
D3041R0 2023-11-08 Reply-To: gdr@microsoft.com

1

Transitioning from #include World to
Modules

Gabriel Dos Reis
Microsoft

Abstract
This paper is a report on a C++ implementation strategy to support transitioning existing
libraries organized as set of include files to a world where module implementations have
teeth and are used to naturally delimit components boundaries and dependencies in source
code. The strategy requires no change to existing language rules. It is illustrated in concrete
terms with the Standard Library Modules; the technique is scalable and applicable to
libraries that can be modularized. The strategy relies on judicious build definitions and
#include translation.

The Problem
Consider the following C++23 program:

#include <vector>
import std;
int main()
{
 std::vector<int> vee { 1, 2, 3, 4, 5 }; // #1
 return vee.size();
}

The focus here is not whether it is a wise programming practice to #include the header
<vector> and also import the std library in the same translation. If you’re bothered by
that, just imagine that the import comes from a separate header file the content of which
is not under the control of author of the program. This is a valid program, and the question
is how can C++ implementations or development tools can ensure that the program
compiles correctly.

The implementation problem is this: how can an implementation ensure that the reference
to the std::vector on line #1 is not ambiguous or, for mysterious reasons, does not cause
a crash?

D3041R0 2023-11-08 Reply-To: gdr@microsoft.com

2

You might ask: why is this even a question? Didn’t the standard say this program is well-
formed? The devil is in the details of C++ implementations.

An obvious implementation strategy (S1) of C++ standard headers (the ones that are not
inherited from C and friends) is for them to essentially contain only

 import std;

which delegates everything to the Standard Library module std. In that case, there is no
problem whatsoever.

For various reasons, not all implementations have the desire or the resources to apply this
implementation technique. Most want to continue to vend the same contents of their
existing headers in pre-C++23 compilation modes. In those universes, the template
std::vector is attached to the global module. Consequently, an implementation strategy
(S2) for the Standard Library module std is to provide that template attached to the global
module (e.g. via constructs like extern “C++” declarations) and to meet the letter of the
standards. That is good and dandy. A downside of that implementation strategy is that it
leaves on the table many advantages of name modules over the global module, in particular
guaranteed ODR by construction which is boon for improved compile-time speed up.

So, what can an implementation wanting to attach standard entities to the std module do if
they want to enjoy maximum profits of named modules and at the same time continue to
vend their headers the way they used to? There are undoubtedly many tricks that
implementers can deploy. The rest of the paper is devoted to a technique (S3) that scales
beyond the Standard Library module to any C++ library considering modularization.

A solution: #include translation + BMI mapping
The core of the strategy S3 is to have the compiler and the build definition conspire to deploy
the obvious implementation technique S1 (all standard headers are as if importing std)
through #include translation coupled with BMI mapping. That is, the build definition is set
up so that:

1. translate #include of standard headers to import of header units.
2. Direct the compiler to use the std BMI for all standard header units.

Step (1) asks the compiler to replace textual inclusion with imports of header units. That
process requires a backing BMI for the corresponding header units. That BMI can be anything
as long as the expectations placed on the declarations it makes available are satisfied. Step
(2) ensures that all standard declarations are made available, hence satisfying the
requirements on the header units it is backing. Note that this step is totally conforming

D3041R0 2023-11-08 Reply-To: gdr@microsoft.com

3

because any C++ standard header (excluding those inherited from C) is permitted to
implicitly #include any other standard headers. Because of step (2), it is important that the
build system does not go off trying to automatically build BMIs for header units that might be
discovered during dependency scanning. Those BMIs should be built only for the header
units that have not been mapped in step (2).

What about macros?
The core strategy works pretty well for most importable C++ standard headers. However,
there are a few standard headers that are documented to make certain macros available
(like errno) and since modules don’t export macros, how can the #include translation +
BMI mapping work?

The solution is to have those macros be “force #included” on the command line. One
could imagine one macro-file per standard header that is force #included. Or the build set
up can use force include a single macro file that provides all standard macros. We
recommend the latter approach for simplicity purposes.

Summary
In summary, the suggested implementation for transition strategy relies purely on build set
up and requires no language rule changes:

1. #include translation
2. mapping from header units to appropriate named module BMI
3. Forced inclusion of standard macro files.

There is no additional requirement on build systems. A build generator may need to support
user-supplied BMI mapping and #include translation.

Generalizing beyond std module
The implementation strategy S3 just illustrated for the Standard Library module std applies
to general modules, not just std. The description above makes uses of some standard
guarantees, such as any standard header can #include any other standard headers. What
is needed?

A. Ability to describe that certain headers are subsumed by a named module (or even
another header)

B. Ability to translate #include to import
C. Ability to map the BMIs of the header units from (B) to the subsuming module’s (or

header unit’s) BMI.

D3041R0 2023-11-08 Reply-To: gdr@microsoft.com

4

D. Ability to “force #include” macros that would otherwise come from the header files.

It is critical that the build system does not use the output of the dependency scanner after
step (B) to automatically generate build of BMI for header units without taking into account
the BMI mapping from step (C)

Acknowledgements
The transition strategy S3 detailed in this paper is based on ideas and techniques published
in section 4.2.2 of the 2016 paper “Modules, Componentization, and Transition” by Gabriel
Dos Reis and Pavel Curtis [P0141].

https://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0141r0.pdf

