |dea of "enemy" frustrates cooperation

22.3

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

23

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

e -5,000,000: first homininans

23.1

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

e -5,000,000: first homininans
e -300,000: first homo sapians

23.2

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

e -5,000,000: first homininans
e -300,000: first homo sapians
e -40,000: last non-sapian hominan died out

23.3

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

-5,000,000: first homininans

-300,000: first homo sapians

-40,000: last non-sapian hominan died out
-12,000: agriculture

234

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

-5,000,000: first homininans

-300,000: first homo sapians

-40,000: last non-sapian hominan died out
-12,000: agriculture

-5,000: writing

23.5

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

-5,000,000: first homininans

-300,000: first homo sapians

-40,000: last non-sapian hominan died out
-12,000: agriculture

-5,000: writing

-500: modern English

23.6

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

-5,000,000: first homininans

-300,000: first homo sapians

-40,000: last non-sapian hominan died out
-12,000: agriculture

-5,000: writing

-500: modern English

-78: first computer

23.7

"I can think of few things more
depressing than people still using C++
in a million years" - Lisa Lippincott

-5,000,000: first homininans

-300,000: first homo sapians

-40,000: last non-sapian hominan died out
-12,000: agriculture

-5,000: writing

-500: modern English

-78: first computer

-38: first C++ release

23.8

Personal opportunity vs. stewardship

Gain C++ expertise, mingle with celebrities, land a
proposall!

24

Some numbers

e 5,000,000 C++ users
e About the population of Ireland
e >1 C++ programmer for every 2,000 people

25

Some numbers

e 5,000,000 C++ users
e About the population of Ireland
e >1 C++ programmer for every 2,000 people

"we are writing a standard for millions of programmers
to rely on for decades, a bit of humility is in order"

25.1

No one is qualified for this

26

Stewardship responsibilities

e Reject proposals without understandable value

Droposition

e Resist social pressure when you're against
something

e Build an informed opinion (read the paper, test the
feature, collaborate)

e Say "yes" only when risk is minimal

You are a caretaker and guardian of something beyond
yourself!

27

If you're writing a proposal, consider...

"[C++is] trying to do too much too fast"

"[C++ needs] to become more restrained and
selective"

Experience reports on high-impact proposals are
more helpful than low-impact proposal papers
Help is available

28

Technical obstacles to overcome

Neophilia

VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

Neophilia risks

e Failed expectations
e Poorintegration
e Non-expert frustration with learning costs

31

Neophilia risks

e Failed expectations
e Poorintegration
e Non-expert frustration with learning costs

"Keeping up with the Jonses is a disservice"

31.1

Expert bias

e Underrepresentation of average programmers in
committee

e Opportunity cost of expert features is improving
lives at scale

e Expert friendly means smaller impact

32

Know your numbers

Query #files %

* 34.6M 100%
cout oM 26%
int main(8.3M 24%
std::vector 47M 14%
std::unordered_map 692k 2.0%
std::sort 379k 1.1%

34

Query #files %

* 34.6M 100%
#include <thread> 281k 0.81%
std::integral_constant 5.6k 0.016%
std::pmr 1.7k 0.0049%
hazardptr OR hazard_ptr 848 0.0025%
std::launder 278 0.00080%

std::atomic<std::shared_ptr 42 0.000121%

Get average engineer feedback

e |s this something you would use? How often?
e |s this ergonomic?

e How hard is this to learn?

e |sthis worth another chapter in the C++ book?

36

Complexity

Complexity: hiring impact

e Barrier to entry is too high
e Fewer people want to learn C++ and fewer schools
want to teach it

38

“C++ [is] in danger of losing coherency due to
proposals based on differing and sometimes mutually
contradictory design philosophies and differing
stylistic tastes.”

e std: :function->std: :copyable function,
std: :function ref, and
std: :move _only function

e Preference for new tagged/named parameters over

simple classes
e Recent proposals contradicting Stephanov's regular

concept

39

Aim for coherence

e "Is this the common C++ style?" "Is this increasing
C++'s barrier to entry?"

e Have study groups get early feedback from
evolution groups on feature desirability

e Overcome reluctance to say "l don't think this

belongs in C++"

40

Prioritize well

e Don't deny the greater number of users time spent
on proposals that can improve their lives.

e Avoid pet peeves

e Say "no" more often and, if needed, repeatedly

41

Opinions on moving ahead

Memory safety

e We're near the peak of inflated expectations
e 1.6% of CMake projects mention fsanitize
e There are 31 Rust projects for each of these

43

Memory safety - dangers

e Opportunity cost

e Assuming complexity and incoherence trying to
"keep up"

e Missing out on memory-safe language interop

44

Major C++ overhaul

e So-called successor languages?
e C++2.0

C++ 2.0

e New syntaxisn't a priority for typical C++ developers
e Users desire coherence in their C++ code bases
e We aren't especially suited to make a C++ successor

46

Our biggest opportunity to improve
people's lives:

Focus on C++ as it is today

Some examples

Command-line processing library

3.2% of GitHub C++ source files use a command-line
parser library

2.0% of GitHub C++ source files manually parse the
command line

Manual command-line parsing is as popular as
std: :unordered map
This could easily impact a million lives

49

Simple JSON library

e 2.9% of GitHub C++ source files mention JSON (0.2%
for YAML and 3.5% for XML)

e Consider the number of custom formats replaced
with JSON

50

Hash containers

e New techniques produce 2-6x speedups
e Require APl changes
e Considerable energy/environmental impact

51

There are many others...

52

C++ Should Be C++

Mission: improve people's lives
Stewardship
Technical obstacles: neophilia, expert bias,
complexity/coherence

Focus on broad improvements like range-based for
loops

Let's discuss!

53

