
Low-Level Integer Arithmetic
Document #: P3018R0
Date: 2023-10-15
Project: Programming Language C++

SG6 Numerics
Library Evolution Group

Reply-to: Andreas Weis
<cpp@andreas-weis.net>

Abstract

This paper proposes a number of library functions for performing basic integer arithmetic.
Unlike the built-in language facilities, these operations can not trigger undefined behavior
and closely resemble the operations provided by hardware. They are intended to be used as
building blocks by library writers working on integer-heavy libraries.

Contents

1 Introduction 2

2 Motivation 2

3 Related Work 4

4 Use Cases 4
4.1 Safe Integer Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Big Integer Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Operations 5
5.1 General Assumptions and Design Guidelines . . . . . . . . . . . . . . . . . . . . . 6
5.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.4 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.5 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.6 Other operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.7 Prioritization Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Library Interface 10
6.1 Return Values or Out Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Overloads, Function Templates, or Named Functions . . . . . . . . . . . . . . . . 11
6.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.4 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.5 Example Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Directional Feedback 12
7.1 Questions to SG6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.2 Questions to LEWG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1

mailto:cpp@andreas-weis.net


P3018R0
1 Introduction

The built-in integer operations are among the oldest parts of C++, carried over virtually un-
changed since the inception of C in the early 1970s. The requirements for integer operations were
very different back then, with one of the main challenges being the task of finding a common
abstraction for the many different machine architectures and their various forms of handling
integer operations and representations.

The world of integer arithmetic today is significantly more homogeneous. For C++20, WG21
has agreed that two’s complement is the universal representation for integer types[P0907R4],
reflecting the reality of today’s machine architectures. Unfortunately, changing the semantics of
the built-in integer operations to reflect this is problematic for reasons of backward compatibility.
This burden of C++’s long history can not be changed. What is arguably more problematic
though is that the built-in operations are the only means of performing integer arithmetic in
standard C++. This is particularly painful for library writers that need more precisely defined
semantics for the integer operations, which match the operations provided by the underlying
hardware.

This paper attempts to address the issue by proposing a number of library functions for per-
forming basic integer arithmetic. The hope is that such a library will provide important building
blocks to writers of libraries that rely heavily on integer arithmetic and serve as a useful stepping
stone for standard library implementers to provide efficient implementations of future standard
library facilities relying on integers coming out of SG6.

2 Motivation

Writing code that heavily relies on complex integer arithmetic is very hard in C++. The fact
that all integer operations are subject to undefined behavior on overflow makes writing such
code akin to dancing on the edge of a volcano. This leads to the bizarre situation where writing
overflow aware code in C++ is actually harder than it is to write the equivalent code directly
in assembly. The resulting C++ code is difficult to understand for both humans and compilers,
and often leads to sub-optimal machine code being generated by the compiler.

Table 1 demonstrates this through the example of implementing an addition function that detects
and reports integer overflow to the caller without causing undefined behavior. Implementing such
a function correctly in C++ today is a significant challenge and most developers will probably
get it wrong on their first try1.

The generated machine code is as convoluted as the C++ code would suggest, despite the fact
that the hardware performs the overflow check for free on every addition – integer overflow is not
undefined behavior in assembly, but an expected result of the addition. We can simply carry out
the add operation in assembly and check afterwards whether an overflow did occur. With the
functionality proposed in this paper, developers will have access to a function that is similarly
easy to use. The resulting code is much shorter, clearer and easier to reason about and also
more closely resembles the nature of the operation that will be carried out by the underlying
hardware.

1The author does not claim that the attempt provided here is correct

Page 2 of 13



P3018R0

Table 1: Before-after table for an integer addition with overflow check.
Before After

1 #include <limits>
2

3 struct Result {
4 int64_t sum;
5 bool overflow;
6 };
7

8 Result safe_add(int64_t a, int64_t b) {
9 using lim = std::numeric_limits<int64_t>;

10 auto const max = lim::max();
11 auto const min = lim::min();
12 bool overflow = false;
13 if (a >= 0) {
14 if (max - a < b) {
15 overflow = true;
16 }
17 } else {
18 if (b < min - a) {
19 overflow = true;
20 }
21 }
22 return overflow ?
23 Result{ .sum = 0, .overflow = true } :
24 Result{ .sum = a+b, .overflow = false };
25 }

1 #include <integer>
2

3 struct Result {
4 int sum;
5 bool overflow;
6 };
7

8 Result safe_add(int64_t a, int64_t b) {
9 auto const [sum, overflow] =

10 std::integer_i64_add_overflow(a, b);
11 return Result{ .sum = sum,
12 .overflow = overflow };
13 }

x86-64 ASM Before x86-64 ASM After

safe_add(long, long):
test rdi, rdi
js .L2
movabs rax, 9223372036854775807
sub rax, rdi
cmp rax, rsi
jl .L6

.L4:
xor ecx, ecx
lea rax, [rdi+rsi]
movzx edx, cl
ret

.L2:
movabs rax, -9223372036854775808
sub rax, rdi
cmp rax, rsi
jle .L4

.L6:
mov ecx, 1
xor eax, eax
movzx edx, cl
ret

safe_add(long, long):
mov rax, rdi
mov edx, 0
add rax, rsi
seto dl
ret

Page 3 of 13

https://godbolt.org/z/v7oWo4x8r
https://godbolt.org/z/seof66bET


P3018R0
3 Related Work

Functionality like the one being proposed in this paper has been discussed in SG6 before, in par-
ticular in the context of [P0103R1] Overflow-Detecting and Double-Wide Arithmetic Operations.
That paper was last discussed in the context of the omnibus paper [P1889R1] C++ Numerics
Work In Progress, which was criticized by SG6 for omitting all motivation and rationale of the
earlier papers. The goal of this paper is to address these criticisms and restart the discussion
for the overflow-detecting and double-width operations. The interface proposed in this paper
is different from P0103 in that this proposal tries to mimic the underlying hardware as closely
as possible (see 5.1) and proposes a different library interface. The author highly encourages
critical feedback of this proposal in the context of the earlier work in P0103.

The C committee WG14 decided to ship facilities for safe integer arithmetic in C23, as laid out
in [N2683] and [N2792]. These facilities provide a subset of what is proposed in this paper,
focusing exclusively on the use case of safe integer arithmetic, which is concerned primarily with
overflow detection. The author believes that a successful standard library solution should take
additional use cases into account, besides safety. In particular, double-width operations should
be considered as part of the design from the beginning.

Many modern programming languages already provide facilities like the ones being proposed in
this paper. Both Swift[Swift-i32] and Rust[Rust-i32] provide low-level integer operations as part
of their standard libraries and are able to generate superior machine code compared to standard
C++ for uses like overflow detection2.

Some compilers already provide parts of the functionality being proposed here through implementation-
specific intrinsics[icc-Intr] or builtin functions[gcc-OF]. For the analysis of operations in 5, we
only looked at functions supported by gcc. Compilers today are typically3 not able to detect
patterns for implementing overflow detection or double-width operations in standard C++ and
generate sub-optimal machine code in those cases. In contrast, code generation for C++ code
using the aforementioned intrinsics or builtins seems to be quite good in compilers that support
them.

4 Use Cases

This section collects a number of essential use cases that a low-level integer arithmetic library
is required to support.

4.1 Safe Integer Library

The goal of a safe integer library is to prevent errors resulting from invalid integer operations –
in particular, preventing undefined behavior from signed integer overflow.

A safe integer library will want to detect for each operation whether it exceeded the valid range
and force the user to handle the range error before continuing the calculation. Apart from the
obvious overflow conditions when adding or multiplying big numbers, such a library would also
want to detect fringe conditions like multiplying INT_MIN with −1.

2https://godbolt.org/z/8xjhfndd4 demonstrates overflow detection via the overflow flag on x86 in Rust
3The notable exception here being the use of double-width division machine instructions for code calculating

both quotient and remainder of two integers. This seems to be a common optimization in modern compilers.

Page 4 of 13

https://godbolt.org/z/8xjhfndd4


4.2 Big Integer Library P3018R0
4.2 Big Integer Library

Big Integers provide data types and operations for performing computations that exceed the
value range of the built-in integer types. This could include fixed-width integer types such
as 512 bit integers, as well as dynamically sized BigNum types that can hold arbitrary large
integer values. The algorithms for the basic arithmetic operations in a positional numeral system
generalize to any base. A naïve implementation can encode an n bit number as an array of
n bool values and implement the algorithms in a bit-by-bit fashion (base 2). The resulting
implementation will be correct, but not very efficient.

For a more efficient implementation, the full word-width of the underlying machine should be
used for each operation. On a 64 bit target machine, the algorithms will effectively be carried out
in a positional system of base 64. For example, adding two n bit numbers is done by performing
a sequence of 64 bit integer additions, carrying the overflow as a carry bit from lower integers
to higher integers.

Addition of two n bit numbers will produce a result of n+ 1 bits. Regardless of the base of the
positional system that the addition is carried out in, an overflow will at most produce a single
carry bit on overflow.

Efficient implementation of big integer addition requires an elemental integer addition operation
that behaves as follows:

• Addition should wrap around on overflow. There should be no undefined behavior on
overflow.

• It should be detectable whether an addition produced a carry-bit for unsigned and signed
addition.

• It should be possible to feed the carry as an additional input to subsequent additions of
the higher-order bits (add-with-carry)

Multiplication of two n bit numbers will produce a result of 2n bits. Carrying out long multipli-
cation in a positional system requires adding up a number of double-width results, one for each
position in the input number.

Efficient implementation of big integer multiplication requires a big integer addition operation
as described above, as well as an elemental double-width integer multiplication that behaves as
follows:

• Multiplication will produce a result that is twice the width of the width of its inputs. This
result will be stored in two result variables that form the lower half and the higher half of
the result value. For example, multiplying two 64 bit integers will produce a 128 bit result
value, which will be split into two 64 bit return values.

• All results of any multiplication can be represented in the double-width result. There are
no overflow conditions and there is no undefined behavior.

5 Operations

This section will define the desired properties for the arithmetic operations to fulfil the require-
ments for the use cases laid out in 4.

For each proposed operation we list prior art from functions in the Rust[Rust-i32] and Swift[Swift-i32]
standard libraries, functions proposed in [P0103R1], and builtins[gcc-OF]/intrinsics[icc-Intr]

Page 5 of 13



5.1 General Assumptions and Design Guidelines P3018R0
available in gcc.

We also discuss the machine instructions that would be emitted for the function on x86-
64[x86-64], ARM64[ARM64], and RISC-V[RISCV] respectively. The author believes that those
three architectures form a sufficiently representative sample of modern day hardware archi-
tectures, but welcomes any feedback about architectures that differ significantly from what is
described.

5.1 General Assumptions and Design Guidelines

Operations should be well-defined for all inputs, where possible, and not exhibit any undefined
behavior.

Operations should mimic the behavior of underlying machine instructions as closely as possible,
similar to what one would expect from an intrinsic or builtin function.

When possible, operations should be carried out without any loss of information on overflow. In
cases where deviation from this guideline could result in a performance benefit, an additional
variant of the operation that loses information may be provided.

Operations are not supposed to be commonly used in user code. These are low-level facilities
for library writers. As such, short names are not a priority. Names should be descriptive and
unambiguous first; readability comes second.

5.2 Addition

5.2.1 Overflow Add (add_overflow)

Addition of two n bit numbers will result in an n + 1 bit number. The overflowing add is an
operation that returns the wrapped around sum and an overflow bit indicating whether a wrap
around did occur during addition.

Rust Swift P0103 gcc
overflowing_add addingReportingOverflow overflow_add __builtin_add_overflow

All hardware architectures allow cheap checking of the overflow condition, either by inspection
of a flag or via branch instructions. Overflow is not considered exceptional and does not trigger
a trap. In hardware, the same instruction is used for signed and unsigned addition, which is
why the check for the overflow condition is different4. For example, on x86 unsigned overflow
is reported in the carry flag (CF), while signed overflow is reported in the overflow flag (OF).
Since the unsigned overflow condition has no real meaning for signed types (and vice versa) we
only report the overflow condition matching the input types.

x86-64 ARM64 RISC-V
Flags set on add (OF, CF) Flags set on add (C, V) Branch after add (bltu, blt)

Rust provides a number of additional operations for integer addition, which can be efficiently
implemented based on the overflowing add:

• checked_add will return the sum wrapped in an optional which will be empty if the
addition overflowed. This is trivial to implement on top of overflowing addition.

4For example, consider the signed operation of adding −3 to 5, which will result in 2. In unsigned arithmetic,
this would be an overflow, as the binary representation of −3 in two’s complement corresponds to a very big
unsigned number. In signed arithmetic, the operation is perfectly fine and nowhere near an overflow.

Page 6 of 13



5.3 Subtraction P3018R0
• saturating_add will saturate the addition at INT_MAX/INT_MIN boundaries. This opera-

tion is not typically supported in hardware and will require additional branches in machine
code, so a naïve implementation based on overflowing add should be sufficient for this.

• wrapping_add will just contain the wrapped result without the overflow indicator. Com-
pilers are able to generate optimal machine code for this operation from a naïve imple-
mentation based on overflowing add5, as it is easy to detect when the overflow condition
is ignored.

Such functions could still be added later for reasons of usability but will not be part of this
proposal.

5.2.2 Add-with-carry (add_with_carry)

When adding big numbers, an overflow from the lower bits has to be added as carry to the higher
bits. Some hardware architectures offer a special add-with-carry operation for this purpose,
which automatically take the carry flag set by earlier operations as input. Compilers supporting
this operation through intrinsics are already able to generate the optimal machine code for such
cases6.

The result of add-with-carry is the same as for overflowing add. Adding two n bit numbers and
a carry bit will result in an n+ 1 bit number.

Rust Swift P0103 gcc
carrying_add (experimental) — wide_add2 _addcarry_u32 (<x86intrin.h>)

Not all hardware architectures support add-with-carry natively. In particular, architectures
that do not rely on flag registers for indicating overflow, such as RISC-V, may not benefit from
distinguishing this operation.

x86-64 ARM64 RISC-V
addc adc —

5.3 Subtraction

5.3.1 Overflow Subtraction (sub_overflow)

For most intents and purposes, subtraction can simply be interpreted as adding a negative
number. In a two’s complement based architecture the concerns for subtraction are identical
with those for addition.

Rust Swift P0103 gcc
overflowing_sub subtractingReportingOverflow overflow_sub __builtin_sub_overflow

x86-64 ARM64 RISC-V
Flags set on sub (OF, CF) Flags set on sub (C, V) Branch after sub (bltu, blt)

5.3.2 Subtract-with-borrow sub_with_borrow

Subtract-with-borrow is the equivalent to additions add-with-carry.

Rust Swift P0103 gcc
borrowing_sub (experimental) — wide_sub2 _subborrow_u32 (<x86intrin.h>)

5https://godbolt.org/z/n7cfcn6ss, note how this emits an lea instruction which does not set any of the overflow
flags (otherwise the slower add will be generated)

6https://godbolt.org/z/nEKx78P5b, note the use of add followed by addc.

Page 7 of 13

https://godbolt.org/z/n7cfcn6ss
https://godbolt.org/z/nEKx78P5b


5.4 Multiplication P3018R0
x86-64 ARM64 RISC-V
sbb sbc —

5.4 Multiplication

5.4.1 Overflow Multiplication (mul_overflow)

Multiplying two n bit numbers will result in a 2n bit number.

Modern hardware can typically carry out a full (double-width) multiplication in the same time
as a single-word multiplication. However, the fact that the full multiplication will need two
registers to write out its results may have detrimental effects on performance, which is why
there is typically separate instructions for single and double-width multiplications.

In principle a compiler should be able to detect whether the high bits of a double-width operation
remain unused and emit the single-width operation in machine code for such cases. However, a
compiler would still need to be able to distinguish the case where the higher order bits are only
accessed to check for overflow (which can be done most efficiently by a single-width multiply)
from the case where the full value of the higher order bits is used.

This paper proposes a separate function for overflowing multiply (in addition to double-width
multiply), which is consistent with how all the surveyed prior art approached the problem.

Rust Swift P0103 gcc
overflowing_mul multipliedReportingOverflow overflow_mul __builtin_mul_overflow

RISC-V does not include multiplication in its Base Integer Instruction Set, as it can be emulated
using additions and shifts. It does provide the standard extension "M" for Integer Multiplication
and Division, which we surveyed here.

Unlike addition, multiplication can benefit from separate hardware instructions for signed and
unsigned.

x86-64 ARM64 RISC-V
mul/imul umull/smull mul

5.4.2 Double-Width Multiply (mul_wide)

Carrying out multiplication without loss of information produces a result that is twice the length
of the input. This means the result is returned as a pair of values (low and high).

Rust Swift P0103 gcc
widening_mul (experimental, unsigned only) multipliedFullWidth wide_mul —

In hardware, the results are typically split across two registers. On some architectures, instead
of a single multiply operation writing to two output registers, the multiplication operation is
split into two instructions, one for writing out the lower half of the result and one for writing
out the upper half. On such architectures, matching low and high instructions are usually fused
into a single multiply operation internally.

x86-64 ARM64 RISC-V
mul/imul umulh/smulh mulh

5.4.3 Multiply with Carry (mul_with_carry)

For big integers, it may be beneficial to provide a double width multiply with carry.

Page 8 of 13



5.5 Division P3018R0
Rust Swift P0103 gcc

carrying_mul (experimental, unsigned only) — wide_muladd —

The author expects this to cause a higher burden on the implementation and would appreciate
feedback as to how important such operations are deemed by SG6.

5.5 Division

5.5.1 Overflow Division (div_overflow)

Division by 0 is undefined and will not produce a valid result.

Division can overflow only for the degenerate case INT_MIN/ − 1. This is often not indicated
correctly by the hardware and may require branching in machine code for efficient implementa-
tions.

Both cases should be diagnosed correctly by an overflowing division operation.

Rust Swift P0103 gcc
overflowing_div dividedReportingOverflow overflow_div —

5.5.2 Overflow Remainder (rem_overflow)

The error conditions for remainder are identical to those for division.

Rust Swift P0103 gcc
overflowing_rem remainderReportingOverflow — —

5.5.3 Fused Division-Remainder (div_rem_overflow)

Carrying out division in hardware usually computes the remainder for free. As with multiplica-
tion, returning the remainder in a second register may have a negative impact on performance.

A fused division-remainder is subject to the same error condition as the overflow division, so
unlike other wide operations, it is not guaranteed to produce a valid result.

Rust Swift P0103 gcc
— — wide_divnrem —

Many compilers are already able to fuse matching division and remainder operations to a single
machine instruction.

5.5.4 Double-Width Division (div_wide)

Some hardware architectures allow the dividend to be double-width. A double-width division is
still subject to overflow and division-by-0 errors.

Rust Swift P0103 gcc
— — wide_divn —

Hardware support for double-width division is not common.

x86-64 ARM64 RISC-V
div — —

Page 9 of 13



5.6 Other operations P3018R0
5.6 Other operations

5.6.1 Overflowing Negation (neg_overflow)

Negation can overflow for INT_MIN.

Rust Swift P0103 gcc
overflowing_neg — overflow_neg —

5.7 Prioritization Assessment

The author acknowledges that it may not be reasonable to add the full set of operations discussed
in this section all at once to the standard library. Not all operations are equally useful, and not
all operations are equally easy to implement for compiler vendors.

In this section, we propose a prioritization for the individual operations to distinguish between
the ones that we consider essential for this proposal to bring any value at all, and those that
would just be nice-to-have. These sets may be proposed separately in different papers in the
future to accelerate adoption.

The first set is the operations that we consider essential. All of these are universally useful, are
supported by all modern hardware architectures and there is broad implementation experience
in other languages for these. We are confident that they can be shipped quickly with minimal
effort:

• add_overflow • sub_overflow • mul_overflow

The second set contains operations that are equally easy to implement, but may not be quite
as useful or important to library writers. In particular, these functions are much easier to
implement manually without standard library support:

• div_overflow • rem_overflow • neg_overflow

The next set contains operations that would be useful for some use cases, but may be more
difficult to implement and require additional implementation experience and/or feedback from
implementers before standardization:

• mul_wide

• div_wide

• div_rem_overflow

• add_with_carry

• sub_with_borrow

• mul_with_carry

6 Library Interface

6.1 Return Values or Out Parameters

Both Swift and Rust have language-level support tuples and rely on this mechanism for opera-
tions that produce multiple return values (overflow flag + value; low return + high return).

P0103 and the gcc builtins use output parameters and single return values. For instance, in case
of an overflow function, the bool return value indicates whether an overflow occurred, and the
wrapped sum is written to an output parameter of the function.

Page 10 of 13



6.2 Overloads, Function Templates, or Named Functions P3018R0
The intention is that the proposed functions will be used similar to the gcc builtin functions, so
for the relevant use cases of this proposal the decision between return values and out parameters
should not have an impact on performance.

The author slightly favors a design using aggregate types as return values.

6.2 Overloads, Function Templates, or Named Functions

There is a question how operations on different types should be grouped together. The previous
paper P0103 proposed providing the functionality through function templates. This author feels
that such an interface is potentially confusing in that it is difficult for users to tell which special-
izations will be provided by the standard library. A negative example here is std::atomic<T>
which commonly confuses users as to which types can sensibly be used with an atomic.

An alternative would be to provide a common set of overloads for each function. This author
dislikes the solution because it requires users of this library to understand both overload res-
olution and the implicit integer conversion rules to ensure that the correct operation will be
selected. We believe that the typical user of this library will not necessarily be an expert of the
language and may find it troublesome to deal with those issues.

We therefore propose a each function under its own name, where the type of the target operands
is part of the name, similar to the names of the gcc builtin functions. This approach leads to
code that is very explicit, with no confusion about what the target operands for the operation
are. It also makes it easy to extend the set of operations later, as each new function will use
a new unique name that does not interfere with existing functions. The major downside of
this approach is that it makes the functions tedious to use directly in generic contexts. As we
consider them to be low-level building blocks for library authors, we are confident that authors
of generic code will have no trouble wrapping those functions in an interface that is more suited
for such uses, such as the two options described previously.

6.3 Nomenclature

The author proposes the following nomenclature:

• All functions share the common prefix integer_

• Following the prefix is one of the type identifiers: i8_, u8_, i16_, u16_, i32_, u32_, i64_,
or u64_

• Followed by the name of the operation.

We propose the following names for the individual operations:

• add_overflow

• sub_overflow

• mul_overflow

• div_overflow

• rem_overflow

• neg_overflow

• mul_wide

• add_with_carry

• sub_with_borrow

• mul_with_carry

• div_rem_overflow

• div_wide

The full name for the function performing overflow addition of two int32_t signed 32 bit signed
integer values would be std::integer_i32_add_overflow.

The return type of each function is the name of the function with an appended _result.

Page 11 of 13



6.4 Header P3018R0
6.4 Header

The proposal suggests to create a new header <integer> for all of the proposed functions. The
suggested feature test macro is __cpp_lib_low_level_integer.

6.5 Example Signature

1 namespace std {
2 struct integer_i32_add_overflow_result {
3 int32_t sum;
4 bool does_overflow;
5 };
6 integer_i32_add_overflow_result integer_i32_add_overflow(int32_t a, int32_t b);
7 }

7 Directional Feedback

7.1 Questions to SG6

The author would like to ask SG6 for directional feedback on the following questions:

• Do we agree that the standard library should provide some form of low-level integer arith-
metic, as laid out in the motivational sections of this paper?

• Do we see any additional use cases that we consider essential, besides the ones described
in 4?

• Do we agree with the general assumptions and design guidelines proposed for such a library
in 5.1?

• Do we see any additional operations that could be useful to standardize in the context of
low-level integer arithmetic that were not mentioned in 5?

• Do we agree with the prioritization assessment given in 5.7?

7.2 Questions to LEWG

The author would like to ask LEWG/SG18(LEWG-I) for directional feedback on the following
questions:

• Do we agree that the standard library should provide some form of low-level integer arith-
metic, as laid out in the motivational sections of this paper?

• Do we agree with the interface direction proposed in 6?

– Do we prefer aggregate return types over output parameters?

– Do we prefer named functions to overloaded functions or function templates?

– Do we agree with the proposed naming scheme?

Acknowledgements

The author would like to thank Robert C. Seacord for the feedback and discussions on the topic
of this paper.

Page 12 of 13



REFERENCES P3018R0
References

[ARM64] Arm Architecture Reference Manual for A-profile architecture
https://developer.arm.com/documentation/ddi0487/latest/

[x86-64] Intel R© 64 and IA-32 Architectures Software Developer’s Manual
https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html

[RISCV] The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/

view?usp=drive_link

[gcc-OF] Built-in Functions to Perform Arithmetic with Overflow Checking
https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

[icc-Intr] Intel C++ Compiler Intrinsics for Multi-Precision Arithmetic
https://www.intel.com/content/www/us/en/docs/

cpp-compiler/developer-guide-reference/2021-10/

intrinsics-for-multi-precision-arithmetic.html

[Rust-i32] Rust Primitive Type i32

https://doc.rust-lang.org/std/primitive.i32.html

[Swift-i32] Swift Int32 Type
https://developer.apple.com/documentation/swift/int32

[P0103R1] Lawrence Crowl – Overflow-Detecting and Double-Wide Arithmetic Operations
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0103r1.html

[P0907R4] JF Bastien – Signed Integers are Two’s Complement
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r4.html

[P1889R1] Alexander Zaitsev, Antony Polukhin – C++ Numerics Work In Progress
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1889r1.pdf

[N2683] David Svoboda – Towards Integer Safety
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2683.pdf

[N2792] David Svoboda – Supplemental Integer Safety
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2792.pdf

Page 13 of 13

https://developer.arm.com/documentation/ddi0487/latest/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://drive.google.com/file/d/1s0lZxUZaa7eV_O0_WsZzaurFLLww7ou5/view?usp=drive_link
https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/intrinsics-for-multi-precision-arithmetic.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/intrinsics-for-multi-precision-arithmetic.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/intrinsics-for-multi-precision-arithmetic.html
https://doc.rust-lang.org/std/primitive.i32.html
https://developer.apple.com/documentation/swift/int32
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0103r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r4.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1889r1.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2683.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2792.pdf

	Introduction
	Motivation
	Related Work
	Use Cases
	Safe Integer Library
	Big Integer Library

	Operations
	General Assumptions and Design Guidelines
	Addition
	Subtraction
	Multiplication
	Division
	Other operations
	Prioritization Assessment

	Library Interface
	Return Values or Out Parameters
	Overloads, Function Templates, or Named Functions
	Nomenclature
	Header
	Example Signature

	Directional Feedback
	Questions to SG6
	Questions to LEWG


